I am currently developing a chess engine in C++, and I am in the process of debugging my move generator. For this purpose, I wrote a simple perft() function:
int32_t Engine::perft(GameState game_state, int32_t depth)
{
int32_t last_move_nodes = 0;
int32_t all_nodes = 0;
Timer timer;
timer.start();
int32_t output_depth = depth;
if (depth == 0)
{
return 1;
}
std::vector<Move> legal_moves = generator.generate_legal_moves(game_state);
for (Move move : legal_moves)
{
game_state.make_move(move);
last_move_nodes = perft_no_print(game_state, depth - 1);
all_nodes += last_move_nodes;
std::cout << index_to_square_name(move.get_from_index()) << index_to_square_name(move.get_to_index()) << ": " << last_move_nodes << "\n";
game_state.unmake_move(move);
}
std::cout << "\nDepth: " << output_depth << "\nTotal nodes: " << all_nodes << "\nTotal time: " << timer.get_milliseconds() << "ms/" << timer.get_milliseconds()/1000.0f << "s\n\n";
return all_nodes;
}
int32_t Engine::perft_no_print(GameState game_state, int32_t depth)
{
int32_t nodes = 0;
if (depth == 0)
{
return 1;
}
std::vector<Move> legal_moves = generator.generate_legal_moves(game_state);
for (Move move : legal_moves)
{
game_state.make_move(move);
nodes += perft_no_print(game_state, depth - 1);
game_state.unmake_move(move);
}
return nodes;
}
It's results for the initial chess position (FEN: rnbqkbnr/pppppppp/8/8/8/8/PPPPPPPP/RNBQKBNR w KQkq - 0 1) for depths 1 and 2 match the results of stockfish's perft command, so I assume they are correct:
h2h3: 1
h2h4: 1
g2g3: 1
g2g4: 1
f2f3: 1
f2f4: 1
e2e3: 1
e2e4: 1
d2d3: 1
d2d4: 1
c2c3: 1
c2c4: 1
b2b3: 1
b2b4: 1
a2a3: 1
a2a4: 1
g1h3: 1
g1f3: 1
b1c3: 1
b1a3: 1
Depth: 1
Total nodes: 20
Total time: 1ms/0.001s
h2h3: 20
h2h4: 20
g2g3: 20
g2g4: 20
f2f3: 20
f2f4: 20
e2e3: 20
e2e4: 20
d2d3: 20
d2d4: 20
c2c3: 20
c2c4: 20
b2b3: 20
b2b4: 20
a2a3: 20
a2a4: 20
g1h3: 20
g1f3: 20
b1c3: 20
b1a3: 20
Depth: 2
Total nodes: 400
Total time: 1ms/0.001s
The results stop matching at depth 3, though:
Stockfish:
go perft 3
a2a3: 380
b2b3: 420
c2c3: 420
d2d3: 539
e2e3: 599
f2f3: 380
g2g3: 420
h2h3: 380
a2a4: 420
b2b4: 421
c2c4: 441
d2d4: 560
e2e4: 600
f2f4: 401
g2g4: 421
h2h4: 420
b1a3: 400
b1c3: 440
g1f3: 440
g1h3: 400
Nodes searched: 8902
My engine:
h2h3: 361
h2h4: 380
g2g3: 340
g2g4: 397
f2f3: 360
f2f4: 436
e2e3: 380
e2e4: 437
d2d3: 380
d2d4: 437
c2c3: 399
c2c4: 326
b2b3: 300
b2b4: 320
a2a3: 280
a2a4: 299
g1h3: 281
g1f3: 280
b1c3: 357
b1a3: 320
Depth: 3
Total nodes: 7070
Total time: 10ms/0.01s
I figured that my move generator was just buggy, and tried to track down the bugs by making a move the engine gives incorrect values for on the board and then calling perft() with depth = 2 on it to find out which moves are missing. But for all moves I tried this with, the engine suddenly starts to output the correct results I expected to get earlier!
Here is an example for the move a2a3:
When calling perft() on the initial position in stockfish, it calculates 380 subnodes for a2a3 at depth 3.
When calling perft() on the initial position in my engine, it calculates 280 subnodes for a2a3 at depth 3.
When calling perft() on the position you get after making the move a2a3 in the initial position in my engine, it calculates the correct number of total nodes at depth 2, 380:
h7h5: 19
h7h6: 19
g7g5: 19
g7g6: 19
f7f5: 19
f7f6: 19
e7e5: 19
e7e6: 19
d7d5: 19
d7d6: 19
c7c5: 19
c7c6: 19
b7b5: 19
b7b6: 19
a7a5: 19
a7a6: 19
g8h6: 19
g8f6: 19
b8c6: 19
b8a6: 19
Depth: 2
Total nodes: 380
Total time: 1ms/0.001s
If you have any idea what the problem could be here, please help me out. Thank you!
EDIT:
I discovered some interesting new facts that might help to solve the problem, but I don't know what to do with them:
For some reason, using std::sort() like this in perft():
std::sort(legal_moves.begin(), legal_moves.end(), [](auto first, auto second){ return first.get_from_index() % 8 > second.get_from_index() % 8; });
to sort the vector of legal moves causes the found number of total nodes for the initial position (for depth 3) to change from the wrong 7070 to the (also wrong) 7331.
When printing the game state after calling game_state.make_move() in perft(), it seems to have had no effect on the position bitboards (the other properties change like they are supposed to). This is very strange, because isolated, the make_move() method works just fine.
I'm unsure if you were able to pin down the issue but from the limited information available in the question, the best I can assume (and something I faced myself earlier) is that there is a problem in your unmake_move() function when it comes to captures since
Your perft fails only at level 3 - this is when the first legal capture is possible, move 1 and 2 can have no legal captures.
Your perft works fine when it's at depth 1 in the position after a2a3 rather than when it's searching at depth 3 from the start
This probably means that your unmake_move() fails at a depth greater than 1 where you need to restore some of the board's state that cannot be derived from just the move parameter you are passing in (e.g. enpassant, castling rights etc. before you made the move).
This is how you would like to debug your move generator using perft.
Given startpos as p1, generate perft(3) for your engine and sf. (you did that)
Now check any move that have different nodes, you pick a2a3. (you did that)
Given startpos + a2a3 as p2, generate perft(2) for your engine and sf. (you partially did this)
Now check any move that have different nodes in step 3. Let's say move x.
Given startpos + a2a3 + x as p3, generate perft(1) for your engine and sf.
Since that is only perft(1) by this time you will be able to figure out the wrong move or the missing move from your generator. Setup that last position or p3 on the board and see the wrong/missing moves from your engine compared to sf perft(1) result.
Related
Edit:
Thank you all for the quick and helpful replies. I got it working now. It was because I had to reset the counter.
I have come to ask for help as my professor is not giving me the help I need. I am new to c++ and I am trying to program a program that displays all the integers from 1 to 100 that are divisible by 6 or 7, but not both. and I have to display 5 numbers per row. I got it working except I have blank lines forming in certain areas. I don't know if it's because of how I set up the counter or what.
Here is what I got.
#include <iostream>
using namespace std;
int main()
{
int counter = 0; // Counter for creating new lines after 5 numbers
for (int numRange = 1; numRange <= 100; ++numRange) // Starts the loop of number 1 to 100
{
if (numRange % 6 == 0 || numRange % 7 == 0) // Makes the numbers divisible by 6 and 7
{
cout << numRange << " "; // Displays the output of the divisible numbers
counter++; // Starts the counter
}
if (counter % 5 == 0) // using the counter to create new lines after 5 numbers displayed
{
cout << endl; // Creates a new line
}
}
return 0;
}
This is what is outputted:
6 7 12 14 18
21 24 28 30 35
36 42 48 49 54
56 60 63 66 70
72 77 78 84 90
91 96 98
and this is what it's supposed to look like
6 7 12 14 18
21 24 28 30 35
36 48 49 54 56
60 63 66 70 72
77 78 90 91 96
98
The problem that you're seeing is due to the fact that you are checking for "5 outputs" on every loop, rather than only on ones where a number has been output! So, to fix this issue (there are others), put the counter % 5 == 0 test inside the preceding if block:
for (int numRange = 1; numRange <= 100; ++numRange) // Starts the loop of number 1 to 100
{
if (numRange % 6 == 0 || numRange % 7 == 0) // Makes the numbers divisible by 6 and 7
{
cout << numRange << " "; // Displays the output of the divisible numbers
counter++; // Increments the counter
if (counter % 5 == 0) // Only need this if we have done some output!
{
cout << endl; // Creates a new line
}
}
}
Another problem is that, in this requirement:
that are divisible by 6 or 7, but not both
your code doesn't check for the "but not both" part (but that's not the 'title' question, and I'm not going to do all your homework in one fell swoop).
Consider the following code snippet of this class template...
template<class T>
class FileTemplate {
private:
std::vector<T> vals_;
std::string filenameAndPath_;
public:
inline FileTemplate( const std::string& filenameAndPath, const T& multiplier ) :
filenameAndPath_( filenameAndPath ) {
std::fstream file;
if ( !filenameAndPath_.empty() ) {
file.open( filenameAndPath_ );
T val = 0;
while ( file >> val ) {
vals_.push_back( val );
}
file.close();
for ( unsigned i = 0; i < vals_.size(); i++ ) {
vals_[i] *= multiplier;
}
file.open( filenameAndPath_ );
for ( unsigned i = 0; i < vals_.size(); i++ ) {
file << vals_[i] << " ";
}
file.close();
}
}
inline std::vector<T> getValues() const {
return vals_;
}
};
When used in main as such with the lower section commented out with the following pre-populated text file:
values.txt
1 2 3 4 5 6 7 8 9
int main() {
std::string filenameAndPath( "_build/values.txt" );
std::fstream file;
FileTemplate<unsigned> ft( filenameAndPath, 5 );
std::vector<unsigned> results = ft.getValues();
for ( auto r : results ) {
std::cout << r << " ";
}
std::cout << std::endl;
/*
FileTemplate<float> ft2( filenameAndPath, 2.5f );
std::vector<float> results2 = ft2.getValues();
for ( auto r : results2 ) {
std::cout << r << " ";
}
std::cout << std::endl;
*/
std::cout << "\nPress any key and enter to quit." << std::endl;
char q;
std::cin >> q;
return 0;
}
and I run this code through the debugger sure enough both the output to the screen and file are changed to
values.txt - overwritten are -
5 10 15 20 25 30 35 40 45
then lets say I don't change any code just stop the debugging or running of the application, and let's say I run this again 2 more times, the outputs respectively are:
values.txt - iterations 2 & 3
25 50 75 100 125 150 175 200 225 250
125 250 375 500 625 750 875 1000 1125 1250
Okay good so far; now lets reset our values in the text file back to default and lets uncomment the 2nd instantiation of this class template for the float with a multiplier value of 2.5f and then run this 3 times.
values.txt - reset to default
1 2 3 4 5 6 7 8 9
-iterations 1,2 & 3 with both unsigned & float the multipliers are <5,2.5> respectively. 5 for the unsigned and 2.5 for the float
- Iteration 1
cout:
5 10 15 20 25 30 35 40 45
12.5 25 37.5 50 62.5 75 87.5 100 112.5
values.txt:
12.5 25 37.5 50 62.5 75 87.5 100 112.5
- Iteration 2
cout:
60
150 12.5 62.5 93.75 125 156.25 187.5 218.75 250 281.25
values.txt:
150 12.5 62.5 93.75 125 156.25 187.5 218.75 250 281.25
- Iteration 3
cout:
750 60
1875 150 12.5 156.25 234.375 312.5 390.625 468.75 546.875 625 703.125
values.txt:
1875 150 12.5 156.25 234.375 312.5 390.625 468.75 546.875 625 703.125
A couple of questions come to mind: it is two fold regarding the same behavior of this program.
The first and primary question is: Are the file read and write calls being done at compile time considering this is a class template and the constructor is inline?
After running the debugger a couple of times; why is the output incrementing the number of values in the file? I started off with 9, but after an iteration or so there are 10, then 11.
This part just for fun if you want to answer:
The third and final question yes is opinion based but merely for educational purposes for I would like to see what the community thinks about this: What are the pros & cons to this type of programming? What are the potentials and the limits? Are their any practical real world applications & production benefits to this?
In terms of the other issues. The main issue is that you are not truncating the file when you do the second file.open statement, you need :
file.open( filenameAndPath_, std::fstream::trunc|std::fstream::out );
What is happening, is that, when you are reading unsigned int from a file containing floating points, it is only reading the first number (e.g. 12.5) up to the decimal place and then stopping (e.g. reading only 12)
, because there is no other text on the line that looks like an unsigned int. This means it only reads the number 12 and then multiplies it by 5 to get the 60, and writes it to the file.
Unfortunately because you don't truncate the file when writing the 60, it leaves the original text at the end which is interpreted as additional numbers in the next read loop. Hence, 12.5 appears in the file as 60 5
stream buffers
Extracts as many characters as possible from the stream and inserts them into the output sequence controlled by the stream buffer object pointed by sb (if any), until either the input sequence is exhausted or the function fails to insert into the object pointed by sb.
(http://www.cplusplus.com/reference/istream/istream/operator%3E%3E/)
I've made a program to create the pascal's triangle. the program takes number of rows as input and displays the triangle on the console. I've used the setw() function to set the distance between numbers. it's of for unit single digits but when the numbers get greater than 10,the width is not being adjusted properly,right now I've :
if(P<10){
std::cout << P ;
std::cout <<std::setw(2);
}
if(P>=10){
std::cout<<std::setw(3) << P ;
std::cout<<std::setw(2);
}
here's the ouput from the console:
1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
1 6 15 20 15 6 1
1 7 21 35 35 21 7 1
1 8 28 56 70 56 28 8 1
1 9 36 84126126 84 36 9 110
I want it to appear like a proper triangle,Could someone help me out please???
If you read e.g. this reference of std::setw you will see
The width property of the stream will be reset to zero (meaning "unspecified") if any of the following functions are called
And then goes on to list basically all output operators.
This means that when you do
std::cout <<std::setw(2);
the width will only be set for the next output operation. If you do any kind of output after that the width will be reset to zero.
I'm using C++. Using sort from STL is allowed.
I have an array of int, like this :
1 4 1 5 145 345 14 4
The numbers are stored in a char* (i read them from a binary file, 4 bytes per numbers)
I want to do two things with this array :
swap each number with the one after that
4 1 5 1 345 145 4 14
sort it by group of 2
4 1 4 14 5 1 345 145
I could code it step by step, but it wouldn't be efficient. What I'm looking for is speed. O(n log n) would be great.
Also, this array can be bigger than 500MB, so memory usage is an issue.
My first idea was to sort the array starting from the end (to swap the numbers 2 by 2) and treating it as a long* (to force the sorting to take 2 int each time). But I couldn't manage to code it, and I'm not even sure it would work.
I hope I was clear enough, thanks for your help : )
This is the most memory efficient layout I could come up with. Obviously the vector I'm using would be replaced by the data blob you're using, assuming endian-ness is all handled well enough. The premise of the code below is simple.
Generate 1024 random values in pairs, each pair consisting of the first number between 1 and 500, the second number between 1 and 50.
Iterate the entire list, flipping all even-index values with their following odd-index brethren.
Send the entire thing to std::qsort with an item width of two (2) int32_t values and a count of half the original vector.
The comparator function simply sorts on the immediate value first, and on the second value if the first is equal.
The sample below does this for 1024 items. I've tested it without output for 134217728 items (exactly 536870912 bytes) and the results were pretty impressive for a measly macbook air laptop, about 15 seconds, only about 10 of that on the actual sort. What is ideally most important is no additional memory allocation is required beyond the data vector. Yes, to the purists, I do use call-stack space, but only because q-sort does.
I hope you get something out of it.
Note: I only show the first part of the output, but I hope it shows what you're looking for.
#include <iostream>
#include <fstream>
#include <algorithm>
#include <iterator>
#include <cstdint>
// a most-wacked-out random generator. every other call will
// pull from a rand modulo either the first, or second template
// parameter, in alternation.
template<int N,int M>
struct randN
{
int i = 0;
int32_t operator ()()
{
i = (i+1)%2;
return (i ? rand() % N : rand() % M) + 1;
}
};
// compare to integer values by address.
int pair_cmp(const void* arg1, const void* arg2)
{
const int32_t *left = (const int32_t*)arg1;
const int32_t *right = (const int32_t *)arg2;
return (left[0] == right[0]) ? left[1] - right[1] : left[0] - right[0];
}
int main(int argc, char *argv[])
{
// a crapload of int values
static const size_t N = 1024;
// seed rand()
srand((unsigned)time(0));
// get a huge array of random crap from 1..50
vector<int32_t> data;
data.reserve(N);
std::generate_n(back_inserter(data), N, randN<500,50>());
// flip all the values
for (size_t i=0;i<data.size();i+=2)
{
int32_t tmp = data[i];
data[i] = data[i+1];
data[i+1] = tmp;
}
// now sort in pairs. using qsort only because it lends itself
// *very* nicely to performing block-based sorting.
std::qsort(&data[0], data.size()/2, sizeof(data[0])*2, pair_cmp);
cout << "After sorting..." << endl;
std::copy(data.begin(), data.end(), ostream_iterator<int32_t>(cout,"\n"));
cout << endl << endl;
return EXIT_SUCCESS;
}
Output
After sorting...
1
69
1
83
1
198
1
343
1
367
2
12
2
30
2
135
2
169
2
185
2
284
2
323
2
325
2
347
2
367
2
373
2
382
2
422
2
492
3
286
3
321
3
364
3
377
3
400
3
418
3
441
4
24
4
97
4
153
4
210
4
224
4
250
4
354
4
356
4
386
4
430
5
14
5
26
5
95
5
145
5
302
5
379
5
435
5
436
5
499
6
67
6
104
6
135
6
164
6
179
6
310
6
321
6
399
6
409
6
425
6
467
6
496
7
18
7
65
7
71
7
84
7
116
7
201
7
242
7
251
7
256
7
324
7
325
7
485
8
52
8
93
8
156
8
193
8
285
8
307
8
410
8
456
8
471
9
27
9
116
9
137
9
143
9
190
9
190
9
293
9
419
9
453
With some additional constraints on both your input and your platform, you can probably use an approach like the one you are thinking of. These constraints would include
Your input contains only positive numbers (i.e. can be treated as unsigned)
Your platform provides uint8_t and uint64_t in <cstdint>
You address a single platform with known endianness.
In that case you can divide your input into groups of 8 bytes, do some byte shuffling to arrange each groups as one uint64_t with the "first" number from the input in the lower-valued half and run std::sort on the resulting array. Depending on endianness you may need to do more byte shuffling to rearrange each sorted 8-byte group as a pair of uint32_t in the expected order.
If you can't code this on your own, I'd strongly advise you not to take this approach.
A better and more portable approach (you have some inherent non-portability by starting from a not clearly specified binary file format), would be:
std::vector<int> swap_and_sort_int_pairs(const unsigned char buffer[], size_t buflen) {
const size_t intsz = sizeof(int);
// We have to assume that the binary format in buffer is compatible with our int representation
// we also require an even number of integers
assert(buflen % (2*intsz) == 0);
// load pairwise
std::vector< std::pair<int,int> > pairs;
pairs.reserve(buflen/(2*intsz));
for (const unsigned char* bufp=buffer; bufp<buffer+buflen; bufp+= 2*intsz) {
// It would be better to have a more portable binary -> int conversion
int first_value = *reinterpret_cast<int*>(bufp);
int second_value = *reinterpret_cast<int*>(bufp + intsz);
// swap each pair here
pairs.emplace_back( second_value, firstvalue );
}
// less<pair<..>> does lexicographical ordering, which is what you are looking ofr
std::sort(pairs.begin(), pairs.end());
// convert back to linear vector
std::vector<int> result;
result.reserve(2*pairs.size());
for (auto& entry : pairs) {
result.push_back(entry.first);
result.push_back(entry.second);
}
return result;
}
Both the inital parse/swap pass (which you need anyway) and the final conversion are O(N), so the total complexity is still (O(N log(N)).
If you can continue to work with pairs, you can save the final conversion. The other way to save that conversion would be to use a hand-coded sort with two-int strides and two-int swap: much more work - and possibly still hard to get as efficient as a well-tuned library sort.
Do one thing at a time. First, give your data some *struct*ure. It seems that each 8 byte form a unit of the
form
struct unit {
int key;
int value;
}
If the endianness is right, you can do this in O(1) with a reinterpret_cast. If it isn't, you'll have to live with a O(n) conversion effort. Both vanish compared to the O(n log n) search effort.
When you have an array of these units, you can use std::sort like:
bool compare_units(const unit& a, const unit& b) {
return a.key < b.key;
}
std::sort(array, length, compare_units);
The key to this solution is that you do the "swapping" and byte-interpretation first and then do the sorting.
I'm trying to implement an ACO for 01MKP. My input values are from the OR-Library mknap1.txt. According to my algorithm, first I choose an item randomly. then i calculate the probabilities for all other items on the construction graph. the probability equation depends on pheremon level and the heuristic information.
p[i]=(tau[i]*n[i]/Σ(tau[i]*n[i]).
my pheremon matrix's cells have a constant value at initial (0.2). for this reason when i try to find the next item to go, pheremon matrix is becomes ineffective because of 0.2. so, my probability function determines the next item to go, checking the heuristic information. As you know, the heuristic information equation is
n[i]=profit[i]/Ravg.
(Ravg is the average of the resource constraints). for this reason my prob. functions chooses the item which has biggest profit value. (Lets say at first iteration my algorithm selected an item randomly which has 600 profit. then at the second iteration, chooses the 2400 profit value. But, in OR-Library, the item which has 2400 profit value causes the resource violation. Whatever I do, the second chosen is being the item which has 2400 profit.
is there anything wrong my algorithm? I hope ppl who know somethings about ACO, should help me. Thanks in advance.
Input values:
6 10 3800//no of items (n) / no of resources (m) // the optimal value
100 600 1200 2400 500 2000//profits of items (6)
8 12 13 64 22 41//resource constraints matrix (m*n)
8 12 13 75 22 41
3 6 4 18 6 4
5 10 8 32 6 12
5 13 8 42 6 20
5 13 8 48 6 20
0 0 0 0 8 0
3 0 4 0 8 0
3 2 4 0 8 4
3 2 4 8 8 4
80 96 20 36 44 48 10 18 22 24//resource capacities.
My algorithm:
for i=0 to max_ant
for j=0; to item_number
if j==0
{
item=rand()%n
ant[i].value+=profit[item]
ant[i].visited[j]=item
}
else
{
calculate probabilities for all the other items in P[0..n]
find the biggest P value.
item=biggest P's item.
check if it is in visited list
check if it causes resource constraint.
if everthing is ok:
ant[i].value+=profit[item]
ant[i].visited[j]=item
}//end of else
}//next j
update pheremon matrix => tau[a][b]=rou*tau[a][b]+deltaTou
}//next i