Related
I need to generate procedural terrain using Noise (using Perlin noise) in OpenGL. Each time the application runs a new terrain, it needs to be generated using a new seed. (Do not use external library.) Is there a method/requirement needed when making a class for noise terrains. What functions/calculation i need to call and in which order ?
PS: I use Visual Studio 2019.
// Copy the array data into a float array, and scale and offset the heights.
mHeightmap.resize(NumRows * NumCols, 0);
for( int i = 0; i < NumRows * NumCols; ++i)
{
mHeightmap[i] = (float)in[i] * HeightScale;
}
// A height for each vertex
{
std::vector<unsigned char> in(NumRows * NumCols);
// Open the file.
std::ifstream inFile;
inFile.open(heightmapName.c_str(), std::ios_base::binary);
if (inFile)
{
// Read the RAW bytes.
inFile.read((char*)&in[0], (std::streamsize)in.size());
// Done with file.
inFile.close();
}
// Copy the array data into a float array, and scale and offset the heights.
mHeightmap.resize(NumRows * NumCols, 0);
for( int i = 0; i < NumRows * NumCols; ++i)
{
mHeightmap[i] = (float)in[i] * HeightScale;
}
void Terrain::CreateVAO()
{
std::vector<GLfloat> vertices;
vertices.reserve(NumCols * NumRows * 8);
float invTwoDX = 1.0f / (2.0f * CellSpacing);
float invTwoDZ = 1.0f / (2.0f * CellSpacing);
//vertices
for ( int z = 0; z < NumRows; z++)
{
for ( int x = 0; x < NumCols; x++)
{
//vertex data
int i = z * NumCols + x;
vertices.push_back((float)x*CellSpacing);
vertices.push_back(mHeightmap[i]);
vertices.push_back((float)z * CellSpacing);
//normal data
glm::vec3 _N = { 0.0f,1.0f, 0.0f };
if(z >= 1 && z < NumRows -1 && x >= 1 && z < NumCols - 1)
{
float t = mHeightmap[(z - 1) * NumCols + x];
float b = mHeightmap[(z + 1) * NumCols + x];
float l = mHeightmap[z * NumCols + x - 1];
float r = mHeightmap[z * NumCols + x + 1];
glm::vec3 tanZ(0.0f, (b - t) * invTwoDZ, 1.0f);
glm::vec3 tanX(1.0f, (r - l) * invTwoDX, 0.0f);
glm::vec3 _C, _N;
_C = glm::cross(tanZ, tanX);
_N = glm::normalize(_C);
}
vertices.push_back(_N.x);
vertices.push_back(_N.y);
vertices.push_back(_N.z);
vertices.push_back((float)x);
vertices.push_back((float)z);
}
}
std::vector<GLuint> indices;
vertices.reserve((NumCols-1)*(NumRows -1)*6);
//indices
for ( int z = 0; z < NumRows-1; z++)
{
for ( int x = 0; x < NumCols-1; x++)
{
GLint a = z * NumCols + x;
GLint b = (z +1) * NumCols + x;
GLint c = z * NumCols + (x+1);
GLint d = (z+1) * NumCols + (x+1);
indices.push_back(c);
indices.push_back(a);
indices.push_back(b);
indices.push_back(c);
indices.push_back(b);
indices.push_back(d);
}
}
indexcount = indices.size();
GLuint VBO, EBO;
glGenVertexArrays(1, &VAO);
glBindVertexArray(VAO);
glGenBuffers(1, &EBO);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, EBO);
glBufferData(GL_ELEMENT_ARRAY_BUFFER, indices.size() * sizeof(GLuint), indices.data(), GL_STATIC_DRAW);
glGenBuffers(1, &VBO);
glBindBuffer(GL_ARRAY_BUFFER, VBO);
glBufferData(GL_ARRAY_BUFFER, vertices.size()*sizeof(GLfloat), vertices.data(), GL_STATIC_DRAW);
glVertexAttribPointer(
0,
3,
GL_FLOAT,
GL_FALSE,
8 * sizeof(GLfloat), //Strude of the single vertex(pos)
(GLvoid*)0); //Offset from beginning of Vertex
glEnableVertexAttribArray(0);
glVertexAttribPointer(
1,
3,
GL_FLOAT,
GL_FALSE,
8 * sizeof(GLfloat), //Strude of the single vertex(pos+color)
(GLvoid*)(3 * sizeof(GLfloat))); //Offset from beginning of Vertex
glEnableVertexAttribArray(1);
glVertexAttribPointer(
2,
2, //2 float component for coordinates
GL_FLOAT,
GL_FALSE,
8 * sizeof(GLfloat), //Strude of the single vertex(pos+color+texture)
(GLvoid*)(6 * sizeof(GLfloat)));//Offset from beginning of Vertex
glEnableVertexAttribArray(2);
I'm not sure if I see usage of Perlin noise in your code. Try this lightweight, easy to integrate library:
https://github.com/Auburn/FastNoise which has Perlin and tons of other useful stuff like a visualizer.
Usage is as simple as
noise.GetNoise((float)x, (float)y); which you can plug into your height function
I am porting old fixed function pipeline code to shaders and for the torus geometry i am not able to create the correct indexes.
The old code
int CTorus::initevVertex2Ds()
{
const float twopi = 2.0 * M_PI;
// factor for texture coordinate per step in X/Y
const float fXtex = 1. / float(m_nCorners);
const float fYtex = 1. / float(m_nTesselation);
int i;
// go around cross section
for (i = 0; i < m_nTesselation; i++) {
register int base = i * m_nCorners;
register int baseTX = i * (m_nCorners+1);
// Y texture coordinate ...
m_texcoord[baseTX].x = fYtex * float(i);
// go around top view
const float f2Pi_i_corners = (twopi * float(i+m_nTesselation/2)) / float(m_nTesselation);
const float evVertex2D_z = m_fRadiusCrossSect * fsin(f2Pi_i_corners);
const float fXY = m_fRadiusTorus + m_fRadiusCrossSect * fcos(f2Pi_i_corners);
for (int j = 0; j < m_nCorners; j++) {
register int index = base + j;
const float fXj = fcos(twopi*float(j)/m_nCorners);
const float fYj = fsin(twopi*float(j)/m_nCorners);
m_GLVertex2D[index].x = fXY * fXj;
m_GLVertex2D[index].y = fXY * fYj;
m_GLVertex2D[index].z = evVertex2D_z;
m_texcoord[baseTX + j].y = 1. - fXtex * float(j);
m_texcoord[baseTX + j].x = m_texcoord[baseTX].x;
const float nx = m_GLVertex2D[index].x - m_fRadiusTorus * fXj;
const float ny = m_GLVertex2D[index].y - m_fRadiusTorus * fYj;
const float nz = m_GLVertex2D[index].z;
const float n = fsqrt(nx*nx + ny*ny + nz*nz);
m_norm[index].x = nx/n;
m_norm[index].y = ny/n;
m_norm[index].z = nz/n;
}
m_texcoord[baseTX + m_nCorners].y = 0.;
m_texcoord[baseTX + m_nCorners].x = m_texcoord[baseTX].x;
}
for (i=0; i<=m_nCorners; i++) {
m_texcoord[(m_nCorners+1)*m_nTesselation+i].y = m_texcoord[i].y;
m_texcoord[(m_nCorners+1)*m_nTesselation+i].x = 1.;
}
return 0;
}
This is the code where i have ported it to the shaders but i am not able to creat indexes for the element array buffer correctly
void Torus::init()
{
const float twopi = 2.0 * M_PI;
// factor for texture coordinate per step in x/y
const float fXtex = 1.0 / float(m_nCorners);
const float fYtex = 1.0 / float(m_nTesselation);
int i;
for (i = 0; i < m_nTesselation; i++)
{
register int base = i * m_nCorners;
register int baseTX = i * (m_nCorners + 1);
// go around top view
const float f2Pi_i_corners = (twopi * float(i + m_nTesselation / 2)) / float(m_nTesselation);
const float evVertex2D_z = m_fRadiusCrossSect * sinf(f2Pi_i_corners);
const float fXY = m_fRadiusTorus + m_fRadiusCrossSect * cosf(f2Pi_i_corners);
for (int j = 0; j < m_nCorners; j++)
{
register int index = base + j;
const float fXj = cosf(twopi*float(j) / m_nCorners);
const float fYj = sinf(twopi*float(j) / m_nCorners);
data.push_back(fXY * fXj);
data.push_back(fXY * fYj);
data.push_back(evVertex2D_z);
const float nx = (fXY * fXj) - m_fRadiusTorus * fXj;
const float ny = (fXY * fYj) - m_fRadiusTorus * fYj;
const float nz = evVertex2D_z;
const float n = sqrt(nx*nx + ny * ny + nz * nz);
data.push_back(nx / n);
data.push_back(ny / n);
data.push_back(nz / n);
// Pushing texture coordinates
data.push_back(0.0);
data.push_back(0.0);
}
}
std::vector<unsigned int> stdvecIndex;
unsigned int index;
// Create the indexes
for (int i = 0; i < m_nTesselation; i++)
{
index = ((i + 1) % m_nTesselation) * m_nCorners;
stdvecIndex.push_back(index);
for (int j = 0; j < m_nCorners; j++)
{
index = i * m_nCorners + j;
stdvecIndex.push_back(index);
index = ((i + 1) % m_nTesselation) * m_nCorners + ((j + 1) % m_nCorners);
stdvecIndex.push_back(index);
}
index = i * m_nCorners;
stdvecIndex.push_back(index);
}
if (!isInited)
{
glGenVertexArrays(1, &VAO);
glGenBuffers(1, &VBO);
glGenVertexArrays(1, &EBO);
glBindVertexArray(VAO);
glBindBuffer(GL_ARRAY_BUFFER, VBO);
glBufferData(GL_ARRAY_BUFFER, data.size() * sizeof(float), &data[0], GL_STATIC_DRAW);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, EBO);
glBufferData(GL_ELEMENT_ARRAY_BUFFER, stdvecIndex.size() * sizeof(unsigned int), &stdvecIndex[0], GL_STATIC_DRAW);
glEnableVertexAttribArray(0);
glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 3 * sizeof(float), (void*)0);
glEnableVertexAttribArray(1);
glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, 3 * sizeof(float), (void*)( 3 * sizeof(float)));
glEnableVertexAttribArray(2);
glVertexAttribPointer(2, 2, GL_FLOAT, GL_FALSE, 2 * sizeof(float), (void*)(6 * sizeof(float)));
}
}
I have tried creating the indexes for the buffer but unfortunately i get inter mangled geometry instead of a torus.
The stride (5th) argument to glVertexAttribPointer is wrong. stride specifies the byte offset between consecutive generic vertex attributes.
The size of the attributes is 8 (x, y, z, nx, ny, nz, u, v).
Hence stride has to be 8 * sizeof(float) rather than 3 * sizeof(float):
glEnableVertexAttribArray(0);
glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 8 * sizeof(float), (void*)0);
glEnableVertexAttribArray(1);
glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, 8 * sizeof(float), (void*)(3 * sizeof(float)));
glEnableVertexAttribArray(2);
glVertexAttribPointer(2, 2, GL_FLOAT, GL_FALSE, 8 * sizeof(float), (void*)(6 * sizeof(float)));
this is the code I use to create and draw an ellipsoid with OpenGL with shader
const float _2pi = 2.0f * M_PI;
std::vector<glm::vec3> positions;
std::vector<glm::vec3> normals;
std::vector<glm::vec2> textureCoords;
for(int i = 0; i <= stacks; ++i) {
// V texture coordinate
float V = i / (float)stacks;
float phi = V * M_PI;
for( int j = 0; j <= slices; ++j) {
// U texture coordinate
float U = j / (float)slices;
float theta = U * _2pi;
float X = a * cos(theta) * cos(phi);
float Y = b * cos(theta) * sin(phi);
float Z = c * sin(theta);
positions.push_back( glm::vec3( X, Y, Z) );
normals.push_back( glm::vec3(X, Y, Z) );
textureCoords.push_back( glm::vec2(U, V) );
}
}
// Now generate the index buffer
std::vector<GLuint> indicies;
for(int i=0; i <slices*stacks+slices; ++i) {
indicies.push_back(i);
indicies.push_back(i + slices + 1);
indicies.push_back(i + slices);
indicies.push_back(i + slices + 1);
indicies.push_back(i);
indicies.push_back(i + 1);
}
glGenVertexArrays(1, &vao);
glBindVertexArray(vao);
glGenBuffers(4, vbo);
glBindBuffer(GL_ARRAY_BUFFER, vbo[0]);
glBufferData(GL_ARRAY_BUFFER, positions.size() * sizeof(glm::vec3), positions.data(), GL_STATIC_DRAW);
glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 0, nullptr);
glEnableVertexAttribArray(0);
glBindBuffer(GL_ARRAY_BUFFER, vbo[1]);
glBufferData(GL_ARRAY_BUFFER, normals.size() * sizeof(glm::vec3), normals.data(), GL_STATIC_DRAW);
glVertexAttribPointer(2, 3, GL_FLOAT, GL_TRUE, 0, nullptr);
glEnableVertexAttribArray(2);
glBindBuffer(GL_ARRAY_BUFFER, vbo[2]);
glBufferData(GL_ARRAY_BUFFER, textureCoords.size() * sizeof(glm::vec2), textureCoords.data(), GL_STATIC_DRAW);
glVertexAttribPointer(8, 2, GL_FLOAT, GL_FALSE, 0, nullptr);
glEnableVertexAttribArray(8);
glBindBuffer( GL_ELEMENT_ARRAY_BUFFER, vbo[3]);
glBufferData( GL_ELEMENT_ARRAY_BUFFER, indicies.size() * sizeof(GLuint), indicies.data(), GL_STATIC_DRAW);
glBindVertexArray(0);
glBindBuffer(GL_ARRAY_BUFFER, 0);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
while this is the code that I use to render it:
glBindVertexArray(vao);
glEnableVertexAttribArray(0);
if(style == glObject::STYLE::WIREFRAME) glDrawElements(GL_LINES, (slices * stacks + slices) * 6, GL_UNSIGNED_INT, nullptr);
if(style == glObject::STYLE::SOLID) glDrawElements(GL_TRIANGLES, (slices * stacks + slices) * 6, GL_UNSIGNED_INT, nullptr);
glBindVertexArray(0);
It seems to work but I have some issue.
Looking the image it is possible to see some vertex in the wrong position.
I think that is something related to the indicies but I'm not sure.
I have notice that depends by the number of stacks or slices that I use
UPDATE:
I take into account the suggestion of #Rabbid76 and this is the result.
No more degenerated vertex and triangles in the rendering.
However the rendering is not equal to the one of #Rabbid76 there is like a rotation of the vertex.
FINAL:
This is the creation vertex and indices code:
std::vector<glm::vec3> positions;
std::vector<glm::vec3> normals;
std::vector<glm::vec2> textureCoords;
for(int i = 0; i <= stacks; ++i) {
// V texture coordinate.
float V = i / (float)stacks;
float phi = V * M_PI;
for( int j = 0; j <= slices; ++j) {
// U texture coordinate.
float U = j / (float)slices;
float theta = U * 2.0f * M_PI;
float X = cos(theta) * sin(phi);
float Y = cos(phi);
float Z = sin(theta) * sin(phi);
positions.push_back( glm::vec3( X, Y, Z) * radius );
normals.push_back( glm::vec3(X, Y, Z) );
textureCoords.push_back( glm::vec2(U, V) );
}
}
// Now generate the index buffer
std::vector<GLuint> indicies;
int noPerSlice = slices + 1;
for(int i=0; i < stacks; ++i) {
for (int j=0; j < slices; ++j) {
int start_i = (i * noPerSlice) + j;
indicies.push_back( start_i );
indicies.push_back( start_i + noPerSlice + 1 );
indicies.push_back( start_i + noPerSlice );
indicies.push_back( start_i + noPerSlice + 1 );
indicies.push_back( start_i );
indicies.push_back( start_i + 1 );
}
}
glGenVertexArrays(1, &vao);
glBindVertexArray(vao);
glGenBuffers(4, vbo);
glBindBuffer(GL_ARRAY_BUFFER, vbo[0]);
glBufferData(GL_ARRAY_BUFFER, positions.size() * sizeof(glm::vec3), positions.data(), GL_STATIC_DRAW);
glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 0, nullptr);
glEnableVertexAttribArray(0);
glBindBuffer(GL_ARRAY_BUFFER, vbo[1]);
glBufferData(GL_ARRAY_BUFFER, normals.size() * sizeof(glm::vec3), normals.data(), GL_STATIC_DRAW);
glVertexAttribPointer(2, 3, GL_FLOAT, GL_TRUE, 0, nullptr);
glEnableVertexAttribArray(2);
glBindBuffer(GL_ARRAY_BUFFER, vbo[2]);
glBufferData(GL_ARRAY_BUFFER, textureCoords.size() * sizeof(glm::vec2), textureCoords.data(), GL_STATIC_DRAW);
glVertexAttribPointer(8, 2, GL_FLOAT, GL_FALSE, 0, nullptr);
glEnableVertexAttribArray(8);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, vbo[3]);
glBufferData(GL_ELEMENT_ARRAY_BUFFER, indicies.size() * sizeof(GLuint), indicies.data(), GL_STATIC_DRAW);
glBindVertexArray(0);
glBindBuffer(GL_ARRAY_BUFFER, 0);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
This is the rendering one:
glBindVertexArray(vao);
glEnableVertexAttribArray(0);
if(style == glObject::STYLE::WIREFRAME) glPolygonMode(GL_FRONT_AND_BACK, GL_LINE);
if(style == glObject::STYLE::SOLID) glPolygonMode(GL_FRONT_AND_BACK, GL_FILL);
glDrawElements(GL_TRIANGLES, (slices * stacks + slices) * 6, GL_UNSIGNED_INT, nullptr);
glBindVertexArray(0);
You have confused phi and theta. theta is the angle of the points around the circumference of a slice in range [0, 2*PI]. phi is the angle of the points form the south to the north in range [-PI, PI]:
for (int i = 0; i <= stacks; ++i) {
// V texture coordinate
float V = i / (float)stacks;
float phi = V * M_PI - M_PI/2.0;
for ( int j = 0; j <= slices; ++j) {
// U texture coordinate
float U = j / (float)slices;
float theta = U * _2pi;
float X = a * cos(phi) * cos(theta);
float Y = b * cos(phi) * sin(theta);
float Z = c * sin(phi);
positions.push_back( glm::vec3( X, Y, Z) );
normals.push_back( glm::vec3(X, Y, Z) );
textureCoords.push_back( glm::vec2(U, V) );
}
}
The number of points of a slice (around the circumference) is noPerSlice = slices + 1. The first index of a point of a quad is start_i = (i * noPerSlice) + j, where i is the index of the stack and j the index around the slice. Create slices quads around the circumference and stacks slices form the south to the north:
int noPerSlice = slices + 1;
for(int i=0; i < stacks; ++i) {
for (int j = 0; j < slices; ++j) {
int start_i = (i * noPerSlice) + j;
indicies.push_back( start_i );
indicies.push_back( start_i + noPerSlice + 1 );
indicies.push_back( start_i + noPerSlice );
indicies.push_back( start_i + noPerSlice + 1 );
indicies.push_back( start_i );
indicies.push_back( start_i + 1 );
}
}
i think
slices*stacks+slices
should be
slices*stacks+stacks
the +stacks is for the extra quads from the duplicate vertex in every stack
although this fixes the number of indices, you still have degenerate triangles along the duplicate vertices where theta equals zero
In order to use modern openGl with tinyobjloader, I'm trying to change the viewer exemple.
I just change the LoadObjAndConvert function, to add vertex array objects as i seen in this tutorial, and to no longer use the buffer object that contains all the data (position, indices, color, uv) because it seems that we can no longer use it with modern openGL.
Result look like I have bad vertex index, the model is only partly rendered, and if the model has only one mesh (the stanford bunny) it does not even show up.
The code is too long, but it is the same as the tinyobjloader viewer exemple, so I will only post functions that are different.
Here is the LoadObjAndConvert function modified (modified parts are between lines to help) :
static bool LoadObjAndConvert(float bmin[3], float bmax[3],
std::vector<DrawObject>* drawObjects,
std::vector<tinyobj::material_t>& materials,
std::map<std::string, GLuint>& textures,
const char* filename) {
tinyobj::attrib_t attrib;
std::vector<tinyobj::shape_t> shapes;
timerutil tm;
tm.start();
std::string base_dir = GetBaseDir(filename);
if (base_dir.empty()) {
base_dir = ".";
}
#ifdef _WIN32
base_dir += "\\";
#else
base_dir += "/";
#endif
std::string err;
bool ret = tinyobj::LoadObj(&attrib, &shapes, &materials, &err, filename,
base_dir.c_str());
if (!err.empty()) {
std::cerr << err << std::endl;
}
tm.end();
if (!ret) {
std::cerr << "Failed to load " << filename << std::endl;
return false;
}
printf("Parsing time: %d [ms]\n", (int)tm.msec());
printf("# of vertices = %d\n", (int)(attrib.vertices.size()) / 3);
printf("# of normals = %d\n", (int)(attrib.normals.size()) / 3);
printf("# of texcoords = %d\n", (int)(attrib.texcoords.size()) / 2);
printf("# of materials = %d\n", (int)materials.size());
printf("# of shapes = %d\n", (int)shapes.size());
// Append `default` material
materials.push_back(tinyobj::material_t());
for (size_t i = 0; i < materials.size(); i++) {
printf("material[%d].diffuse_texname = %s\n", int(i),
materials[i].diffuse_texname.c_str());
}
// Load diffuse textures
{
for (size_t m = 0; m < materials.size(); m++) {
tinyobj::material_t* mp = &materials[m];
if (mp->diffuse_texname.length() > 0) {
// Only load the texture if it is not already loaded
if (textures.find(mp->diffuse_texname) == textures.end()) {
GLuint texture_id;
int w, h;
int comp;
std::string texture_filename = mp->diffuse_texname;
if (!FileExists(texture_filename)) {
// Append base dir.
texture_filename = base_dir + mp->diffuse_texname;
if (!FileExists(texture_filename)) {
std::cerr << "Unable to find file: " << mp->diffuse_texname
<< std::endl;
exit(1);
}
}
unsigned char* image =
stbi_load(texture_filename.c_str(), &w, &h, &comp, STBI_default);
if (!image) {
std::cerr << "Unable to load texture: " << texture_filename
<< std::endl;
exit(1);
}
std::cout << "Loaded texture: " << texture_filename << ", w = " << w
<< ", h = " << h << ", comp = " << comp << std::endl;
glGenTextures(1, &texture_id);
glBindTexture(GL_TEXTURE_2D, texture_id);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
if (comp == 3) {
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, w, h, 0, GL_RGB,
GL_UNSIGNED_BYTE, image);
} else if (comp == 4) {
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, w, h, 0, GL_RGBA,
GL_UNSIGNED_BYTE, image);
} else {
assert(0); // TODO
}
glBindTexture(GL_TEXTURE_2D, 0);
stbi_image_free(image);
textures.insert(std::make_pair(mp->diffuse_texname, texture_id));
}
}
}
}
bmin[0] = bmin[1] = bmin[2] = std::numeric_limits<float>::max();
bmax[0] = bmax[1] = bmax[2] = -std::numeric_limits<float>::max();
{
for (size_t s = 0; s < shapes.size(); s++) {
/*-----------------------------------------------------------*/
DrawObject o;// I keep this object for later purpose, texture, etc
//std::vector<float> buffer; // pos(3float), normal(3float), color(3float)
//I replace "buffer" by arrays:
std::vector<GLfloat> mesh_vertex;
std::vector<GLfloat> mesh_normals;
std::vector<GLfloat> mesh_colors;
std::vector<GLfloat> mesh_textCoords;
std::vector<GLuint> mesh_indices;
/*fill index array*/
for (long i = 0; i < shapes[s].mesh.indices.size(); i++)
{
mesh_indices.push_back(shapes[s].mesh.indices[i].vertex_index);
}
/*-----------------------------------------------------------*/
// Check for smoothing group and compute smoothing normals
std::map<int, vec3> smoothVertexNormals;
if (hasSmoothingGroup(shapes[s]) > 0) {
std::cout << "Compute smoothingNormal for shape [" << s << "]" << std::endl;
computeSmoothingNormals(attrib, shapes[s], smoothVertexNormals);
}
for (size_t f = 0; f < shapes[s].mesh.indices.size() / 3; f++) {
tinyobj::index_t idx0 = shapes[s].mesh.indices[3 * f + 0];
tinyobj::index_t idx1 = shapes[s].mesh.indices[3 * f + 1];
tinyobj::index_t idx2 = shapes[s].mesh.indices[3 * f + 2];
int current_material_id = shapes[s].mesh.material_ids[f];
if ((current_material_id < 0) ||
(current_material_id >= static_cast<int>(materials.size()))) {
// Invaid material ID. Use default material.
current_material_id =
materials.size() -
1; // Default material is added to the last item in `materials`.
}
// if (current_material_id >= materials.size()) {
// std::cerr << "Invalid material index: " << current_material_id <<
// std::endl;
//}
//
float diffuse[3];
for (size_t i = 0; i < 3; i++) {
diffuse[i] = materials[current_material_id].diffuse[i];
}
float tc[3][2];
if (attrib.texcoords.size() > 0) {
if ((idx0.texcoord_index < 0) || (idx1.texcoord_index < 0) ||
(idx2.texcoord_index < 0)) {
// face does not contain valid uv index.
tc[0][0] = 0.0f;
tc[0][1] = 0.0f;
tc[1][0] = 0.0f;
tc[1][1] = 0.0f;
tc[2][0] = 0.0f;
tc[2][1] = 0.0f;
} else {
assert(attrib.texcoords.size() >
size_t(2 * idx0.texcoord_index + 1));
assert(attrib.texcoords.size() >
size_t(2 * idx1.texcoord_index + 1));
assert(attrib.texcoords.size() >
size_t(2 * idx2.texcoord_index + 1));
// Flip Y coord.
tc[0][0] = attrib.texcoords[2 * idx0.texcoord_index];
tc[0][1] = 1.0f - attrib.texcoords[2 * idx0.texcoord_index + 1];
tc[1][0] = attrib.texcoords[2 * idx1.texcoord_index];
tc[1][1] = 1.0f - attrib.texcoords[2 * idx1.texcoord_index + 1];
tc[2][0] = attrib.texcoords[2 * idx2.texcoord_index];
tc[2][1] = 1.0f - attrib.texcoords[2 * idx2.texcoord_index + 1];
}
} else {
tc[0][0] = 0.0f;
tc[0][1] = 0.0f;
tc[1][0] = 0.0f;
tc[1][1] = 0.0f;
tc[2][0] = 0.0f;
tc[2][1] = 0.0f;
}
float v[3][3];
for (int k = 0; k < 3; k++) {
int f0 = idx0.vertex_index;
int f1 = idx1.vertex_index;
int f2 = idx2.vertex_index;
assert(f0 >= 0);
assert(f1 >= 0);
assert(f2 >= 0);
v[0][k] = attrib.vertices[3 * f0 + k];
v[1][k] = attrib.vertices[3 * f1 + k];
v[2][k] = attrib.vertices[3 * f2 + k];
bmin[k] = std::min(v[0][k], bmin[k]);
bmin[k] = std::min(v[1][k], bmin[k]);
bmin[k] = std::min(v[2][k], bmin[k]);
bmax[k] = std::max(v[0][k], bmax[k]);
bmax[k] = std::max(v[1][k], bmax[k]);
bmax[k] = std::max(v[2][k], bmax[k]);
}
float n[3][3];
{
bool invalid_normal_index = false;
if (attrib.normals.size() > 0) {
int nf0 = idx0.normal_index;
int nf1 = idx1.normal_index;
int nf2 = idx2.normal_index;
if ((nf0 < 0) || (nf1 < 0) || (nf2 < 0)) {
// normal index is missing from this face.
invalid_normal_index = true;
} else {
for (int k = 0; k < 3; k++) {
assert(size_t(3 * nf0 + k) < attrib.normals.size());
assert(size_t(3 * nf1 + k) < attrib.normals.size());
assert(size_t(3 * nf2 + k) < attrib.normals.size());
n[0][k] = attrib.normals[3 * nf0 + k];
n[1][k] = attrib.normals[3 * nf1 + k];
n[2][k] = attrib.normals[3 * nf2 + k];
}
}
} else {
invalid_normal_index = true;
}
if (invalid_normal_index && !smoothVertexNormals.empty()) {
// Use smoothing normals
int f0 = idx0.vertex_index;
int f1 = idx1.vertex_index;
int f2 = idx2.vertex_index;
if (f0 >= 0 && f1 >= 0 && f2 >= 0) {
n[0][0] = smoothVertexNormals[f0].v[0];
n[0][1] = smoothVertexNormals[f0].v[1];
n[0][2] = smoothVertexNormals[f0].v[2];
n[1][0] = smoothVertexNormals[f1].v[0];
n[1][1] = smoothVertexNormals[f1].v[1];
n[1][2] = smoothVertexNormals[f1].v[2];
n[2][0] = smoothVertexNormals[f2].v[0];
n[2][1] = smoothVertexNormals[f2].v[1];
n[2][2] = smoothVertexNormals[f2].v[2];
invalid_normal_index = false;
}
}
if (invalid_normal_index) {
// compute geometric normal
CalcNormal(n[0], v[0], v[1], v[2]);
n[1][0] = n[0][0];
n[1][1] = n[0][1];
n[1][2] = n[0][2];
n[2][0] = n[0][0];
n[2][1] = n[0][1];
n[2][2] = n[0][2];
}
}
for (int k = 0; k < 3; k++) {
/*-----------------------------------------------------------*/
// I leave old calls to "buffer" in comment for understanding
//buffer.push_back(v[k][0]);
//buffer.push_back(v[k][1]);
//buffer.push_back(v[k][2]);
mesh_vertex.push_back(v[k][0]);
mesh_vertex.push_back(v[k][1]);
mesh_vertex.push_back(v[k][2]);
//buffer.push_back(n[k][0]);
//buffer.push_back(n[k][1]);
//buffer.push_back(n[k][2]);
mesh_normals.push_back(n[k][0]);
mesh_normals.push_back(n[k][1]);
mesh_normals.push_back(n[k][2]);
// Combine normal and diffuse to get color.
float normal_factor = 0.2;
float diffuse_factor = 1 - normal_factor;
float c[3] = {n[k][0] * normal_factor + diffuse[0] * diffuse_factor,
n[k][1] * normal_factor + diffuse[1] * diffuse_factor,
n[k][2] * normal_factor + diffuse[2] * diffuse_factor};
float len2 = c[0] * c[0] + c[1] * c[1] + c[2] * c[2];
if (len2 > 0.0f) {
float len = sqrtf(len2);
c[0] /= len;
c[1] /= len;
c[2] /= len;
}
//buffer.push_back(c[0] * 0.5 + 0.5);
//buffer.push_back(c[1] * 0.5 + 0.5);
//buffer.push_back(c[2] * 0.5 + 0.5);
mesh_colors.push_back(c[0] * 0.5 + 0.5);
mesh_colors.push_back(c[1] * 0.5 + 0.5);
mesh_colors.push_back(c[2] * 0.5 + 0.5);
//buffer.push_back(tc[k][0]);
//buffer.push_back(tc[k][1]);
mesh_textCoords.push_back(tc[k][0]);
mesh_textCoords.push_back(tc[k][1]);
/*-----------------------------------------------------------*/
}
}
o.vb_id = 0;
o.numTriangles = 0;
// OpenGL viewer does not support texturing with per-face material.
if (shapes[s].mesh.material_ids.size() > 0 &&
shapes[s].mesh.material_ids.size() > s) {
o.material_id = shapes[s].mesh.material_ids[0]; // use the material ID
// of the first face.
} else {
o.material_id = materials.size() - 1; // = ID for default material.
}
printf("shape[%d] material_id %d\n", int(s), int(o.material_id));
/*-----------------------------------------------------------*/
/*if (buffer.size() > 0) {
glGenBuffers(1, &o.vb_id);
glBindBuffer(GL_ARRAY_BUFFER, o.vb_id);
glBufferData(GL_ARRAY_BUFFER, buffer.size() * sizeof(float),
&buffer.at(0), GL_STATIC_DRAW);
o.numTriangles = buffer.size() / (3 + 3 + 3 + 2) /
3; // 3:vtx, 3:normal, 3:col, 2:texcoord
printf("shape[%d] # of triangles = %d\n", static_cast<int>(s),
o.numTriangles);
}
drawObjects->push_back(o);*/
// Replace by :
GLuint positionVBO = 0;
GLuint texcoordVBO = 0;
GLuint normalVBO = 0;
GLuint indicesEBO = 0;
// Upload per-vertex positions
if (!mesh_vertex.empty())
{
glGenBuffers(1, &positionVBO);
glBindBuffer(GL_ARRAY_BUFFER, positionVBO);
glBufferData(GL_ARRAY_BUFFER, mesh_vertex.size() * sizeof(GLfloat), &mesh_vertex[0], GL_STATIC_DRAW); // GL_DYNAMIC_DRAW ?
glBindBuffer(GL_ARRAY_BUFFER, 0);
positionVBO_array.push_back(positionVBO);
}
// Upload per-vertex texture coordinates
if (!mesh_textCoords.empty())
{
glGenBuffers(1, &texcoordVBO);
glBindBuffer(GL_ARRAY_BUFFER, texcoordVBO);
glBufferData(GL_ARRAY_BUFFER,
mesh_textCoords.size() * sizeof(float),
&mesh_textCoords[0], GL_STATIC_DRAW);
glBindBuffer(GL_ARRAY_BUFFER, 0);
}
// Upload per-vertex normals
if (!mesh_normals.empty())
{
glGenBuffers(1, &normalVBO);
glBindBuffer(GL_ARRAY_BUFFER, normalVBO);
glBufferData(GL_ARRAY_BUFFER, mesh_normals.size() * sizeof(GLfloat), &mesh_normals[0], GL_STATIC_DRAW);
glBindBuffer(GL_ARRAY_BUFFER, 0);
normalVBO_array.push_back(normalVBO);
}
// Upload the indices that form triangles
if (!shapes[0].mesh.indices.empty())
{
glGenBuffers(1, &indicesEBO);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, indicesEBO);
glBufferData(GL_ELEMENT_ARRAY_BUFFER,
shapes[s].mesh.indices.size() * sizeof(unsigned int),
shapes[s].mesh.indices.data(), GL_STATIC_DRAW);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
indicesEBO_array.push_back(indicesEBO);
indicesEBOSize_array.push_back(shapes[s].mesh.indices.size());
}
// Hook up vertex/index buffers to a "vertex array object" (VAO)
// VAOs are the closest thing OpenGL has to a "mesh" object.
// VAOs feed data from buffers to the inputs of a vertex shader.
GLuint meshVAO;
vglGenVertexArrays(1, &meshVAO);
meshVAO_array.push_back(meshVAO);// I keep the ids in order to loop inside meshVAO_array in the draw function
// Attach position buffer as attribute 0
if (positionVBO != 0)
{
glBindVertexArray(meshVAO);
// Note: glVertexAttribPointer sets the current
// GL_ARRAY_BUFFER_BINDING as the source of data
// for this attribute.
// That's why we bind a GL_ARRAY_BUFFER before
// calling glVertexAttribPointer then
// unbind right after (to clean things up).
glBindBuffer(GL_ARRAY_BUFFER, positionVBO);
glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE,
sizeof(float) * 3, 0);
glBindBuffer(GL_ARRAY_BUFFER, 0);
// Enable the attribute (they are disabled by default
// -- this is very easy to forget!!)
glEnableVertexAttribArray(0);
glBindVertexArray(0);
}
// Attach texcoord buffer as attribute 1
if (texcoordVBO != 0)
{
glBindVertexArray(meshVAO);
glBindBuffer(GL_ARRAY_BUFFER, texcoordVBO);
glVertexAttribPointer(1, 2, GL_FLOAT, GL_FALSE,
sizeof(float) * 2, 0);
glBindBuffer(GL_ARRAY_BUFFER, 0);
glEnableVertexAttribArray(1);
glBindVertexArray(0);
}
// Attach normal buffer as attribute 2
if (normalVBO != 0)
{
glBindVertexArray(meshVAO);
glBindBuffer(GL_ARRAY_BUFFER, normalVBO);
glVertexAttribPointer(2, 3, GL_FLOAT, GL_FALSE,
sizeof(float) * 3, 0);
glBindBuffer(GL_ARRAY_BUFFER, 0);
glEnableVertexAttribArray(2);
glBindVertexArray(0);
}
if (indicesEBO != 0)
{
glBindVertexArray(meshVAO);
// Note: Calling glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, ebo);
// when a VAO is bound attaches the index buffer to the VAO.
// From an API design perspective, this is subtle.
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, indicesEBO);
glBindVertexArray(0);
}
/*-----------------------------------------------------------*/
}
}
printf("bmin = %f, %f, %f\n", bmin[0], bmin[1], bmin[2]);
printf("bmax = %f, %f, %f\n", bmax[0], bmax[1], bmax[2]);
return true;
}
(Sorry for this long code block)
And here is the while loop of the main function, the only difference with tinyobjloader is between the two lines:
unsigned int program = shaders::CreateShader("data/simple.vert", "data/simple.frag"); // just some really simples shaders
while (glfwWindowShouldClose(window) == GL_FALSE) {
glfwPollEvents();
glClearColor(0.1f, 0.2f, 0.3f, 1.0f);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glEnable(GL_DEPTH_TEST);
glEnable(GL_TEXTURE_2D);
// camera & rotate
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
GLfloat mat[4][4];
gluLookAt(eye[0], eye[1], eye[2], lookat[0], lookat[1], lookat[2], up[0],
up[1], up[2]);
build_rotmatrix(mat, curr_quat);
glMultMatrixf(&mat[0][0]);
// Fit to -1, 1
glScalef(1.0f / maxExtent, 1.0f / maxExtent, 1.0f / maxExtent);
// Centerize object.
glTranslatef(-0.5 * (bmax[0] + bmin[0]), -0.5 * (bmax[1] + bmin[1]),
-0.5 * (bmax[2] + bmin[2]));
/*-----------------------------------------------------------*/
//Draw(gDrawObjects, materials, textures);
// Can now bind the vertex array object to
// the graphics pipeline, to render with it.
glUseProgram(program);
for (int s = 0; s < meshVAO_array.size(); s++)
{
glBindVertexArray(meshVAO_array[s]);
glDrawElements(GL_TRIANGLES, indicesEBOSize_array[s], GL_UNSIGNED_INT, 0);//mesh.IndexCount
glBindVertexArray(0);
}
glUseProgram(0);
// when done, unbind it from the graphics pipeline:
glBindVertexArray(0);
/*-----------------------------------------------------------*/
glfwSwapBuffers(window);
}
What am I doing wrong?
In the nested loops you all the indices of shapes[].mesh.indices are use to lokkup the attributes, which are stored in attrib.vertices, attrib.normals and attrib.texcoords.
This attributes are prepared and linearized. They are stored in there idexed order to the linear arrays mesh_vertex, mesh_normals, mesh_colors and mesh_textCoords.
But the indices are directly copied from shapes[].mesh.indices to mesh_indices
for (long i = 0; i < shapes[s].mesh.indices.size(); i++)
{
mesh_indices.push_back(shapes[s].mesh.indices[i].vertex_index);
}
The indices in mesh_indices still refer to the vertex coordinates stored in attrib.vertices but the have no meaning for the attributes in the new containers.
The original indices are not needed any more. The indices of the new attribute would be continuously ascending: [0, 1, 2, 3, 4, 5 ...]
It is sufficient to draw the array of generic vertex attribute data in its existing order:
// you have to know the number of attributes
// something like mesh_vertex.size() / 3;
GLsizei no_of_attributes = .... ;
glBindVertexArray(meshVAO_array[s]);
glDrawArrays(GL_TRIANGLES, 0, no_of_attributes);
glBindVertexArray(0);
Is there an algorithm that could be used to generate a plane using the GL_TRIANGLES primitive type?
Here's my current function:
Mesh* Mesh::CreateMeshPlane(vec2 bottomleft, ivec2 numvertices, vec2 worldsize){
int numVerts = numvertices.x * numvertices.y;
float xStep = worldsize.x / (numvertices.x - 1);
float yStep = worldsize.y / (numvertices.y - 1);
VertexFormat* verts = new VertexFormat[numVerts];
for (int y = 0; y < numvertices.y; y++)
{
for (int x = 0; x < numvertices.x; x++)
{
verts[x + (y * numvertices.x)].pos.x = bottomleft.x + (xStep * x);
verts[x + (y * numvertices.x)].pos.y = bottomleft.y + (yStep * y);
verts[x + (y * numvertices.x)].pos.z = 0;
}
}
Mesh* pMesh = new Mesh();
pMesh->Init(verts, numVerts, indices, 6, GL_STATIC_DRAW);
glPointSize(10.0f);
pMesh->m_PrimitiveType = GL_POINTS;
delete[] verts;
return pMesh;}
I'm just unsure how to implement indices into the for loop to be able to know which points to draw.
What I think I need to know:
Each square will be made up of 2 triangles, each square requiring 6 indices
Currently I'm drawing from the bottom left
I need to know how many squares I'll have from the numbers passed in
Maybe something like this:
int width = 4;
int length = 6;
int height = 1;
std::vector<float> planeVertices;
for (int x = 0; x < width - 1; x++) {
for (int z = 0; z < length - 1; z++) {
planeVertices.push_back(x);
planeVertices.push_back(height);
planeVertices.push_back(z);
planeVertices.push_back(x);
planeVertices.push_back(height);
planeVertices.push_back(z + 1);
planeVertices.push_back(x + 1);
planeVertices.push_back(height);
planeVertices.push_back(z + 1);
planeVertices.push_back(x);
planeVertices.push_back(height);
planeVertices.push_back(z);
planeVertices.push_back(x + 1);
planeVertices.push_back(height);
planeVertices.push_back(z);
planeVertices.push_back(x + 1);
planeVertices.push_back(height);
planeVertices.push_back(z + 1);
}
}
...
unsigned int VBO, VAO;
glGenVertexArrays(1, &VAO);
glGenBuffers(1, &VBO);
glBindVertexArray(VAO);
glBindBuffer(GL_ARRAY_BUFFER, VBO);
glBufferData(GL_ARRAY_BUFFER, planeVertices.size() * sizeof(float), planeVertices.data(), GL_STATIC_DRAW);
glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 3 * sizeof(float), 0);
glEnableVertexAttribArray(0);
...
glDrawArrays(GL_TRIANGLES, 0, (width - 1) * (length - 1) * 6);
This code creates an std::vector<float> and adds the plane vertices to it. The nested for loops add two triangles for every unit of the plane (so with width as 4 and length as 6 the plane will be 4 units by 6 units, and will be made of 6 * 4 * 2 = 48 triangles). The height of the plane is set by the height variable. This only generates flat planes, but a simple transformation lets you rotate and scale this as you need.
WARNING: this code is untested.
Just to close this question here's how I did it:
Mesh* Mesh::CreateMeshPlane(vec3 bottomleft, ivec2 numvertices, vec2
worldsize, vec2 texturerepetition)
{
int numVerts = numvertices.x * numvertices.y;
int numFaces = (numvertices.x - 1) * (numvertices.y - 1);
int numIndices = numFaces * 6;
float xStep = worldsize.x / (numvertices.x - 1);
float yStep = worldsize.y / (numvertices.y - 1);
float zStep = worldsize.y / (numvertices.y - 1);
float uStep = texturerepetition.x / (numvertices.x - 1);
float vStep = texturerepetition.y / (numvertices.y - 1);
VertexFormat* verts = new VertexFormat[numVerts];
unsigned int* indices = new unsigned int[numIndices];
for (int y = 0; y < numvertices.y; y++)
{
for (int x = 0; x < numvertices.x; x++)
{
verts[x + (y * numvertices.x)].pos.x = bottomleft.x + (xStep * x);
verts[x + (y * numvertices.x)].pos.y = bottomleft.y;
verts[x + (y * numvertices.x)].pos.z = bottomleft.z + (zStep * y);
verts[y * numvertices.x + x].uv.x = uStep * x;
verts[y * numvertices.x + x].uv.y = vStep * y;
}
}
int offset = 0;
for (int i = 0; i < numIndices; i++)
{
// The bottom left index of the current face
// + the offset to snap back when we hit the edge
unsigned int cornerIndex = i/6 + offset;
// If we reach the edge we increase the offset so that it goes to the next bottom left
if ((cornerIndex + 1)%numvertices.x == 0)
{
offset++;
cornerIndex++; // Adding new offset to the bottom left
}
// First triangle
indices[i] = (unsigned int)cornerIndex;
i++;
indices[i] = (unsigned int)cornerIndex + numvertices.x;
i++;
indices[i] = (unsigned int)cornerIndex + numvertices.x + 1;
i++;
// Second triangle
indices[i] = (unsigned int)cornerIndex;
i++;
indices[i] = (unsigned int)cornerIndex + numvertices.x + 1;
i++;
indices[i] = (unsigned int)cornerIndex + 1;
}
//glPolygonMode(GL_FRONT_AND_BACK, GL_LINE);
Mesh* pMesh = new Mesh();
pMesh->Init(verts, numVerts, indices, numIndices, GL_STATIC_DRAW);
delete[] verts;
return pMesh;
}
Workflow:
1. Calculating number of faces I need, then the number of indices
2. Creating an offset that is added to the cornerIndex when we realize we hit the edge of the vertex array (by using modulus numvertices.y)
3. Doing simple math to draw corners in correct order based on the cornerIndex
Notes:
1. Im drawing using GL_TRIANGLES as the primitive type
2. Drawing from bottom left to top right
3. cornerIndex therefore is the bottom left of the current square we're drawing on
Hope someone can find this helpful!