Rabin Karp Algorithm Negative Hash - c++

I have this Rabin Karp implementation. Now the only thing I'm doing for rolling hash is subtract power*source[i] from the sourceHash. power is 31^target.size()-1 % mod
But I can't understand why we're adding mod to sourceHash when it becomes negative. I have tried adding other values but it doesn't work and it only works when we add mod. Why is this? Is there a specific reason why we're adding mod and not anything else (like a random big number for example).
int rbk(string source, string target){
int m = target.size();
int n = source.size();
int mod = 128;
int prime = 11;
int power = 1;
int targetHash = 0, sourceHash = 0;
for(int i = 0; i < m - 1; i++){
power =(power*prime) % mod;
}
for(int i = 0; i < target.size(); i++){
sourceHash = (sourceHash*prime + source[i]) % mod;
targetHash = (targetHash*prime + target[i]) % mod;
}
for(int i = 0; i < n-m+1; i++){
if(targetHash == sourceHash){
bool flag = true;
for(int j = 0; j < m; j++){
if(source[i+j] != target[j]){
flag = false;
break;
}
}
if(flag){
return 1;
}
}
if(i < n-m){
sourceHash = (prime*(sourceHash - source[i]*power) + source[i+m]) % mod;
if(sourceHash < 0){
sourceHash += mod;
}
}
}
return -1;
}

When using modulo arithmetics (mod n) we have just n distinct numbers: 0, 1, 2, ..., n - 1.
All the other numbers which out of 0 .. n - 1 are equal to some number in 0 .. n - 1:
-n ~ 0
-n + 1 ~ 1
-n + 2 ~ 2
...
-2 ~ n - 2
-1 ~ n - 1
or
n ~ 0
n + 1 ~ 1
n + 2 ~ 2
...
2 * n ~ 0
2 * n + 1 ~ 0
In general case A ~ B if and only if (A - B) % n = 0 (here % stands for remainder).
When implementing Rabin Karp algorithm we can have two potential problems:
Hash can be too large, we can face integer overflow
Negative remainder can be implemented in different way on different compilers: -5 % 3 == -2 == 1
To deal with both problems, we can normalize remainder and operate with numbers within safe 0 .. n - 1 range only.
For arbitrary value A we can put
A = (A % n + n) % n;

Related

Is there an efficient way to generate number of factors of N less than X?

I am a beginner in the field of programming. I just want to find the number of factors / divisors of a positive integer N less than X. (X itself is a factor of N). I have a naive approach which doesn't work good for queries on N,X.
Here is my approach
int Divisors(int n, int x) {
int ans = 0;
if (x < sqrt(n)) {
for (int i = 1; i < x; i++) {
if (n % i == 0) {
ans++;
}
}
} else
for (int i = 1; i <= sqrt(n); i++) {
if (n % i == 0) {
if (n / i == i && i < x)
ans++;
else {
if (i < x)
ans++;
if (n / i < x)
ans++;
}
}
}
return ans;
}
Is there some efficient way to do this? Kindly help me out!
The actual problem I'm trying to solve :
Given some M and N I need to iterate through all positive integers less than or equal to N(1 <= i <= N) and I need to count how many numbers less than the current number (i) exists such that they divide the last multiple of i that is less than or equal to M (i.e., M - M % i) and finally find the sum of all counts.
Example
Given N = 5 and M = 10
Ans : 6
Explanation :
i = 1 count = 0
i = 2 count = 1 (10 % 1 = 0)
i = 3 count = 1 (9 % 1 = 0)
i = 4 count = 2 (8 % 1 = 0, 8 % 2 = 0)
i = 5 count = 2 (10 % 1 = 0, 10 % 2 = 0)
Therefore sum of all counts = 6
The wording of the question is a bit confusing.
I'm assuming you are finding the size of the set of all factors/divisors, D, of a number n that are less than a number x, where x is a factor of n.
An easier way of doing this is to iterate from all numbers 1 through x, exclusive of x, and use the modulo operator %.
Code:
int NumOfDiv(int x, int n){
int count = 0;
for(int i=1; i<x; i++){
if(n % i == 0) //This indicates that i divides n, having a remainder of 0,
look up % as it is very useful with number theory
count++;
}
return count;
}
Example:
int TestNum = NumOfDiv(4,12)
TestNum would have the value of 3

Explanation of the algorithm to find a number 'm' made up of digits 0's and 1's which is divisible by the number n

Here's a piece of code from a udemy course that I am currently taking that uses the pigeon hole principle to find a number made up of 0's and 1's divisible by the number n.
void findNumber(int n) {
int cur_rem = 0;
for(int i = 1; i <= n; i++) {
cur_rem = (cur_rem * 10 + 1) % n;
if(cur_rem == 0) {
for(int j = 1; j <= i; j++)
cout << 1;
return;
}
if(fr[cur_rem] != 0) {
for(int j = 1; j <= i - fr[cur_rem]; j++)
cout << 1;
for(int j = 1; j <= fr[cur_rem]; j++)
cout << 0;
return;
}
fr[cur_rem] = i;
}
}
So, in this code we actually first take the numbers 1,11,111,...,111..1(n times) and see if they are divisible by the given integer n. If they are not divisible then we find the 2 numbers within 1,11,111,...111..1(n times) with the same remainder when divided by the number n and subtract them to get the number that is divisible by n. So, I understand the theory part but I did not understand one line of the code.
Can someone please explain to me this line of code: cur_rem = (cur_rem * 10 + 1) % n; how can we get the remainder of the current number by multiplying the remainder of the previous number by 10 and then adding 1 and then finding the mod by dividing the sum by the given integer n?
Suppose the last number 111... (we'll call it m), had remainder r.
m % n = r
m = kn + r
Now the next number, 111..., call it m', is one digit longer than m.
m' = 10 m + 1
m' % n = (10 m + 1) % n
= (10(kn + r) + 1) % n
= (10 kn + 10r + 1) % n
= ( 10r + 1) % n

If NxM multiplication table put in order, what is number on K position?

If I have multiplication table 3x4
1 2 3 4
2 4 6 8
3 6 9 12
and put all these numbers in the order:
1 2 2 3 3 4 4 6 6 8 9 12
What number at the K position?
For example, if K = 5, then this is number 3.
N and M in the range 1 to 500 000. K is always less then N * M.
I've tried to use binary-search like in this(If an NxM multiplication table is put in order, what is number in the middle?) solution, but there some mistake if desired value not in the middle of sequence.
long findK(long n, long m, long k)
{
long min = 1;
long max = n * m;
long ans = 0;
long prev_sum = 0;
while (min <= max) {
ans = (min + max) / 2;
long sum = 0;
for (int i = 1; i <= m; i++)
{
sum += std::min(ans / i, n);
}
if (prev_sum + 1 == sum) break;
sum--;
if (sum < k) min = ans - 1;
else if (sum > k) max = ans + 1;
else break;
prev_sum = sum;
}
long sum = 0;
for (int i = 1; i <= m; i++)
sum += std::min((ans - 1) / i, n);
if (sum == k) return ans - 1;
else return ans;
}
For example, when N = 1000, M = 1000, K = 876543; expected value is 546970, but returned 546972.
I believe that the breakthrough will lie with counting the quantity of factorizations of each integer up to the desired point. For each integer prod, you need to count how many simple factorizations i*j there are with i <= m, j <= n. See the divisor functions.
You need to iterate prod until you reach the desired point, midpt = N*M / 2. Cumulatively subtract σ0(prod) from midpt until you reach 0. Note that once prod passes min(i, j), you need to start cropping the divisor count, due to running off the edge of the multiplication table.
Is that enough to get you started?
Code of third method from this(https://leetcode.com/articles/kth-smallest-number-in-multiplication-table/#) site solve the problem.
bool enough(int x, int m, int n, int k) {
int count = 0;
for (int i = 1; i <= m; i++) {
count += std::min(x / i, n);
}
return count >= k;
}
int findK(int m, int n, int k) {
int lo = 1, hi = m * n;
while (lo < hi) {
int mi = lo + (hi - lo) / 2;
if (!enough(mi, m, n, k)) lo = mi + 1;
else hi = mi;
}
return lo;
}

C++ summing multiples of 3 and 5

I just started C++ programming for three days now and I cannot figure out how to complete this exercise. Basically, I want to sum all multiples of 3 and 5 under 1000. Here is my code:
int sum3n5(int max){
int sum = 0;
for(int i = 1; i <= max; ++i){
if( i%3 == 0 && i%5 == 0 ) { sum += i;}
else if( i%3 == 0 || i%5 == 0 ) { sum +=i;}
return sum;
};
};
Sorry if it is a trivial mistake that I failed to realize.
I always get the result 0 after running this.
int sum3n5(int max){
int sum = 0;
for (int i = 1; i <= max; ++i){
if( i % 3 == 0 || i % 5 == 0 ){
sum += i;
}
}
return sum;
}
You only need the || (logical or) operator, not the && (and certainly not both!). And the return needs to be after the for loop so that the loop can complete before the function returns.
A version without loop:
int sum3n5(int max)
{
return 3 * (max / 3) * (max / 3 + 1) / 2
+ 5 * (max / 5) * (max / 5 + 1) / 2
- 15 * (max / 15) * (max / 15 + 1) / 2;
}
It uses the fact that 1 + 2 + .. + n == n * (n + 1) / 2

Smallest number that is evenly divisible by all of the numbers from 1 to 20?

I did this problem [Project Euler problem 5], but very bad manner of programming, see the code in c++,
#include<iostream>
using namespace std;
// to find lowest divisble number till 20
int main()
{
int num = 20, flag = 0;
while(flag == 0)
{
if ((num%2) == 0 && (num%3) == 0 && (num%4) == 0 && (num%5) == 0 && (num%6) == 0
&& (num%7) == 0 && (num%8) == 0 && (num%9) == 0 && (num%10) == 0 && (num%11) == 0 && (num%12) ==0
&& (num%13) == 0 && (num%14) == 0 && (num%15) == 0 && (num%16) == 0 && (num%17) == 0 && (num%18)==0
&& (num%19) == 0 && (num%20) == 0)
{
flag = 1;
cout<< " lowest divisible number upto 20 is "<< num<<endl;
}
num++;
}
}
i was solving this in c++ and stuck in a loop, how would one solve this step......
consider num = 20 and divide it by numbers from 1 to 20
check whether all remainders are zero,
if yes, quit and show output num
or else num++
i din't know how to use control structures, so did this step
if ((num%2) == 0 && (num%3) == 0 && (num%4) == 0 && (num%5) == 0 && (num%6) == 0
&& (num%7) == 0 && (num%8) == 0 && (num%9) == 0 && (num%10) == 0 && (num%11) == 0 && (num%12) ==0
&& (num%13) == 0 && (num%14) == 0 && (num%15) == 0 && (num%16) == 0 && (num%17) == 0 && (num%18)==0
&& (num%19) == 0 && (num%20) == 0) `
how to code this in proper manner?
answer for this problem is:
abhilash#abhilash:~$ ./a.out
lowest divisible number upto 20 is 232792560
The smallest number that is divisible by two numbers is the LCM of those two numbers. Actually, the smallest number divisible by a set of N numbers x1..xN is the LCM of those numbers. It is easy to compute the LCM of two numbers (see the wikipedia article), and you can extend to N numbers by exploiting the fact that
LCM(x0,x1,x2) = LCM(x0,LCM(x1,x2))
Note: Beware of overflows.
Code (in Python):
def gcd(a,b):
return gcd(b,a%b) if b else a
def lcm(a,b):
return a/gcd(a,b)*b
print reduce(lcm,range(2,21))
Factor all the integers from 1 to 20 into their prime factorizations. For example, factor 18 as 18 = 3^2 * 2. Now, for each prime number p that appears in the prime factorization of some integer in the range 1 to 20, find the maximum exponent that it has among all those prime factorizations. For example, the prime 3 will have exponent 2 because it appears in the factorization of 18 as 3^2 and if it appeared in any prime factorization with an exponent of 3 (i.e., 3^3), that number would have to be at least as large as 3^3 = 27 which it outside of the range 1 to 20. Now collect all of these primes with their corresponding exponent and you have the answer.
So, as example, let's find the smallest number evenly divisible by all the numbers from 1 to 4.
2 = 2^1
3 = 3^1
4 = 2^2
The primes that appear are 2 and 3. We note that the maximum exponent of 2 is 2 and the maximum exponent of 3 is 1. Thus, the smallest number that is evenly divisible by all the numbers from 1 to 4 is 2^2 * 3 = 12.
Here's a relatively straightforward implementation.
#include <iostream>
#include <vector>
std::vector<int> GetPrimes(int);
std::vector<int> Factor(int, const std::vector<int> &);
int main() {
int n;
std::cout << "Enter an integer: ";
std::cin >> n;
std::vector<int> primes = GetPrimes(n);
std::vector<int> exponents(primes.size(), 0);
for(int i = 2; i <= n; i++) {
std::vector<int> factors = Factor(i, primes);
for(int i = 0; i < exponents.size(); i++) {
if(factors[i] > exponents[i]) exponents[i] = factors[i];
}
}
int p = 1;
for(int i = 0; i < primes.size(); i++) {
for(int j = 0; j < exponents[i]; j++) {
p *= primes[i];
}
}
std::cout << "Answer: " << p << std::endl;
}
std::vector<int> GetPrimes(int max) {
bool *isPrime = new bool[max + 1];
for(int i = 0; i <= max; i++) {
isPrime[i] = true;
}
isPrime[0] = isPrime[1] = false;
int p = 2;
while(p <= max) {
if(isPrime[p]) {
for(int j = 2; p * j <= max; j++) {
isPrime[p * j] = false;
}
}
p++;
}
std::vector<int> primes;
for(int i = 0; i <= max; i++) {
if(isPrime[i]) primes.push_back(i);
}
delete []isPrime;
return primes;
}
std::vector<int> Factor(int n, const std::vector<int> &primes) {
std::vector<int> exponents(primes.size(), 0);
while(n > 1) {
for(int i = 0; i < primes.size(); i++) {
if(n % primes[i] == 0) {
exponents[i]++;
n /= primes[i];
break;
}
}
}
return exponents;
}
Sample output:
Enter an integer: 20
Answer: 232792560
There is a faster way to answer the problem, using number theory. Other answers contain indications how to do this. This answer is only about a better way to write the if condition in your original code.
If you only want to replace the long condition, you can express it more nicely in a for loop:
if ((num%2) == 0 && (num%3) == 0 && (num%4) == 0 && (num%5) == 0 && (num%6) == 0
&& (num%7) == 0 && (num%8) == 0 && (num%9) == 0 && (num%10) == 0 && (num%11) == 0 && (num%12) ==0
&& (num%13) == 0 && (num%14) == 0 && (num%15) == 0 && (num%16) == 0 && (num%17) == 0 && (num%18)==0
&& (num%19) == 0 && (num%20) == 0)
{ ... }
becomes:
{
int divisor;
for (divisor=2; divisor<=20; divisor++)
if (num%divisor != 0)
break;
if (divisor != 21)
{ ...}
}
The style is not great but I think this is what you were looking for.
See http://en.wikipedia.org/wiki/Greatest_common_divisor
Given two numbers a and b you can compute gcd(a, b) and the smallest number divisible by both is a * b / gcd(a, b). The obvious thing then to do is to keep a sort of running total of this and add in the numbers you care about one by one: you have an answer so far A and you add in the next number X_i to consider by putting
A' = A * X_i / (gcd(A, X_i))
You can see that this actually works by considering what you get if you factorise everything and write them out as products of primes. This should pretty much allow you to work out the answer by hand.
Hint:
instead of incrementing num by 1 at each step you could increment it by 20 (will work alot faster). Of course there may be other improvements too, ill think about it later if i have time. Hope i helped you a little bit.
The number in question is the least common multiple of the numbers 1 through 20.
Because I'm lazy, let ** represent exponentiation. Let kapow(x,y) represent the integer part of the log to the base x of y. (For example, kapow(2,8) = 3, kapow(2,9) = 3, kapow(3,9) = 2.
The primes less than or equal to 20 are 2, 3, 5, 7, 11, 13, and 17. The LCM is,
Because sqrt(20) < 5, we know that kapow(i,20) for i >= 5 is 1. By inspection, the LCM is
LCM = 2kapow(2,20) * 3kapow(3,20)
* 5 * 7 * 11 * 13 * 17 * 19
which is
LCM = 24 * 32 * 5 * 7 * 11 * 13 *
17 * 19
or
LCM = 16 * 9 * 5 * 7 * 11 * 13 * 17 *
19
Here is a C# version of #MAK's answer, there might be List reduce method in C#, I found something online but no quick examples so I just used a for loop in place of Python's reduce:
static void Main(string[] args)
{
const int min = 2;
const int max = 20;
var accum = min;
for (var i = min; i <= max; i++)
{
accum = lcm(accum, i);
}
Console.WriteLine(accum);
Console.ReadLine();
}
private static int gcd(int a, int b)
{
return b == 0 ? a : gcd(b, a % b);
}
private static int lcm(int a, int b)
{
return a/gcd(a, b)*b;
}
Code in JavaScript:
var i=1,j=1;
for (i = 1; ; i++) {
for (j = 1; j <= 20; j++) {
if (i % j != 0) {
break;
}
if (i % j == 0 && j == 20) {
console.log('printval' + i)
break;
}
}
}
This can help you
http://www.mathwarehouse.com/arithmetic/numbers/prime-number/prime-factorization.php?number=232792560
The prime factorization of 232,792,560
2^4 • 3^2 • 5 • 7 • 11 • 13 • 17 • 19
Ruby Cheat:
require 'rational'
def lcmFinder(a = 1, b=2)
if b <=20
lcm = a.lcm b
lcmFinder(lcm, b+1)
end
puts a
end
lcmFinder()
this is written in c
#include<stdio.h>
#include<conio.h>
void main()
{
int a,b,flag=0;
for(a=1; ; a++)
{
for(b=1; b<=20; b++)
{
if (a%b==0)
{
flag++;
}
}
if (flag==20)
{
printf("The least num divisible by 1 to 20 is = %d",a);
break;
}
flag=0;
}
getch();
}
#include<vector>
using std::vector;
unsigned int Pow(unsigned int base, unsigned int index);
unsigned int minDiv(unsigned int n)
{
vector<unsigned int> index(n,0);
for(unsigned int i = 2; i <= n; ++i)
{
unsigned int test = i;
for(unsigned int j = 2; j <= i; ++j)
{
unsigned int tempNum = 0;
while( test%j == 0)
{
test /= j;
tempNum++;
}
if(index[j-1] < tempNum)
index[j-1] = tempNum;
}
}
unsigned int res =1;
for(unsigned int i = 2; i <= n; ++i)
{
res *= Pow( i, index[i-1]);
}
return res;
}
unsigned int Pow(unsigned int base, unsigned int index)
{
if(base == 0)
return 0;
if(index == 0)
return 1;
unsigned int res = 1;
while(index)
{
res *= base;
index--;
}
return res;
}
The vector is used for storing the factors of the smallest number.
This is why you would benefit from writing a function like this:
long long getSmallestDivNum(long long n)
{
long long ans = 1;
if( n == 0)
{
return 0;
}
for (long long i = 1; i <= n; i++)
ans = (ans * i)/(__gcd(ans, i));
return ans;
}
Given the maximum n, you want to return the smallest number that is dividable by 1 through 20.
Let's look at the set of 1 to 20. First off, it contains a number of prime numbers, namely:
2
3
5
7
11
13
17
19
So, because it's has to be dividable by 19, you can only check multiples of 19, because 19 is a prime number. After that, you check if it can be divided by the one below that, etc. If the number can be divided by all the prime numbers successfully, it can be divided by the numbers 1 through 20.
float primenumbers[] = { 19, 17, 13, 11, 7, 5, 3, 2; };
float num = 20;
while (1)
{
bool dividable = true;
for (int i = 0; i < 8; i++)
{
if (num % primenumbers[i] != 0)
{
dividable = false;
break;
}
}
if (dividable) { break; }
num += 1;
}
std::cout << "The smallest number dividable by 1 through 20 is " << num << std::endl;