How CRC16 using bytes data is woking ? (for CAN bus implementation) - c++

I have some trouble implementing a CRC16 for can message, I followed the instructions given by this website https://barrgroup.com/embedded-systems/how-to/crc-calculation-c-code and http://www.sunshine2k.de/articles/coding/crc/understanding_crc.html#ch5, plus other implention I have seen in here ( for example Function to Calculate a CRC16 Checksum).
I don't understand how it is processed.
My message here is in form of bytes, for example char message[4] = {0x12, 0x34, 0x56, 0x78}. When I go through the first loop I just take the first byte, shift it by 8 and calculate the remainder with a POLYNOME of 16 bits.
That means we have 0x1200 and we go through the second loop with it, which mean I do a XOR with the POLYNOME that I store in the remainder but I don't quite understand why this works, especially when I look at this code, the 2nd, 3rd and 4th bytesof my message which should get XORed by the 8 first bits of the POLYNOME at some points aren't going through it at all.
According to the wikipedia explanation https://en.wikipedia.org/wiki/Cyclic_redundancy_check the polynome goes through the whole message at once and not byte by byte.
I don't know how that translates to doing the CRC of 0x12345678 byte by byte.
uint16_t Compute_CRC16_Simple(char* message, int nbOfBytes)
{
uint16_t POLYNOME = 0xC599;
uint16_t remainder = 0;
for (int byte = 0;byte < nbOfBytes; byte++)
{
remainder ^= (message[byte] << 8);
for (int i = 0; i < 8; i++)
{
if (remainder & 0x8000)
{
remainder = (remainder << 1) ^ POLYNOME ;
}
else
{
remainder <<= 1;
}
}
}
return remainder;
}

I don't understand how it is processed.
Maybe it will help to describe the bit by bit operations for 8 bits of data:
crc[bit15] ^= data[bit7]
if(crc[bit15] == 1) crc = (crc << 1) ^ poly
else crc = crc << 1
crc[bit15] ^= data[bit6]
if(crc[bit15] == 1) crc = (crc << 1) ^ poly
else crc = crc << 1
...
crc[bit15] ^= data[bit0]
if(crc[bit15] == 1) crc = (crc << 1) ^ poly
else crc = crc << 1
Note that the if statement only depends on the bit value in crc[bit15], so the fixed part of the XOR with data could be done in one step:
crc[bit15 .. bit8] ^= data[bit7 .. bit0]
if(crc[bit15] == 1) crc = (crc << 1) ^ poly
else crc = crc << 1
if(crc[bit15] == 1) crc = (crc << 1) ^ poly
else crc = crc << 1
...
if(crc[bit15] == 1) crc = (crc << 1) ^ poly
else crc = crc << 1
The cycling of the CRC 8 times using those if ... then (shift + xor poly) else (just shift) could be precomputed for all 256 possible values in crc[bit15 .. bit8], and stored in a table for table lookup to cycle the CRC 8 times.

Related

How to generate CRC7 based on lookup table?

I am trying to implement CRC-7/MMC checksum with pregenerated lookup table. This is the code so far:
#include <iostream>
#include <string>
#include <cstdint>
using namespace std;
/* CRC-7/MMC
Poly: 0x09
Xorout: NO
Init: 0x00
Check value: 0x75 for "123456789"
*/
uint16_t CRC7_table[256];
void generate_crc7_table() {
uint16_t byte;
for (uint16_t i = 0; i < 256; i++) {
byte = i;
for (uint16_t bit = 0; bit < 8; bit++) {
if (byte & 1) { //if lsb is 1
byte >>= 1;
byte ^= 0x09;
}
else
byte >>= 1;
}
CRC7_table[i] = byte >> 1; //to drop off MSB
}
}
uint16_t crc7(string input) {
uint16_t reg = 0;
uint16_t b;
for (uint16_t i = 0; i < input.length(); i++) {
b = (input[i] ^ reg) & 0xFF;
reg = (reg >> 1) ^ CRC7_table[b];
}
return reg;
}
int main()
{
generate_crc7_table();
cout << hex << crc7("123456789") << endl;
return 0;
}
But it gives wrong output. I should get 0x75 but I get 0x07. I used this website to checkout the outputs.
Any suggestion or idea is highly appreciated. Thanks.
Note that the CRC definition you pointed to includes refin=false refout=false. That CRC is not reflected, so it is computed with left shifts, not right shifts.
Given that, and the fact that the CRC is less than eight bits in length, you will also want to keep the seven bits at the top of the byte being used for calculation, as opposed to the bottom. I.e. bits 1 to 7, as opposed to bits 0 to 6. The polynomial is then also shifted up by one for the table calculation.
This allows the table-driven, byte-wise calculation to simply exclusive-or each message byte into the byte being used for the calculations. If you want to return the CRC in the low seven bits, you can shift it down one at the end.
Example (0x12 is 0x09 shifted up one):
#include <iostream>
#include <string>
uint8_t table[256];
void make_table() {
uint8_t octet = 0;
do {
uint8_t crc = octet;
for (int k = 0; k < 8; k++)
crc = crc & 0x80 ? (crc << 1) ^ 0x12 : crc << 1;
table[octet++] = crc;
} while (octet);
}
uint8_t crc7(std::string const& input) {
uint8_t crc = 0;
for (auto octet : input)
crc = table[crc ^ octet];
return crc >> 1;
}
int main() {
make_table();
std::cout << std::hex << (unsigned)crc7("123456789") << '\n';
}
crcany will generate CRC code for you, given the definition. Since your CRC-7/MMC is in Greg's catalogue, crcany will generate that code out of the box, along with the other 100+ CRCs defined there. The generated code includes bit-wise, byte-wise, and word-wise calculations.

CRC midstream instead of at the end

Normally one would add a CRC to the end of the data stream. The CRC check would include the CRC itself and return 0 if the CRC is correct.
I need to add a CRC to verify my embedded code. It needs to be checked in place, but the top word in memory space is for an interrupt vector. Is it possible to place a key value midstream such that the CRC check returns 0 for the whole code? (or is this unsolvable?)
It's definitely possible. You can run a CRC backwards, which would be fast and easy. Below is example code.
In fact, you can give me the locations of bits scattered wherever in the stream, and if you give me enough of them I can tell you what to set them to to get a zero CRC at the end, or any other CRC value for that matter. My spoof code solves the linear equations to come up with that answer.
However I would wonder why you'd want to do any of that. Why not just know where the CRC is stored and compute the CRC for everything but that, and then check the result against the stored CRC?
// Example of the generation of a "middle" CRC, which is inserted somewhere in
// the middle of a sequence, where the CRC is generated such that the CRC of
// the complete sequence will be zero. This particular CRC has no pre or post
// processing.
//
// Placed into the public domain by Mark Adler, 11 May 2016.
#include <stddef.h> // for size_t
#include <stdint.h> // for uint32_t and uint64_t
#define POLY 0xedb88320 // CRC polynomial
// Byte-wise CRC tables for forward and reverse calculations.
uint32_t crc_forward_table[256];
uint32_t crc_reverse_table[256];
// Fill in CRC tables using bit-wise calculations.
void crc32_make_tables(void) {
for (uint32_t n = 0; n < 256; n++) {
uint32_t crc = n;
for (int k = 0; k < 8; k++)
crc = crc & 1 ? (crc >> 1) ^ POLY : crc >> 1;
crc_forward_table[n] = crc;
crc_reverse_table[crc >> 24] = (crc << 8) ^ n;
}
}
// Return the forward CRC of buf[0..len-1], starting with crc at the front.
uint32_t crc32(uint32_t crc, unsigned char *buf, size_t len) {
for (size_t n = 0; n < len; n++)
crc = (crc >> 8) ^ crc_forward_table[(crc ^ buf[n]) & 0xff];
return crc;
}
// Return the reverse CRC of buf[0..len-1], starting with crc at the end.
uint32_t crc32_reverse(uint32_t crc, unsigned char *buf, size_t len) {
while (len)
crc = (crc << 8) ^ crc_reverse_table[crc >> 24] ^ buf[--len];
return crc;
}
// Put a 32-bit value into a byte buffer in little-endian order.
void put4(uint32_t word, unsigned char *pos) {
pos[0] = word;
pos[1] = word >> 8;
pos[2] = word >> 16;
pos[3] = word >> 24;
}
#include <stdlib.h> // for random() and srandomdev()
// Fill dat[0..len-1] with uniformly random byte values. All of the bits from
// each random() call are used, except for possibly a few leftover at the end.
void ranfill(unsigned char *dat, size_t len) {
uint64_t ran = 1;
while (len) {
if (ran < 0x100)
ran = (ran << 31) + random();
*dat++ = ran;
ran >>= 8;
len--;
}
}
#include <stdio.h> // for printf()
#define LEN 1024 // length of the message without the CRC
// Demonstrate the generation of a middle-CRC, using the forward and reverse
// CRC computations. Verify that the CRC of the resulting sequence is zero.
int main(void) {
crc32_make_tables();
srandomdev();
unsigned char dat[LEN+4];
ranfill(dat, LEN/2);
put4(0, dat + LEN/2); // put zeros where the CRC will go
ranfill(dat + LEN/2 + 4, (LEN+1)/2);
put4(crc32(0, dat, LEN/2) ^ crc32_reverse(0, dat + LEN/2, (LEN+1)/2 + 4),
dat + LEN/2); // replace the zeros with the CRC
printf("%08x\n", crc32(0, dat, LEN+4));
return 0;
}

CRC8 on uneven number of bits - initial 0xff

on nRF24, CRC-1 byte use polynome x^8+x^2+x^1+1 with initial 0xff.
This has to be done on an eneven number of bits. How is that calculated ? I cannot get same result. For instance : in binary
on : 000000000000000100010000000000000100000100000100000111111
nRF24 will give a CRC8 of : 01110110 (0xbb)
Any idea how it is calculated ?
This produces 0x76 from the data:
#include <stdio.h>
unsigned crc8bit(unsigned crc, unsigned bit)
{
crc ^= bit << 7;
return (crc & 0x80 ? (crc << 1) ^ 7 : crc << 1) & 0xff;
}
int main(void)
{
unsigned n, crc;
unsigned char data[] = "000000000000000100010000000000000100000100000100000111111";
crc = 0xff;
for (n = 0; n < sizeof(data) - 1; n++)
crc = crc8bit(crc, data[n] & 1);
printf("crc = %02x\n", crc);
return 0;
}

Calculating CRC16 checksum

I'm reading (binary) data from file and generating the CRC16 checksum. The next step is to write this checksum at the end of this file (as last 2 bytes) and then calculate CRC16 again which should be 0. The problem is the CRC which i wrote to the file is different. For example i use write(reinterpret_cast<const char *>(&crc), 2) to writeshort int crc = 0xba10 at the end, but in fact im writing ş which is
00010000 11000101 10011111 not 10111010 00010000.Is there any way to write it properly at the end of file?
Here is my crc calculating code:
int crc16(char* data_p, int length){
unsigned char x;
unsigned short crc = 0x1D0F;
while (length--){
x = crc >> 8 ^ *data_p++;
x ^= x >> 4; // x = x ^ (x >> 4)
crc = (crc << 8) ^ ((unsigned short)(x << 12)) ^ ((unsigned short)(x <<5)) ^ ((unsigned short)x);
}
return crc;
}

Implementing SSE 4.2's CRC32C in software

So I have a design which incorporates CRC32C checksums to ensure data hasn't been damaged. I decided to use CRC32C because I can have both a software version and a hardware-accelerated version if the computer the software runs on supports SSE 4.2
I'm going by Intel's developer manual (vol 2A), which seems to provide the algorithm behind the crc32 instruction. However, I'm having little luck. Intel's developer guide says the following:
BIT_REFLECT32: DEST[31-0] = SRC[0-31]
MOD2: Remainder from Polynomial division modulus 2
TEMP1[31-0] <- BIT_REFLECT(SRC[31-0])
TEMP2[31-0] <- BIT_REFLECT(DEST[31-0])
TEMP3[63-0] <- TEMP1[31-0] << 32
TEMP4[63-0] <- TEMP2[31-0] << 32
TEMP5[63-0] <- TEMP3[63-0] XOR TEMP4[63-0]
TEMP6[31-0] <- TEMP5[63-0] MOD2 0x11EDC6F41
DEST[31-0] <- BIT_REFLECT(TEMP6[31-0])
Now, as far as I can tell, I've done everything up to the line starting TEMP6 correctly, but I think I may be either misunderstanding the polynomial division, or implementing it incorrectly. If my understanding is correct, 1 / 1 mod 2 = 1, 0 / 1 mod 2 = 0, and both divides-by-zero are undefined.
What I don't understand is how binary division with 64-bit and 33-bit operands will work. If SRC is 0x00000000, and DEST is 0xFFFFFFFF, TEMP5[63-32] will be all set bits, while TEMP5[31-0] will be all unset bits.
If I was to use the bits from TEMP5 as the numerator, there would be 30 divisions by zero as the polynomial 11EDC6F41 is only 33 bits long (and so converting it to a 64-bit unsigned integer leaves the top 30 bits unset), and so the denominator is unset for 30 bits.
However, if I was to use the polynomial as the numerator, the bottom 32 bits of TEMP5 are unset, resulting in divides by zero there, and the top 30 bits of the result would be zero, as the top 30 bits of the numerator would be zero, as 0 / 1 mod 2 = 0.
Am I misunderstanding how this works? Just plain missing something? Or has Intel left out some crucial step in their documentation?
The reason I went to Intel's developer guide for what appeared to be the algorithm they used is because they used a 33-bit polynomial, and I wanted to make outputs identical, which didn't happen when I used the 32-bit polynomial 1EDC6F41 (show below).
uint32_t poly = 0x1EDC6F41, sres, crcTable[256], data = 0x00000000;
for (n = 0; n < 256; n++) {
sres = n;
for (k = 0; k < 8; k++)
sres = (sres & 1) == 1 ? poly ^ (sres >> 1) : (sres >> 1);
crcTable[n] = sres;
}
sres = 0xFFFFFFFF;
for (n = 0; n < 4; n++) {
sres = crcTable[(sres ^ data) & 0xFF] ^ (sres >> 8);
}
The above code produces 4138093821 as an output, and the crc32 opcode produces 2346497208 using the input 0x00000000.
Sorry if this is badly written or incomprehensible in places, it is rather late for me.
Here are both software and hardware versions of CRC-32C. The software version is optimized to process eight bytes at a time. The hardware version is optimized to run three crc32q instructions effectively in parallel on a single core, since the throughput of that instruction is one cycle, but the latency is three cycles.
crc32c.c:
/* crc32c.c -- compute CRC-32C using the Intel crc32 instruction
* Copyright (C) 2013, 2021 Mark Adler
* Version 1.2 5 Jun 2021 Mark Adler
*/
/*
This software is provided 'as-is', without any express or implied
warranty. In no event will the author be held liable for any damages
arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
Mark Adler
madler#alumni.caltech.edu
*/
/* Version History:
1.0 10 Feb 2013 First version
1.1 31 May 2021 Correct register constraints on assembly instructions
Include pre-computed tables to avoid use of pthreads
Return zero for the CRC when buf is NULL, as initial value
1.2 5 Jun 2021 Make tables constant
*/
// Use hardware CRC instruction on Intel SSE 4.2 processors. This computes a
// CRC-32C, *not* the CRC-32 used by Ethernet and zip, gzip, etc. A software
// version is provided as a fall-back, as well as for speed comparisons.
#include <stddef.h>
#include <stdint.h>
// Tables for CRC word-wise calculation, definitions of LONG and SHORT, and CRC
// shifts by LONG and SHORT bytes.
#include "crc32c.h"
// Table-driven software version as a fall-back. This is about 15 times slower
// than using the hardware instructions. This assumes little-endian integers,
// as is the case on Intel processors that the assembler code here is for.
static uint32_t crc32c_sw(uint32_t crc, void const *buf, size_t len) {
if (buf == NULL)
return 0;
unsigned char const *data = buf;
while (len && ((uintptr_t)data & 7) != 0) {
crc = (crc >> 8) ^ crc32c_table[0][(crc ^ *data++) & 0xff];
len--;
}
size_t n = len >> 3;
for (size_t i = 0; i < n; i++) {
uint64_t word = crc ^ ((uint64_t const *)data)[i];
crc = crc32c_table[7][word & 0xff] ^
crc32c_table[6][(word >> 8) & 0xff] ^
crc32c_table[5][(word >> 16) & 0xff] ^
crc32c_table[4][(word >> 24) & 0xff] ^
crc32c_table[3][(word >> 32) & 0xff] ^
crc32c_table[2][(word >> 40) & 0xff] ^
crc32c_table[1][(word >> 48) & 0xff] ^
crc32c_table[0][word >> 56];
}
data += n << 3;
len &= 7;
while (len) {
len--;
crc = (crc >> 8) ^ crc32c_table[0][(crc ^ *data++) & 0xff];
}
return crc;
}
// Apply the zeros operator table to crc.
static uint32_t crc32c_shift(uint32_t const zeros[][256], uint32_t crc) {
return zeros[0][crc & 0xff] ^ zeros[1][(crc >> 8) & 0xff] ^
zeros[2][(crc >> 16) & 0xff] ^ zeros[3][crc >> 24];
}
// Compute CRC-32C using the Intel hardware instruction. Three crc32q
// instructions are run in parallel on a single core. This gives a
// factor-of-three speedup over a single crc32q instruction, since the
// throughput of that instruction is one cycle, but the latency is three
// cycles.
static uint32_t crc32c_hw(uint32_t crc, void const *buf, size_t len) {
if (buf == NULL)
return 0;
// Pre-process the crc.
uint64_t crc0 = crc ^ 0xffffffff;
// Compute the crc for up to seven leading bytes, bringing the data pointer
// to an eight-byte boundary.
unsigned char const *next = buf;
while (len && ((uintptr_t)next & 7) != 0) {
__asm__("crc32b\t" "(%1), %0"
: "+r"(crc0)
: "r"(next), "m"(*next));
next++;
len--;
}
// Compute the crc on sets of LONG*3 bytes, making use of three ALUs in
// parallel on a single core.
while (len >= LONG*3) {
uint64_t crc1 = 0;
uint64_t crc2 = 0;
unsigned char const *end = next + LONG;
do {
__asm__("crc32q\t" "(%3), %0\n\t"
"crc32q\t" LONGx1 "(%3), %1\n\t"
"crc32q\t" LONGx2 "(%3), %2"
: "+r"(crc0), "+r"(crc1), "+r"(crc2)
: "r"(next), "m"(*next));
next += 8;
} while (next < end);
crc0 = crc32c_shift(crc32c_long, crc0) ^ crc1;
crc0 = crc32c_shift(crc32c_long, crc0) ^ crc2;
next += LONG*2;
len -= LONG*3;
}
// Do the same thing, but now on SHORT*3 blocks for the remaining data less
// than a LONG*3 block.
while (len >= SHORT*3) {
uint64_t crc1 = 0;
uint64_t crc2 = 0;
unsigned char const *end = next + SHORT;
do {
__asm__("crc32q\t" "(%3), %0\n\t"
"crc32q\t" SHORTx1 "(%3), %1\n\t"
"crc32q\t" SHORTx2 "(%3), %2"
: "+r"(crc0), "+r"(crc1), "+r"(crc2)
: "r"(next), "m"(*next));
next += 8;
} while (next < end);
crc0 = crc32c_shift(crc32c_short, crc0) ^ crc1;
crc0 = crc32c_shift(crc32c_short, crc0) ^ crc2;
next += SHORT*2;
len -= SHORT*3;
}
// Compute the crc on the remaining eight-byte units less than a SHORT*3
// block.
unsigned char const *end = next + (len - (len & 7));
while (next < end) {
__asm__("crc32q\t" "(%1), %0"
: "+r"(crc0)
: "r"(next), "m"(*next));
next += 8;
}
len &= 7;
// Compute the crc for up to seven trailing bytes.
while (len) {
__asm__("crc32b\t" "(%1), %0"
: "+r"(crc0)
: "r"(next), "m"(*next));
next++;
len--;
}
// Return the crc, post-processed.
return ~(uint32_t)crc0;
}
// Check for SSE 4.2. SSE 4.2 was first supported in Nehalem processors
// introduced in November, 2008. This does not check for the existence of the
// cpuid instruction itself, which was introduced on the 486SL in 1992, so this
// will fail on earlier x86 processors. cpuid works on all Pentium and later
// processors.
#define SSE42(have) \
do { \
uint32_t eax, ecx; \
eax = 1; \
__asm__("cpuid" \
: "=c"(ecx) \
: "a"(eax) \
: "%ebx", "%edx"); \
(have) = (ecx >> 20) & 1; \
} while (0)
// Compute a CRC-32C. If the crc32 instruction is available, use the hardware
// version. Otherwise, use the software version.
uint32_t crc32c(uint32_t crc, void const *buf, size_t len) {
int sse42;
SSE42(sse42);
return sse42 ? crc32c_hw(crc, buf, len) : crc32c_sw(crc, buf, len);
}
Code to generate crc32c.h (stackoverflow won't let me post the tables themselves, due to a 30,000 character limit in an answer):
// Generate crc32c.h for crc32c.c.
#include <stdio.h>
#include <stdint.h>
#define LONG 8192
#define SHORT 256
// Print a 2-D table of four-byte constants in hex.
static void print_table(uint32_t *tab, size_t rows, size_t cols, char *name) {
printf("static uint32_t const %s[][%zu] = {\n", name, cols);
size_t end = rows * cols;
size_t k = 0;
for (;;) {
fputs(" {", stdout);
size_t n = 0, j = 0;
for (;;) {
printf("0x%08x", tab[k + n]);
if (++n == cols)
break;
putchar(',');
if (++j == 6) {
fputs("\n ", stdout);
j = 0;
}
putchar(' ');
}
k += cols;
if (k == end)
break;
puts("},");
}
puts("}\n};");
}
/* CRC-32C (iSCSI) polynomial in reversed bit order. */
#define POLY 0x82f63b78
static void crc32c_word_table(void) {
uint32_t table[8][256];
// Generate byte-wise table.
for (unsigned n = 0; n < 256; n++) {
uint32_t crc = ~n;
for (unsigned k = 0; k < 8; k++)
crc = crc & 1 ? (crc >> 1) ^ POLY : crc >> 1;
table[0][n] = ~crc;
}
// Use byte-wise table to generate word-wise table.
for (unsigned n = 0; n < 256; n++) {
uint32_t crc = ~table[0][n];
for (unsigned k = 1; k < 8; k++) {
crc = table[0][crc & 0xff] ^ (crc >> 8);
table[k][n] = ~crc;
}
}
// Print table.
print_table(table[0], 8, 256, "crc32c_table");
}
// Return a(x) multiplied by b(x) modulo p(x), where p(x) is the CRC
// polynomial. For speed, this requires that a not be zero.
static uint32_t multmodp(uint32_t a, uint32_t b) {
uint32_t prod = 0;
for (;;) {
if (a & 0x80000000) {
prod ^= b;
if ((a & 0x7fffffff) == 0)
break;
}
a <<= 1;
b = b & 1 ? (b >> 1) ^ POLY : b >> 1;
}
return prod;
}
/* Take a length and build four lookup tables for applying the zeros operator
for that length, byte-by-byte, on the operand. */
static void crc32c_zero_table(size_t len, char *name) {
// Generate operator for len zeros.
uint32_t op = 0x80000000; // 1 (x^0)
uint32_t sq = op >> 4; // x^4
while (len) {
sq = multmodp(sq, sq); // x^2^(k+3), k == len bit position
if (len & 1)
op = multmodp(sq, op);
len >>= 1;
}
// Generate table to update each byte of a CRC using op.
uint32_t table[4][256];
for (unsigned n = 0; n < 256; n++) {
table[0][n] = multmodp(op, n);
table[1][n] = multmodp(op, n << 8);
table[2][n] = multmodp(op, n << 16);
table[3][n] = multmodp(op, n << 24);
}
// Print the table to stdout.
print_table(table[0], 4, 256, name);
}
int main(void) {
puts(
"// crc32c.h\n"
"// Tables and constants for crc32c.c software and hardware calculations.\n"
"\n"
"// Table for a 64-bits-at-a-time software CRC-32C calculation. This table\n"
"// has built into it the pre and post bit inversion of the CRC."
);
crc32c_word_table();
puts(
"\n// Block sizes for three-way parallel crc computation. LONG and SHORT\n"
"// must both be powers of two. The associated string constants must be set\n"
"// accordingly, for use in constructing the assembler instructions."
);
printf("#define LONG %d\n", LONG);
printf("#define LONGx1 \"%d\"\n", LONG);
printf("#define LONGx2 \"%d\"\n", 2 * LONG);
printf("#define SHORT %d\n", SHORT);
printf("#define SHORTx1 \"%d\"\n", SHORT);
printf("#define SHORTx2 \"%d\"\n", 2 * SHORT);
puts(
"\n// Table to shift a CRC-32C by LONG bytes."
);
crc32c_zero_table(8192, "crc32c_long");
puts(
"\n// Table to shift a CRC-32C by SHORT bytes."
);
crc32c_zero_table(256, "crc32c_short");
return 0;
}
Mark Adler's answer is correct and complete, but those seeking quick and easy way to integrate CRC-32C in their application might find it a little difficult to adapt the code, especially if they are using Windows and .NET.
I've created a library that implements CRC-32C using either hardware or software method depending on available hardware. It's available as a NuGet package for C++ and .NET. It's opensource of course.
Besides packaging Mark Adler's code above, I've found a simple way to improve throughput of the software fallback by 50%. On my computer, the library now achieves 2 GB/s in software and over 20 GB/s in hardware. For those curious, here's the optimized software implementation:
static uint32_t append_table(uint32_t crci, buffer input, size_t length)
{
buffer next = input;
#ifdef _M_X64
uint64_t crc;
#else
uint32_t crc;
#endif
crc = crci ^ 0xffffffff;
#ifdef _M_X64
while (length && ((uintptr_t)next & 7) != 0)
{
crc = table[0][(crc ^ *next++) & 0xff] ^ (crc >> 8);
--length;
}
while (length >= 16)
{
crc ^= *(uint64_t *)next;
uint64_t high = *(uint64_t *)(next + 8);
crc = table[15][crc & 0xff]
^ table[14][(crc >> 8) & 0xff]
^ table[13][(crc >> 16) & 0xff]
^ table[12][(crc >> 24) & 0xff]
^ table[11][(crc >> 32) & 0xff]
^ table[10][(crc >> 40) & 0xff]
^ table[9][(crc >> 48) & 0xff]
^ table[8][crc >> 56]
^ table[7][high & 0xff]
^ table[6][(high >> 8) & 0xff]
^ table[5][(high >> 16) & 0xff]
^ table[4][(high >> 24) & 0xff]
^ table[3][(high >> 32) & 0xff]
^ table[2][(high >> 40) & 0xff]
^ table[1][(high >> 48) & 0xff]
^ table[0][high >> 56];
next += 16;
length -= 16;
}
#else
while (length && ((uintptr_t)next & 3) != 0)
{
crc = table[0][(crc ^ *next++) & 0xff] ^ (crc >> 8);
--length;
}
while (length >= 12)
{
crc ^= *(uint32_t *)next;
uint32_t high = *(uint32_t *)(next + 4);
uint32_t high2 = *(uint32_t *)(next + 8);
crc = table[11][crc & 0xff]
^ table[10][(crc >> 8) & 0xff]
^ table[9][(crc >> 16) & 0xff]
^ table[8][crc >> 24]
^ table[7][high & 0xff]
^ table[6][(high >> 8) & 0xff]
^ table[5][(high >> 16) & 0xff]
^ table[4][high >> 24]
^ table[3][high2 & 0xff]
^ table[2][(high2 >> 8) & 0xff]
^ table[1][(high2 >> 16) & 0xff]
^ table[0][high2 >> 24];
next += 12;
length -= 12;
}
#endif
while (length)
{
crc = table[0][(crc ^ *next++) & 0xff] ^ (crc >> 8);
--length;
}
return (uint32_t)crc ^ 0xffffffff;
}
As you can see, it merely crunches larger block at a time. It needs larger lookup table, but it's still cache-friendly. The table is generated the same way, only with more rows.
One extra thing I explored is the use of PCLMULQDQ instruction to get hardware acceleration on AMD processors. I've managed to port Intel's CRC patch for zlib (also available on GitHub) to CRC-32C polynomial except the magic constant 0x9db42487. If anyone is able to decipher that one, please let me know. After supersaw7's excellent explanation on reddit, I have ported also the elusive 0x9db42487 constant and I just need to find some time to polish and test it.
First of all the Intel's CRC32 instruction serves to calculate CRC-32C (that is uses a different polynomial that regular CRC32. Look at the Wikipedia CRC32 entry)
To use Intel's hardware acceleration for CRC32C using gcc you can:
Inline assembly language in C code via the asm statement
Use intrinsics _mm_crc32_u8, _mm_crc32_u16, _mm_crc32_u32 or _mm_crc32_u64. See Intel Intrinsics Guide for a description of those for the Intel's compiler icc but gcc also implements them.
This is how you would do it with __mm_crc32_u8 that takes one byte at a time, using __mm_crc32_u64 would give further performance improvement since it takes 8 bytes at a time.
uint32_t sse42_crc32(const uint8_t *bytes, size_t len)
{
uint32_t hash = 0;
size_t i = 0;
for (i=0;i<len;i++) {
hash = _mm_crc32_u8(hash, bytes[i]);
}
return hash;
}
To compile this you need to pass -msse4.2 in CFLAGS. Like gcc -g -msse4.2 test.c otherwise it will complain about undefined reference to _mm_crc32_u8.
If you want to revert to a plain C implementation if the instruction is not available in the platform where the executable is running you can use GCC's ifunc attribute. Like
uint32_t sse42_crc32(const uint8_t *bytes, size_t len)
{
/* use _mm_crc32_u* here */
}
uint32_t default_crc32(const uint8_t *bytes, size_t len)
{
/* pure C implementation */
}
/* this will be called at load time to decide which function really use */
/* sse42_crc32 if SSE 4.2 is supported */
/* default_crc32 if not */
static void * resolve_crc32(void) {
__builtin_cpu_init();
if (__builtin_cpu_supports("sse4.2")) return sse42_crc32;
return default_crc32;
}
/* crc32() implementation will be resolved at load time to either */
/* sse42_crc32() or default_crc32() */
uint32_t crc32(const uint8_t *bytes, size_t len) __attribute__ ((ifunc ("resolve_crc32")));
I compare various algorithms here: https://github.com/htot/crc32c
The fastest algorithm has been taken from Intels crc_iscsi_v_pcl.asm assembly code (which is available in a modified form in the linux kernel) and using a C wrapper (crcintelasm.cc) included into this project.
To be able to run this code on 32 bit platforms first it has been ported to C (crc32intelc) where possible, a small amount of inline assembly is required. Certain parts of the code depend on the bitness, crc32q is not available on 32 bits and neither is movq, these are put in macro's (crc32intel.h) with alternative code for 32 bit platforms.