I have a number (for example 301, but can be even 10^11).
n = lenght of that number
I have to break it down to sum of max n components. Those components are 0^n, 1^n, 2^n, 3^n...9^n.
How can I do that?
Since you have 1^n included in your options, this becomes a really simple problem solvable through Greedy Approach.
Firstly, let me clarify that the way I understand this, for an input N of length n, you want some solution to this equation:
A.1^n + B.2^n + C.3^n + ... + H.8^n + I.9^n
There are infinitely many possible solutions (just by theory of equations). One possible solution can be found as follows:
a = [x ** n for x in range(0,10)]
consts = [0] * 10
ctr = 9
while N > 0:
consts[ctr] = N // a[ctr]
N = N % a[ctr]
ctr -= 1
return consts
This consts array will have the constant values for the above equation at respective indices.
PS: I've written this in python but you can translate it to C++ as you want. I saw that tag later. If you have any confusion regarding the code, feel free to ask in the comments.
You could use the following to determine the number of components.
int remain = 301; // Target number
int exp = 3; // Length of number (exponent)
int total = 0; // Number of components
bool first = true; // Used to determinie if plus sign is output
for ( int comp = 9; comp > 0; --comp )
{
int count = 0; // Number of times this component is needed
while ( pow(comp, exp) <= remain )
{
++total; // Count up total number of components
++count; // Count up number of times this component is used
remain -= int(pow(comp, exp));
}
if ( count ) // If count is not zero, component is used
{
if ( first )
{
first = false;
}
else
{
printf(" + ");
}
if ( count > 1 )
{
printf("%d(%d^%d)", count, comp, exp);
}
else
{
printf("%d^%d", comp, exp);
}
}
}
if ( total == exp )
{
printf("\r\nTarget number has %d components", exp);
}
else if ( total < exp )
{
printf("\r\nTarget number has less than %d components", exp);
}
else
{
printf("\r\nTarget number has more than %d components", exp);
}
Output for 301:
6^3 + 4^3 + 2(2^3) + 5(1^3)
Target number has more than 3 components
Output for 251:
6^3 + 3^3 + 2^3
Target number has 3 components
These are my current errors, I think I did something wrong with the maths but everything I tried didn't work.
Ps: Sorry if my question's formatting is bad, first time using stackflow.
:) credit.c exists
:) credit.c compiles
:) identifies 378282246310005 as AMEX
:) identifies 371449635398431 as AMEX
:) identifies 5555555555554444 as MASTERCARD
:) identifies 5105105105105100 as MASTERCARD
:) identifies 4111111111111111 as VISA
:) identifies 4012888888881881 as VISA
:) identifies 4222222222222 as VISA
:) identifies 1234567890 as INVALID
:) identifies 369421438430814 as INVALID
:) identifies 4062901840 as INVALID
:) identifies 5673598276138003 as INVALID
:( identifies 4111111111111113 as INVALID
expected "INVALID\n", not "VISA\n"
:( identifies 4222222222223 as INVALID
expected "INVALID\n", not "VISA\n"
#include <cs50.h>
#include <math.h>
// Prompt user for credit card number
int main(void)
{
long credit_card, credit_number;
do
{
credit_card = get_long("Enter credit card number: ");
}
while (credit_card < 0);
credit_number = credit_card;
// Calculate total number of digits
int count = (credit_number == 0) ? 1 : (log10(credit_number) + 1);
int summation = 0;
while (credit_number == 0)
{
int x = credit_number % 10; summation += x;
int y = 2 * ((credit_number / 10) % 10);
int r = (y % 10) + floor((y / 10) % 10); summation += r; credit_number /= 100;
}
string card;
// Identify which card type you get after inputing your credit card number
int test = cc / pow(10, count - 2);
if ((count == 13 || count == 16) && test / 10 == 4)
{
card = "VISA";
}
else if (count == 16 && test >= 51 && test <= 55)
{
card = "MASTERCARD";
}
else if (count == 15 && (test == 34 || test == 37))
{
card = "AMEX";
}
else
{
card = "INVALID";
}
// Final verification
if (sum % 10 == 0)
{
printf("%s\n", card);
}
else
{
printf("INVALID\n");
}
}```
Your algorithm is maybe not fully correct. I would therefore propose a different approach. You can look at each single digit in a loop. And, you can also do the whole checksum calculation in one step.
I will show you how to do and explain the algorithm behind it.
BTW. Chosing the right algorithm is always the key for success.
So, first we need to think on how we can extract digits from a number. This can be done in a loop by repeating the follwoing steps:
Perform a modulo 10 division to get a digit
Do a integer division by 10
Repeat
Let us look at the example 1234.
Step 1 will get the 4 -- (1234 % 10 = 4)
Step 2 will convert original number into 123 -- (1234 / 10 = 123)
Step 1 will get the 3 -- (123 % 10 = 3)
Step 2 will convert the previous number into 12 -- (123 / 10 = 12)
Step 1 will get the 2 -- (12 % 10 = 2)
Step 2 will convert the previous number into 1 -- (12 / 10 = 1)
Step 1 will get the 1 -- (1 % 10 = 1)
Step 2 will convert the previous number into 0 -- (1 / 10 = 0)
Then the loop stops. Additionally we can observe that the loop stops, when the resulting divided becomes 0. And, we see addtionally that the number of loop executions is equal to the number of digits in the number. But this is somehow obvious.
OK, then let us look, what we learned so far
while (creditCardNumber > 0) {
unsigned int digit = creditCardNumber % 10;
creditCardNumber /= 10;
++countOfDigits;
}
This will get all digits and count them.
Good. Lets go to next step.
For later validation and comparison purpose we need to get the most significant digit (the first digit) and the second most significant digit (the second digit) of the number.
For this, we define 2 variables which will hold the number. We simply assign the current evaluated digit (and override it in each loop execution) to the "mostSignificantDigit". At the end of the loop, we will have it in our desired variable.
For the "secondMostSignificantDigit" we will simple copy the "old" or "previous" value of the "mostSignificantDigit", before assigning a new value to "mostSignificantDigit". With that, we will always have both values available.
The loop looks now like this:
while (creditCardNumber > 0) {
const unsigned int digit = creditCardNumber % 10;
secondMostSignificantDigit = mostSignificantDigit;
mostSignificantDigit = digit;
creditCardNumber /= 10;
++countOfDigits;
}
OK, now we come to the maybe more complex part. The cheksum. The calculation method is.
Start with the least significant (the last) digit
Do not multiply the digit, which is equivalent with multiplying it with 1, and add it to the checksum
Goto the next digit. Multiply it by 2. If the result is greater than 10, then get again the single digits and add both digits to the checksum
Repeat
So, the secret is, to analyze the somehow cryptic specification, given here. If we start with the last digit, we do not multiply it, the next digit will be multiplied, the next not and so on and so on.
To "not multiply" is the same as multiplying by 1. This means: In the loop we need to multiply alternating with 1 or with 2.
How to get alternating numbers in a loop? The algorithm for that is fairly simple. If you need alternating numbers, lets say, x,y,x,y,x,y,x..., Then, build the sum of x and y and perform the subtratcion "value = sum - value". Example:
We need alternating values 1 and 2. The sum is 3. To get the next value, we subtract the current value from the sum.
initial value = 1
sum = 3
current value = initial value = 1
next value = 3 - 1 = 2. Current value = 2
next value = 3 - 2 = 1. Current value = 1
next value = 3 - 1 = 2. Current value = 2
next value = 3 - 2 = 1. Current value = 1
next value = 3 - 1 = 2. Current value = 2
next value = 3 - 2 = 1. Current value = 1
. . .
Good, now we understand, how to make alternating values.
Next, If we multiply a digit with 2, then the maximum result maybe a 2 digit value. We get the single digits with a modulo and an integer division by 10.
And, now important, it does not matter, if we multiply or not, because, if we do not multiply, then the upper digit will always be 0. And this will not contribute to the sum.
With all that, we can always do a multiplication and always split the result into 2 digits (many of them having the upper digit 0).
The result will be:
checkSum += (digit * multiplier) % 10 + (digit * multiplier) / 10;
multiplier = 3 - multiplier;
An astonishingly simple formula.
Next, if we know C or C++ we also know that a multiplication with 2 can be done very efficiently with a bit shift left. And, additionally, a "no-multiplication" can be done with a bit shift 0. That is extremely efficient and faster than multiplication.
x * 1 is identical with x << 0
x * 2 is identical with x << 1
For the final result we will use this mechanism, alternate the multiplier between 0 and 1 and do shifts.
This will give us a very effective checksum calculation.
At the end of the program, we will use all gathered values and compare them to the specification.
Thsi will lead to:
int main() {
// Get the credit card number. Unfortunately I do not know CS50. I use the C++ standard iostream lib.
// Please replace the following 4 lines with your CS50 equivalent
unsigned long long creditCardNumber;
std::cout << "Enter credit card number: ";
std::cin >> creditCardNumber;
std::cout << "\n\n";
// We need to count the number of digits for validation
unsigned int countOfDigits = 0;
// Here we will calculate the checksum
unsigned int checkSum = 0;
// We need to multiply digits with 1 or with 2
unsigned int multiplier = 0;
// For validation purposes we need the most significant 2 digits
unsigned int mostSignificantDigit = 0;
unsigned int secondMostSignificantDigit = 0;
// Now we get all digits from the credit card number in a loop
while (creditCardNumber > 0) {
// Get the least significant digits (for 1234 it will be 4)
const unsigned int digit = creditCardNumber % 10;
// Now we have one digit more. In the end we will have the number of all digits
++countOfDigits;
// Simply remember the most significant digits
secondMostSignificantDigit = mostSignificantDigit;
mostSignificantDigit = digit;
// Calculate the checksum
checkSum += (digit << multiplier) % 10 + (digit << multiplier) / 10;
// Multiplier for next loop
multiplier = 1 - multiplier;
creditCardNumber /= 10;
}
// Get the least significant digit of the checksum
checkSum %= 10;
// Validate all calculated values and show the result
if ((0 == checkSum) && // Checksum must be correct AND
(15 == countOfDigits) && // Count of digits must be correct AND
((3 == mostSignificantDigit) && // Most significant digits must be correct
((4 == secondMostSignificantDigit) || (7 == secondMostSignificantDigit)))) {
std::cout << "AMEX\n";
}
else if ((0 == checkSum) && // Checksum must be correct AND
(16 == countOfDigits) && // Count of digits must be correct AND
((5 == mostSignificantDigit) && // Most significant digits must be correct
((secondMostSignificantDigit > 0) && (secondMostSignificantDigit < 6)))) {
std::cout << "MASTERCARD\n";
}
else if ((0 == checkSum) && // Checksum must be correct AND
((16 == countOfDigits) || (13 == countOfDigits)) && // Count of digits must be correct AND
((4 == mostSignificantDigit))) { // Most significant digit must be correct
std::cout << "VISA\n";
}
else {
std::cout << "INVALID\n";
}
return 0;
}
What we learn with this example, is integer division and modulo division and the smart usage of the identity element for binary operations.
In case of questions, please ask
Just to be complete, I will show you a C++ solution, based on a std::string and using modern C++ elements and algorithms.
For example, the whole checksum calculation will be done with one statement. The whole program does not contain any loop.
#include <iostream>
#include <string>
#include <regex>
#include <numeric>
int main() {
// ---------------------------------------------------------------------------------------------------
// Get user input
// Inform user, what to do. Enter a credit card number. We are a little tolerant with the input format
std::cout << "\nPlease enter a credit card number:\t";
// Get the number, in any format from the user
std::string creditCardNumber{};
std::getline(std::cin, creditCardNumber);
// Remove the noise, meaning, all non digits from the credit card number
creditCardNumber = std::regex_replace(creditCardNumber, std::regex(R"(\D)"), "");
// ---------------------------------------------------------------------------------------------------
// Calculate checksum
unsigned int checksum = std::accumulate(creditCardNumber.rbegin(), creditCardNumber.rend(), 0U,
[multiplier = 1U](const unsigned int sum, const char digit) mutable -> unsigned int {
multiplier = 1 - multiplier; unsigned int value = digit - '0';
return sum + ((value << multiplier) % 10) + ((value << multiplier) / 10); });
// We are only interested in the lowest digit
checksum %= 10;
// ---------------------------------------------------------------------------------------------------
// Validation and output
if ((0 == checksum) && // Checksum must be correct AND
(15 == creditCardNumber.length()) && // Count of digits must be correct AND
(('3' == creditCardNumber[0]) && // Most significant digits must be correct
(('4' == creditCardNumber[1]) || ('7' == creditCardNumber[1])))) {
std::cout << "AMEX\n";
}
else if ((0 == checksum) && // Checksum must be correct AND
(16 == creditCardNumber.length()) && // Count of digits must be correct AND
(('5' == creditCardNumber[0]) && // Most significant digits must be correct
((creditCardNumber[1] > '0') && (creditCardNumber[1] < '6')))) {
std::cout << "MASTERCARD\n";
}
else if ((0 == checksum) && // Checksum must be correct AND
((16 == creditCardNumber.length()) || (13 == creditCardNumber.length())) && // Count of digits must be correct AND
(('4' == creditCardNumber[0]))) { // Most significant digit must be correct
std::cout << "VISA\n";
}
else {
std::cout << "INVALID\n";
}
return 0;
The number is huge (cannot fit in the bounds of unsigned long long int in C++). How do we check?
There is a solution given here but it doesn't make much sense.
The solution here tries to repeatedly divide the large number (represented as a string) by 2 but I'm not sure I understand how the result is reached step by step.
Can someone please explain this or propose a better solution?
We cannot use any external libraries.
This is the sample code:
int isPowerOf2(char* str)
{
int len_str = strlen(str);
// sum stores the intermediate dividend while
// dividing.
int num = 0;
// if the input is "1" then return 0
// because 2^k = 1 where k >= 1 and here k = 0
if (len_str == 1 && str[len_str - 1] == '1')
return 0;
// Divide the number until it gets reduced to 1
// if we are successfully able to reduce the number
// to 1 it means input string is power of two if in
// between an odd number appears at the end it means
// string is not divisible by two hence not a power
// of 2.
while (len_str != 1 || str[len_str - 1] != '1') {
// if the last digit is odd then string is not
// divisible by 2 hence not a power of two
// return 0.
if ((str[len_str - 1] - '0') % 2 == 1)
return 0;
// divide the whole string by 2. i is used to
// track index in current number. j is used to
// track index for next iteration.
for (int i = 0, j = 0; i < len_str; i++) {
num = num * 10 + str[i] - '0';
// if num < 2 then we have to take another digit
// to the right of A[i] to make it bigger than
// A[i]. E. g. 214 / 2 --> 107
if (num < 2) {
// if it's not the first index. E.g 214
// then we have to include 0.
if (i != 0)
str[j++] = '0';
// for eg. "124" we will not write 064
// so if it is the first index just ignore
continue;
}
str[j++] = (int)(num / 2) + '0';
num = (num) - (num / 2) * 2;
}
str[j] = '\0';
// After every division by 2 the
// length of string is changed.
len_str = j;
}
// if the string reaches to 1 then the str is
// a power of 2.
return 1;
}
I'm trying to understand the process in the while loop. I know there are comments but they arent really helping me glean through the logic.
Let's start by figuring out how to halve a "string-number". We'll start with 128 as an example. You can halve each digit in turn (starting from the left), keeping in mind that an odd number affects the digit on the right(a). So, for the 1 in 128, you halve that to get zero but, because it was odd, five should be kept in storage to be added to the digit on its right (once halved):
128
v
028
Then halve the 2 as follows (adding back in that stored 5):
028
v
018
v
068
Because that wasn't odd, we don't store a 5 for the next digit so we halve the 8 as follows:
068
v
064
You can also make things easier then by stripping off any leading zeros. From that, you can see that it correctly halves 128 to get 64.
To see if a number is a power of two, you simply keep halving it until you reach exactly 1. But, if at any point you end up with an odd number (something ending with a digit from {1, 3, 5, 7, 9}, provided it's not the single-digit 1), it is not a power of two.
By way of example, the following Python 3 code illustrates the concept:
import re, sys
# Halve a numeric string. The addition of five is done by
# Choosing the digit from a specific set (lower or upper
# digits).
def half(s):
halfS = '' # Construct half value.
charSet = '01234' # Initially lower.
for digit in s: # Digits left to right.
if digit in '13579': # Select upper for next if odd.
nextCharSet = '56789'
else:
nextCharSet = '01234' # Otherwise lower set.
halfS += charSet[int(digit) // 2] # Append half value.
charSet = nextCharSet # And prep for next digit.
while halfS[0] == '0': # Remove leading zeros.
halfS = halfS[1:]
return halfS
# Checks for validity.
if len(sys.argv) != 2:
print('Needs a single argument')
sys.exit(1)
num = sys.argv[1]
if not re.match('[1-9][0-9]*', num):
print('Argument must be all digits')
sys.exit(1)
print(num)
while num != '1':
if num[-1:] in '13579':
print('Reached odd number, therefore cannot be power of two')
sys.exit(0)
num = half(num)
print(num)
print('Reached 1, was therefore power of two')
Running that with various (numeric) arguments will show you the process, such as with:
pax$ python ispower2.py 65534
65534
32767
Reached odd number, therefore cannot be power of two
pax$ python ispower2.py 65536
65536
32768
16384
8192
4096
2048
1024
512
256
128
64
32
16
8
4
2
1
Reached 1, was therefore power of two
(a) Take, for example, the number 34. Half of the 3 is 1.5 so the 1 can be used to affect that specific digit position but the "half" left over can simply be used by bumping up the digit on the right by five after halving it. So the 4 halves to a 2 then has five added to make 7. And half of 34 is indeed 17.
This solution does work only for numbers which are not too large i.e. fits in the range of unsigned long long int.
Simpler C++ solution using bitmanipulation for small numbers :-
int power(string s) {
// convert number to unsigned long long int
// datatype can be changed to long int, int as per the requirement
// we can also use inbuilt function like stol() or stoll() for this
unsigned long long int len = s.length();
unsigned long long int num = s[0]-'0';
for(unsigned long long int i = 1; i<len; i++)
num = (num*10)+(s[i]-'0');
if(num == 1)
return 0;
//The powers of 2 have only one set bit in their Binary representation
//If we subtract 1 from a power of 2 what we get is 1s till the last unset bit and if we apply Bitwise AND operator we should get only zeros
if((num & (num-1)) == 0)
return 1;
return 0;
}
A bit better solution that I could code in Java, which doesn't use any fancy object like BigInteger. This approach is same as simple way of performing division. Only look out for remainder after each division. Also trim out the leading zeroes from the quotient which becomes new dividend for next iteration.
class DivisionResult{
String quotient;
int remainder;
public DivisionResult(String q, int rem){
this.quotient = q;
this.remainder = rem;
}
}
public int power(String A) {
if (A.equals("0") || A.equals("1")) return 0;
while (!A.equals("1")){
DivisionResult dr = divideByTwo(A);
if (dr.remainder == 1) return 0;
A = dr.quotient;
}
return 1;
}
public DivisionResult divideByTwo(String num){
StringBuilder sb = new StringBuilder();
int carry = 0;
for (int i = 0;i < num.length(); i++){
int divisibleNum = carry*10 + (num.charAt(i) - '0');
carry = divisibleNum%2;
sb.append(divisibleNum/2);
}
return new DivisionResult(sb.toString().replaceAll("^0+(?!$)", ""), carry);
}
The “Narcissistic numbers”, are n digit numbers where the sum of all the nth power of their digits is equal to the number.
So, 153 is a narcissistic number because 1^3 + 5^3 + 3^3 = 153.
Now given N, find all Narcissistic numbers that are N digit length ?
My Approach : was to iterate over all numbers doing sum of powers of digits
and check if its the same number or not, and I per calculated the powers.
but that's not good enough, so is there any faster way ?!
Update:
In nature there is just 88 narcissistic numbers, and the largest is 39 digits long,
But I just need the numbers with length 12 or less.
My Code :
long long int powers[11][12];
// powers[x][y] is x^y. and its already calculated
bool isNarcissistic(long long int x,int n){
long long int r = x;
long long int sum = 0;
for(int i=0; i<n ; ++i){
sum += powers[x%10][n];
if(sum > r)
return false;
x /= 10;
}
return (sum == r);
}
void find(int n,vector<long long int> &vv){
long long int start = powers[10][n-1];
long long int end = powers[10][n];
for(long long int i=start ; i<end ; ++i){
if(isNarcissistic(i,n))
vv.push_back(i);
}
}
Since there are only 88 narcisstic numbers in total, you can just store them in a look up table and iterate over it: http://mathworld.wolfram.com/NarcissisticNumber.html
Start from the other end. Iterate over the set of all nondecreasing sequences of d digits, compute the sum of the d-th powers, and check whether that produces (after sorting) the sequence you started with.
Since there are
9×10^(d-1)
d-digit numbers, but only
(10+d-1) `choose` d
nondecreasing sequences of d digits, that reduces the search space by a factor close to d!.
The code below implements the idea of #Daniel Fischer. It duplicates the table referenced at Mathworld and then prints a few more 11-digit numbers and verifies that there are none with 12 digits as stated here.
It would actually be simplier and probably a little faster to generate all possible histograms of non-increasing digit strings rather than the strings themselves. By a histogram I mean a table indexed 0-9 of frequencies of the respective digit. These can be compared directly without sorting. But the code below runs in < 1 sec, so I'm not going to implement the histogram idea.
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#define MAX_DIGITS 12
// pwr[d][n] is d^n
long long pwr[10][MAX_DIGITS + 1];
// Digits and final index of number being considered.
int digits[MAX_DIGITS];
int m;
// Fill pwr.
void fill_tbls(void)
{
for (int d = 0; d < 10; d++) {
pwr[d][0] = 1;
for (int p = 1; p <= MAX_DIGITS; p++)
pwr[d][p] = pwr[d][p-1] * d;
}
}
// qsort comparison for integers descending
int cmp_ints_desc(const void *vpa, const void *vpb)
{
const int *pa = vpa, *pb = vpb;
return *pb - *pa;
}
// Test current number and print if narcissistic.
void test(void)
{
long long sum = 0;
for (int i = 0; i <= m; i++)
sum += pwr[digits[i]][m + 1];
int sum_digits[MAX_DIGITS * 2];
int n = 0;
for (long long s = sum; s; s /= 10)
sum_digits[n++] = s % 10;
if (n == m + 1) {
qsort(sum_digits, n, sizeof(int), cmp_ints_desc);
if (memcmp(sum_digits, digits, n * sizeof(int)) == 0)
printf("%lld\n", sum);
}
}
// Recursive generator of non-increasing digit strings.
// Calls test when a string is complete.
void gen(int i, int min, int max)
{
if (i > m)
test();
else {
for (int d = min; d <= max; d++) {
digits[i] = d;
gen(i + 1, 0, d);
}
}
}
// Fill tables and generate.
int main(void)
{
fill_tbls();
for (m = 0; m < MAX_DIGITS; m++)
gen(0, 1, 9);
return 0;
}
I wrote a program in Lua which found all the narcissistic numbers in 30829.642 seconds. The basis of the program is a recursive digit-value count array generator function which calls a checking function when it's generated the digit-value count for all the digit-values. Each nested loop iterates:
FROM i=
The larger of 0 and the solution to a+x*d^o+(s-x)*(d-1)^o >= 10^(o-1) for x
where
- 'a' is the accumulative sum of powers of digits so far,
- 'd' is the current digit-value (0-9 for base 10),
- 'o' is the total number of digits (which the sum of the digit-value count array must add up to),
- 's' represents the remaining slots available until the array adds to 'o'
UP TO i<=
The smaller of 's' and the solution to a+x*d^o < 10^o for x with the same variables.
This ensures that the numbers checked will ALWAYS have the same number of digits as 'o', and therefore be more likely to be narcissistic while avoiding unnecessary computation.
In the loop, it does the recursive call for which it decrements the digit-value 'd' adds the current digit-value's contribution (a=a+i*d^o) and takes the i digit-slots used up away from 's'.
The gist of what I wrote is:
local function search(o,d,s,a,...) --Original number of digits, digit-value, remaining digits, accumulative sum, number of each digit-value in descending order (such as 5 nines)
if d>0 then
local d0,d1=d^o,(d-1)^o
local dd=d0-d1
--a+x*d^o+(s-x)*(d-1)^o >= 10^(o-1) , a+x*d^o < 10^o
for i=max(0,floor((10^(o-1)-s*d1-a)/dd)),min(s,ceil((10^o-a)/dd)-1) do
search(o,d-1,s-i,a+i*d0,i,...) --The digit counts are passed down as extra arguments.
end
else
--Check, with the count of zeroes set to 's', if the sum 'a' has the same count of each digit-value as the list specifies, and if so, add it to a list of narcissists.
end
end
local digits=1 --Skip the trivial single digit narcissistic numbers.
while #found<89 do
digits=digits+1
search(digits,9,digits,0)
end
EDIT: I forgot to mention that my program finds 89 narcissistic numbers! These are what it finds:
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 153, 370, 371, 407, 1634, 8208, 9474, 54748, 92727, 93084, 548834, 1741725, 4210818, 9800817, 9926315, 24678050, 24678051, 88593477, 146511208, 472335975, 534494836, 912985153, 4679307774, 32164049650, 32164049651, 40028394225, 42678290603, 44708635679, 49388550606, 82693916578, 94204591914, 28116440335967, 4338281769391370, 4338281769391371, 21897142587612075, 35641594208964132, 35875699062250035, 1517841543307505039, 3289582984443187032, 4498128791164624869, 4929273885928088826, 63105425988599693916, 128468643043731391252,449177399146038697307, 21887696841122916288858, 27879694893054074471405, 27907865009977052567814, 28361281321319229463398, 35452590104031691935943, 174088005938065293023722, 188451485447897896036875, 239313664430041569350093, 1550475334214501539088894, 1553242162893771850669378, 3706907995955475988644380, 3706907995955475988644381, 4422095118095899619457938, 121204998563613372405438066, 121270696006801314328439376, 128851796696487777842012787, 174650464499531377631639254, 177265453171792792366489765, 14607640612971980372614873089, 19008174136254279995012734740, 19008174136254279995012734741, 23866716435523975980390369295, 1145037275765491025924292050346, 1927890457142960697580636236639, 2309092682616190307509695338915, 17333509997782249308725103962772, 186709961001538790100634132976990, 186709961001538790100634132976991, 1122763285329372541592822900204593, 12639369517103790328947807201478392, 12679937780272278566303885594196922, 1219167219625434121569735803609966019, 12815792078366059955099770545296129367, 115132219018763992565095597973971522400, 115132219018763992565095597973971522401
For posterity ;-) This is most similar to #Krakow10's approach, generating bags of digits recursively, starting with 9, then 8, then 7 ... to 0.
It's Python3 code and finds all base-10 solutions with 1 through 61 digits (the first "obviously impossible" width) in less than 10 minutes (on my box). It's by far the fastest code I've ever heard of for this problem. What's the trick? No trick - just tedium ;-) As we go along, the partial sum so far yields a world of constraints on feasible continuations. The code just pays attention to those, and so is able to cut off vast masses of searches early.
Note: this doesn't find 0. I don't care. While all the references say there are 88 solutions, their tables all have 89 entries. Some eager editor must have added "0" later, and then everyone else mindlessly copied it ;-)
EDIT New version is over twice as fast, by exploiting some partial-sum constraints earlier in the search - now finishes in a little over 4 minutes on my box.
def nar(width):
from decimal import Decimal as D
import decimal
decimal.getcontext().prec = width + 10
if width * 9**width < 10**(width - 1):
raise ValueError("impossible at %d" % width)
pows = [D(i) ** width for i in range(10)]
mintotal, maxtotal = D(10)**(width - 1), D(10)**width - 1
def extend(d, todo, total):
# assert d > 0
powd = pows[d]
d1 = d-1
powd1 = pows[d1]
L = total + powd1 * todo # largest possible taking no d's
dL = powd - powd1 # the change to L when i goes up 1
for i in range(todo + 1):
if i:
total += powd
todo -= 1
L += dL
digitcount[d] += 1
if total > maxtotal:
break
if L < mintotal:
continue
if total < mintotal or L > maxtotal:
yield from extend(d1, todo, total)
continue
# assert mintotal <= total <= L <= maxtotal
t1 = total.as_tuple().digits
t2 = L.as_tuple().digits
# assert len(t1) == len(t2) == width
# Every possible continuation has sum between total and
# L, and has a full-width sum. So if total and L have
# some identical leading digits, a solution must include
# all such leading digits. Count them.
c = [0] * 10
for a, b in zip(t1, t2):
if a == b:
c[a] += 1
else:
break
else: # the tuples are identical
# assert d == 1 or todo == 0
# assert total == L
# This is the only sum we can get - no point to
# recursing. It's a solution iff each digit has been
# picked exactly as many times as it appears in the
# sum.
# If todo is 0, we've picked all the digits.
# Else todo > 0, and d must be 1: all remaining
# digits must be 0.
digitcount[0] += todo
# assert sum(c) == sum(digitcount) == width
if digitcount == c:
yield total
digitcount[0] -= todo
continue
# The tuples aren't identical, but may have leading digits
# in common. If, e.g., "9892" is a common prefix, then to
# get a solution we must pick at least one 8, at least two
# 9s, and at least one 2.
if any(digitcount[j] < c[j] for j in range(d, 10)):
# we're done picking digits >= d, but don't have
# enough of them
continue
# for digits < d, force as many as we need for the prefix
newtodo, newtotal = todo, total
added = []
for j in range(d):
need = c[j] - digitcount[j]
# assert need >= 0
if need:
newtodo -= need
added.append((j, need))
if newtodo < 0:
continue
for j, need in added:
newtotal += pows[j] * need
digitcount[j] += need
yield from extend(d1, newtodo, newtotal)
for j, need in added:
digitcount[j] -= need
digitcount[d] -= i
digitcount = [0] * 10
yield from extend(9, width, D(0))
assert all(i == 0 for i in digitcount)
if __name__ == "__main__":
from datetime import datetime
start_t = datetime.now()
width = total = 0
while True:
this_t = datetime.now()
width += 1
print("\nwidth", width)
for t in nar(width):
print(" ", t)
total += 1
end_t = datetime.now()
print(end_t - this_t, end_t - start_t, total)
I think the idea is to generate similar numbers. For example, 61 is similar to 16 as you are just summing
6^n +1^n
so
6^n+1^n=1^n+6^n
In this way you can reduce significant amount of numbers. For example in 3 digits scenario,
121==112==211,
you get the point. You need to generate those numbers first.
And you need to generate those numbers without actually iterating from 0-n.
Python version is:
def generate_power_list(power):
return [i**power for i in range(0,10)]
def find_narcissistic_numbers_naive(min_length, max_length):
for number_length in range(min_length, max_length):
power_dict = generate_power_dictionary(number_length)
max_number = 10 ** number_length
number = 10** (number_length -1)
while number < max_number:
value = 0
for digit in str(number):
value += power_dict[digit]
if value == number:
logging.debug('narcissistic %s ' % number)
number += 1
Recursive solution:
In this solution each recursion handles a single digit of the array of digits being used, and tries all appropriate combinations of that digit
def execute_recursive(digits, number_length):
index = len(digits)
if digits:
number = digits[-1]
else:
number = 0
results = []
digits.append(number)
if len(digits) < number_length:
while number < 10:
results += execute_recursive(digits[:], number_length)
number += 1
digits[index] = number
else:
while number < 10:
digit_value = sum_digits(digits)
if check_numbers_match_group(digit_value, digits):
results.append(digit_value)
logging.debug(digit_value)
number += 1
digits[index] = number
return results
def find_narcissistic_numbers(min_length, max_length):
for number_length in range(min_length, max_length):
digits = []
t_start = time.clock()
results = execute_recursive(digits, number_length)
print 'duration: %s for number length: %s' %(time.clock() - t_start, number_length)
Narcissistic number check
In the base version, when checking that a number matched the digits, we iterated through each digit type, to ensure that there were the same number of each type. In this version we have added the optimisation of checking the digit length is correct before doing the full check.
I expected that this would have more of an effect on small number lengths, because as number length increases, there will tend to be more numbers in the middle of the distribution. This was somewhat upheld by the results:
n=16: 11.5% improvement
n=19: 9.8% improvement
def check_numbers_match_group(number, digits):
number_search = str(number)
# new in v1.3
if len(number_search) != len(digits):
return False
for digit in digit_list:
if number_search.count(digit[0]) != digits.count(digit[1]):
return False
return True
I think you could use Multinomial theorem for some optimisation of cheacking if it is Narcissistic number.
you can calculate (a+b+c+..)^n- sum of non n-th powers values
for example for n=2 you should compare x and (a+b)^2-2*a*b where a and b is digits of number x
'''We can use Nar() function to calculate the Narcissitic Number.'''
import math
def Nar(num):
sum=0
n=len(str(num))
while n>0:
temp=num%10
sum=sum+math.pow(temp,n)
num=num/10
return sum
x=input()
y=Nar(x)
if x==y:
print x,' is a Narcissistic number'
else:
print x,' is not a Narcissistic number'
I'm trying to find the nth digit of an integer of an arbitrary length. I was going to convert the integer to a string and use the character at index n...
char Digit = itoa(Number).at(n);
...But then I realized the itoa function isn't standard. Is there any other way to do this?
(number/intPower(10, n))%10
just define the function intPower.
You can also use the % operator and / for integer division in a loop. (Given integer n >= 0, n % 10 gives the units digit, and n / 10 chops off the units digit.)
number = 123456789
n = 5
tmp1 = (int)(number / 10^n); // tmp1 = 12345
tmp2 = ((int)(tmp1/10))*10; // tmp2 = 12340
digit = tmp1 - tmp2; // digit = 5
You can use ostringstream to convert to a text string, but
a function along the lines of:
char nthDigit(unsigned v, int n)
{
while ( n > 0 ) {
v /= 10;
-- n;
}
return "0123456789"[v % 10];
}
should do the trick with a lot less complications. (For
starters, it handles the case where n is greater than the number
of digits correctly.)
--
James Kanze
Itoa is in stdlib.h.
You can also use an alternative itoa:
Alternative to itoa() for converting integer to string C++?
or
ANSI C, integer to string without variadic functions
It is also possible to avoid conversion to string by means of the function log10, int cmath, which returns the 10th-base logarithm of a number (roughly its length if it were a string):
unsigned int getIntLength(int x)
{
if ( x == 0 )
return 1;
else return std::log10( std::abs( x ) ) +1;
}
char getCharFromInt(int n, int x)
{
char toret = 0;
x = std::abs( x );
n = getIntLength( x ) - n -1;
for(; n >= 0; --n) {
toret = x % 10;
x /= 10;
}
return '0' + toret;
}
I have tested it, and works perfectly well (negative numbers are a special case). Also, it must be taken into account that, in order to find tthe nth element, you have to "walk" backwards in the loop, subtracting from the total int length.
Hope this helps.
A direct answer is:
char Digit = 48 + ((int)(Number/pow(10,N)) % 10 );
You should include the <math> library
const char digit = '0' + number.at(n);
Assuming number.at(n) returns a decimal digit in the range 0...9, that is.
A more general approach:
template<int base>
int nth_digit(int value, int digit)
{
return (value / (int)pow((double)base, digit)) % base;
}
Just lets you do the same thing for different base numbers (e.g. 16, 32, 64, etc.).
An alternative to itoa is the std::to_string method. So, you could simply do:
char digit = to_string(number)[index]