Shortest path question involving transfer in cyclic graph - c++

I'm trying to solve a problem of graph:
There are (n+1) cities(no. from 0 to n), and (m+1) bus lines(no. from 0 to m).
(A line may contain repeated cities, meaning the line have a cycle.)
Each line covers several cities, and it takes t_ij to run from city i to city j (t_ij may differ in different lines).
Moreover, it takes extra transfer_time to each time you get in a bus.
An edge look like this: city i --(time)-->city2
Example1:
n = 2, m = 2, start = 0, end = 2
line0:
0 --(1)--> 1 --(1)--> 2; transfer_time = 1
line1:
0 --(2)--> 2; transfer_time = 2
Line0 take 1+1+1 = 3 and line1 takes 4, so the min is 3.
Example2:
n = 4, m = 0, start = 0, end = 4
line0:
0 --(2)--> 1 --(3)--> 2 --(3)-->3 --(3)--> 1 --(2)--> 4; transfer_time = 1
it takes 1(get in at 0) + 2(from 0 to 1) + 1(get off and get in, transfer) + 2 = 6
I've tried to solve it with Dijkstra Algorithm, but failed to handle graph with cycles(like Example2).
Below is my code.
struct Edge {
int len;
size_t line_no;
};
class Solution {
public:
Solution() = default;
//edges[i][j] is a vector, containing ways from city i to j in different lines
int findNearestWay(vector<vector<vector<Edge>>>& edges, vector<int>& transfer_time, size_t start, size_t end) {
size_t n = edges.size();
vector<pair<int, size_t>> distance(n, { INT_MAX / 2, -1 }); //first: len, second: line_no
distance[start].first = 0;
vector<bool> visited(n);
int cur_line = -1;
for (int i = 0; i < n; ++i) {
int next_idx = -1;
//find the nearest city
for (int j = 0; j < n; ++j) {
if (!visited[j] && (next_idx == -1 || distance[j].first < distance[next_idx].first))
next_idx = j;
}
visited[next_idx] = true;
cur_line = distance[next_idx].second;
//update distance of other cities
for (int j = 0; j < n; ++j) {
for (const Edge& e : edges[next_idx][j]) {
int new_len = distance[next_idx].first + e.len;
//transfer
if (cur_line == -1 || cur_line != e.line_no) {
new_len += transfer_time[e.line_no];
}
if (new_len < distance[j].first) {
distance[j].first = new_len;
distance[j].second = e.line_no;
}
}
}
}
return distance[end].first == INT_MAX / 2 ? -1 : distance[end].first;
}
};
Is there a better practice to work out it? Thanks in advance.

Your visited set looks wrong. The "nodes" you would feed into Djikstra's algorithm cannot simply be cities, because that doesn't let you model the cost of switching from one line to another within a city. Each node must be a pair consisting of a city number and a bus line number, representing the bus line you are currently riding on. The bus line number can be -1 to represent that you are not on a bus, and the starting and destination nodes would have a bus line numbers of -1.
Then each edge would represent either the cost of staying on the line you are currently on to ride to the next city, or getting off the bus in your current city (which is free), or getting on a bus line within your current city (which has the transfer cost).
You said the cities are numbered from 0 to n but I see a bunch of loops that stop at n - 1 (because they use < n as the loop condition), so that might be another problem.

Related

Implementing a crossover function for multiple "Salesmen" TSP in a genetic algorithm

I’m trying to solve a variant of the TSP problem with “multiple salesmen". I have a series of n waypoints and m drones and I want to generate a result which sorts of balances the number of waypoints between drones and returns an acceptable shortest travelling time. At the moment, I'm not really too worried about finding an optimal solution, I just want something that works at this point. I've sort of distilled my problem to a traditional TSP run multiple times. My example is for a series of waypoints:
[0,1,2,3,4,5,6,7,8,9,10,11]
where 0 == 11 is the start and end point. Say I have 4 drones, I want to generate something like:
Drone A = [0,1,2,3,11]
Drone B = [0,5,6,7,11]
Drone C = [0,4,8,11]
Drone D = [0,9,10,11]
However, I’m struggling to generate a consistent output in my crossover function. My current function looks like this:
DNA DNA::crossover( DNA &parentB)
{
// sol holds the individual solution for
// each drone
std::vector<std::vector<std::size_t>> sol;
// contains the values in flattened sol
// used to check for duplicates
std::vector<std::size_t> flat_sol;
// returns the number of solutions
// required
int number_of_paths = this→getSolution().size();
// limits the number of waypoints required for each drone
// subtracting 2 to remove “0” and “11”
std::size_t max_wp_per_drone = ((number_of_cities-2)/number_of_drones) + 1;
for(std::size_t i = 0; i < number_of_paths; i++)
{
int start = rand() % (this->getSolution().at(i).size() -2) + 1;
int end = start + 1 + rand() % ((this->getSolution().at(i).size()-2) - start +1);
std::vector<std::size_t>::const_iterator first = this->getSolution().at(i).begin()+start;
std::vector<std::size_t>::const_iterator second = this- >getSolution().at(i).begin()+end;
// First Problem occurs here… Sometimes, newOrder can return nothing based on
//the positions of start and end. Tried to mitigate by putting a while loop
to regenerate the vector
std::vector<std::size_t> newOrder(first, second);
// RETURNS a vector from the vector of vectors sol
flat_sol = flatten(sol);
// compare new Order with solution and remove any duplicates..
for(std::size_t k = 0; k < newOrder.size(); k++ )
{
int duplicate = newOrder.at(k);
if(std::find(flat_sol.begin(), flat_sol.end(), duplicate) != flat_sol.end())
{
// second problem is found here, sometimes,
// new order might only return a vector with a single value
// or values that have already been assigned to another drone.
// In this case, those values are removed and newOrder is now 0
newOrder.erase(newOrder.begin()+k);
}
}
// attempt to create the vectors here.
for(std::size_t j = 1; j <=parentB.getSolution().at(i).size()-2; j++)
{
int city = parentB.getSolution().at(i).at(j);
if(newOrder.empty())
{
if(std::find(flat_sol.begin(), flat_sol.end(), city) == flat_sol.end())
{
newOrder.push_back(city);
}
}
else if((std::find(newOrder.begin(), newOrder.end(), city) == newOrder.end())
&&(std::find(flat_sol.begin(), flat_sol.end(), city) == flat_sol.end())
&& newOrder.size() < max_wp_per_drone )
{
newOrder.push_back(city);
}
}
sol.push_back(newOrder);
}
// waypoints and number_of drones are known,
//0 and 11 are appended to each vector in sol in the constructor.
return DNA(sol, waypoints, number_of_drones);
}
A sample output from my previous runs return the following:
[0,7,9,8, 11]
[0, 1,2,4,11]
[0, 10, 6, 11]
[0,3,11]
// This output is missing one waypoint.
[0,10,7,5, 11]
[0, 8,3,1,11]
[0, 6, 9, 11]
[0,2,4,11]
// This output is correct.
Unfortunately, this means in my subsequent generations of new children. and me getting the correct output seems to be random. For example, for one generation, I had a population size which had 40 correct children and 60 children with missing waypoints while in some cases, I've had more correct children. Any tips or help is appreciated.
Solved this by taking a slightly different approach. Instead of splitting the series of waypoints before perfoming crossover, I simply pass the series of waypoints
[0,1,2,3,4,5,6,7,8,9,10,11]
perform crossover, and when computing fitness of each set, I split the waypoints based on m drones and find the best solution of each generation. New crossover function looks like this:
DNA DNA::crossover( DNA &parentB)
{
int start = rand () % (this->getOrder().size()-1);
int end = getRandomInt<std::size_t>(start +1 , this->getOrder().size()-1);
std::vector<std::size_t>::const_iterator first = this->getOrder().begin() + start;
std::vector<std::size_t>::const_iterator second = this->getOrder().begin() + end;
std::vector<std::size_t> newOrder(first, second);
for(std::size_t i = 0; i < parentB.getOrder().size(); i++)
{
int city = parentB.getOrder().at(i);
if(std::find(newOrder.begin(), newOrder.end(), city) == newOrder.end())
{
newOrder.push_back(city);
}
}
return DNA(newOrder, waypoints, number_of_drones);
}

Construct mirror vector around the centre element in c++

I have a for-loop that is constructing a vector with 101 elements, using (let's call it equation 1) for the first half of the vector, with the centre element using equation 2, and the latter half being a mirror of the first half.
Like so,
double fc = 0.25
const double PI = 3.1415926
// initialise vectors
int M = 50;
int N = 101;
std::vector<double> fltr;
fltr.resize(N);
std::vector<int> mArr;
mArr.resize(N);
// Creating vector mArr of 101 elements, going from -50 to +50
int count;
for(count = 0; count < N; count++)
mArr[count] = count - M;
// using these elements, enter in to equations to form vector 'fltr'
int n;
for(n = 0; n < M+1; n++)
// for elements 0 to 50 --> use equation 1
fltr[n] = (sin((fc*mArr[n])-M))/((mArr[n]-M)*PI);
// for element 51 --> use equation 2
fltr[M] = fc/PI;
This part of the code works fine and does what I expect, but for elements 52 to 101, I would like to mirror around element 51 (the output value using equation)
For a basic example;
1 2 3 4 5 6 0.2 6 5 4 3 2 1
This is what I have so far, but it just outputs 0's as the elements:
for(n = N; n > M; n--){
for(i = 0; n < M+1; i++)
fltr[n] = fltr[i];
}
I feel like there is an easier way to mirror part of a vector but I'm not sure how.
I would expect the values to plot like this:
After you have inserted the middle element, you can get a reverse iterator to the mid point and copy that range back into the vector through std::back_inserter. The vector is named vec in the example.
auto rbeg = vec.rbegin(), rend = vec.rend();
++rbeg;
copy(rbeg, rend, back_inserter(vec));
Lets look at your code:
for(n = N; n > M; n--)
for(i = 0; n < M+1; i++)
fltr[n] = fltr[i];
And lets make things shorter, N = 5, M = 3,
array is 1 2 3 0 0 and should become 1 2 3 2 1
We start your first outer loop with n = 3, pointing us to the first zero. Then, in the inner loop, we set i to 0 and call fltr[3] = fltr[0], leaving us with the array as
1 2 3 1 0
We could now continue, but it should be obvious that this first assignment was useless.
With this I want to give you a simple way how to go through your code and see what it actually does. You clearly had something different in mind. What should be clear is that we do need to assign every part of the second half once.
What your code does is for each value of n to change the value of fltr[n] M times, ending with setting it to fltr[M] in any case, regardless of what value n has. The result should be that all values in the second half of the array are now the same as the center, in my example it ends with
1 2 3 3 3
Note that there is also a direct error: starting with n = N and then accessing fltr[n]. N is out of bounds for an arry of size N.
To give you a very simple working solution:
for(int i=0; i<M; i++)
{
fltr[N-i-1] = fltr[i];
}
N-i-1 is the mirrored address of i (i = 0 -> N-i-1 = 101-0-1 = 100, last valid address in an array with 101 entries).
Now, I saw several guys answering with a more elaborate code, but I thought that as a beginner, it might be beneficial for you to do this in a very simple manner.
Other than that, as #Pzc already said in the comments, you could do this assignment in the loop where the data is generated.
Another thing, with your code
for(n = 0; n < M+1; n++)
// for elements 0 to 50 --> use equation 1
fltr[n] = (sin((fc*mArr[n])-M))/((mArr[n]-M)*PI);
// for element 51 --> use equation 2
fltr[M] = fc/PI;
I have two issues:
First, the indentation makes it look like fltr[M]=.. would be in the loop. Don't do that, not even if this should have been a mistake when you wrote the question and is not like this in the code. This will lead to errors in the future. Indentation is important. Using the auto-indentation of your IDE is an easy way to go. And try to use brackets, even if it is only one command.
Second, n < M+1 as a condition includes the center. The center is located at adress 50, and 50 < 50+1. You haven't seen any problem as after the loop you overwrite it, but in a different situation, this can easily produce errors.
There are other small things I'd change, and I recommend that, when your code works, you post it on CodeReview.
Let's use std::iota, std::transform, and std::copy instead of raw loops:
const double fc = 0.25;
constexpr double PI = 3.1415926;
const std::size_t M = 50;
const std::size_t N = 2 * M + 1;
std::vector<double> mArr(M);
std::iota(mArr.rbegin(), mArr.rend(), 1.); // = [M, M - 1, ..., 1]
const auto fn = [=](double m) { return std::sin((fc * m) + M) / ((m + M) * PI); };
std::vector<double> fltr(N);
std::transform(mArr.begin(), mArr.end(), fltr.begin(), fn);
fltr[M] = fc / PI;
std::copy(fltr.begin(), fltr.begin() + M, fltr.rbegin());

How exactly can I handle the following condition while applying dijkstra's algorithm to this?

So, I was solving the following question: http://www.spoj.com/problems/ROADS/en/
N cities named with numbers 1 ... N are connected with one-way roads. Each road has two parameters associated with it: the road length and the toll that needs to be paid for the road (expressed in the number of coins). Bob and Alice used to live in the city 1. After noticing that Alice was cheating in the card game they liked to play, Bob broke up with her and decided to move away - to the city N. He wants to get there as quickly as possible, but he is short on cash. We want to help Bob to find the shortest path from the city 1 to the city N that he can afford with the amount of money he has.
Input
The input begins with the number t of test cases. Then t test cases follow. The first line of the each test case contains the integer K, 0 <= K <= 10000, maximum number of coins that Bob can spend on his way. The second line contains the integer N, 2 <= N <= 100, the total number of cities. The third line contains the integer R, 1 <= R <= 10000, the total number of roads. Each of the following R lines describes one road by specifying integers S, D, L and T separated by single blank characters : S is the source city, 1 <= S <= N D is the destination city, 1 <= D <= N L is the road length, 1 <= L <= 100. T is the toll (expressed in the number of coins), 0 <= T <= 100 Notice that different roads may have the same source and destination cities.
Output
For each test case, output a single line contain the total length of the shortest path from the city 1 to the city N whose total toll is less than or equal K coins. If such path does not exist, output -1.
Now, what I did was, I tried to use the djikstra's algorithm for this which is as follows:
Instead of only having a single node as the state, I take
node and coins as one state and then apply dijkstra.
length is the weight between the states.
and I minimize the length without exceeding the total coins.
My code is as follows:
using namespace std;
#define ll long long
#define pb push_back
#define mp make_pair
class node
{
public:
int vertex;
int roadlength;
int toll;
};
int dist[101][101]; // for storing roadlength
bool visited[101][10001];
int cost[101][101]; // for storing cost
int ans[101][10001]; // actual distance being stored here
void djikstra(int totalcoins, int n);
bool operator < (node a, node b)
{
if (a.roadlength != b.roadlength)
return a.roadlength < b.roadlength;
else if (a.toll != b.toll)
return a.toll < b.toll;
return a.vertex < b.vertex;
}
int main (void)
{
int a,b,c,d;
int r,t,k,n,i,j;
cin>>t;
while (t != 0)
{
cin>>k>>n>>r;
for (i = 1; i <= 101; i++)
for (j = 1; j <= 101; j++)
dist[i][j] = INT_MAX;
for (i = 0; i <= n; i++)
for (j = 0; j <= k; j++)
ans[i][j] = INT_MAX;
for ( i = 0; i <= n; i++ )
for (j = 0; j <= k; j++ )
visited[i][j] = false;
for (i = 0; i < r; i++)
{
cin>>a>>b>>c>>d;
if (a != b)
{
dist[a][b] = c;
cost[a][b] = d;
}
}
djikstra(k,n);
int minlength = INT_MAX;
for (i = 1; i <= k; i++)
{
if (ans[n][i] < minlength)
minlength = ans[n][i];
}
if (minlength == INT_MAX)
cout<<"-1\n";
else
cout<<minlength<<"\n";
t--;
}
cout<<"\n";
return 0;
}
void djikstra(int totalcoins, int n)
{
set<node> myset;
myset.insert((node){1,0,0});
ans[1][0] = 0;
while (!myset.empty())
{
auto it = myset.begin();
myset.erase(it);
int curvertex = it->vertex;
int a = it->roadlength;
int b = it->toll;
if (visited[curvertex][b] == true)
continue;
else
{
visited[curvertex][b] = true;
for (int i = 1; i <= n; i++)
{
if (dist[curvertex][i] != INT_MAX)
{
int foo = b + cost[curvertex][i];
if (foo <= totalcoins)
{
if (ans[i][foo] >= ans[curvertex][b] + cost[curvertex][i])
{
ans[i][foo] = ans[curvertex][b] + cost[curvertex][i];
myset.insert((node){i,ans[i][foo],foo});
}
}
}
}
}
}
}
Now, I have two doubts:
Firstly, my output is not coming correct for the first given test case of the question, i.e.
Sample Input:
2
5
6
7
1 2 2 3
2 4 3 3
3 4 2 4
1 3 4 1
4 6 2 1
3 5 2 0
5 4 3 2
0
4
4
1 4 5 2
1 2 1 0
2 3 1 1
3 4 1 0
Sample Output:
11
-1
My output is coming out to be, 4 -1 which is wrong for the first test case. Where am I going wrong in this?
How do I handle the condition of having multiple edges? That is, question mentions, Notice that different roads may have the same source and destination cities. How do I handle this condition?
The simple way to store the roads is as a vector of vectors. For each origin city, you want to have a vector of all roads leading from that city.
So when you are processing a discovered "best" path to a city, you would iterate through all roads from that city to see if they might be "best" paths to some other city.
As before you have two interacting definitions of "best" than cannot be simply combined into one definition. Shortest is more important, so the main definition of "best" is shortest considering cheapest only in case of ties. But you also need the alternate definition of "best" considering only cheapest.
As I suggested for the other problem, you can sort on the main definition of "best" so you always process paths that are better in that definition before paths that are worse. Then you need to track the best seen so far for the second definition of "best" such that you only prune paths from processing when they are not better in the second definition from what you already processed prioritized by the first definition.
I haven't read your code, however I can tell you the problem cannot be solved with an unmodified version of Dijkstra's algorithm.
The problem is at least as hard as the binary knapsack problem. How? The idea is to construct the knapsack problem within the stated problem. Since the knapsack problem is known to be not solvable within polynomial time, neither is the stated problem's. Since Dijkstra's algorithm is a polynomial algorithm, it therefore could not apply.
Consider a binary knapsack problem with a set of D many values X and a maximum value m = max(X). Now construct the proposed problem as such:
Let there be D + 1 cities where city n is connected to city n + 1 by two roads. Let cities 1 through D uniquely correspond to a value v in X. Let only two roads from such a city n go only to city n + 1, one costing v with distance m - v + 1, and the other costing 0 with a distance of m + 1.
In essence, "you get exactly what you pay for" -- for every coin you spend, your trip will be one unit of distance shorter.
This reframes the problem to be "what's the maximum Bob can spend by only spending money either no or one time on each toll?" And that's the same as the binary knapsack problem we started with.
Hence, if we solve the stated problem, we also can solve the binary knapsack problem, and therefore the stated problem cannot be any more "efficient" to solve than the binary knapsack problem -- with Dijkstra's algorithm is.

edit distance solution with O(n) space issue

Found a few different solutions and debugging, and especially interested in below solution which requires only O(n) space, other than store a matrix (M*N). But confused about what is the logical meaning of cur[i]. If anyone have any comments, it will be highly appreciated.
I posted solution and code.
Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2. (each operation is counted as 1 step.)
You have the following 3 operations permitted on a word:
a) Insert a character
b) Delete a character
c) Replace a character
class Solution {
public:
int minDistance(string word1, string word2) {
int m = word1.length(), n = word2.length();
vector<int> cur(m + 1, 0);
for (int i = 1; i <= m; i++)
cur[i] = i;
for (int j = 1; j <= n; j++) {
int pre = cur[0];
cur[0] = j;
for (int i = 1; i <= m; i++) {
int temp = cur[i];
if (word1[i - 1] == word2[j - 1])
cur[i] = pre;
else cur[i] = min(pre + 1, min(cur[i] + 1, cur[i - 1] + 1));
pre = temp;
}
}
return cur[m];
}
};
You can think of cur as being as a mix of the previous line and the current line in the edit distance matrix. For example, think of a 3x3 matrix in the original algorithm. I'll number each position like below:
1 2 3
4 5 6
7 8 9
In the loop, if you are computing the position 6, you only need the values from 2, 3 and 5. In that case, cur will be exactly the values from:
4 5 3
See the 3 in the end? That's because we didn't updated it yet, so it still has a value from the first line. From the previous iteration, we have pre = 2, because it was saved before we computed the value at 5.
Then, the new value for the last cell is the minimum of pre = 2, cur[i-1] = 5 and cur[i] = 3, exactly the values mentioned before.
EDIT: completing the analogy, if in the O(n^2) version you compute min(M[i-1][j-1], M[i][j-1], M[i-1][j]), in this O(n) version you'll compute min(pre, cur[i-1], cur[i]), respectively.

Bubble Sorting - confused about 2 lines (Beginner)

I understood most of the code however I'm just confused about two lines
position = position + 1
N = N - 1
What do they do in the code and why are they at the end? What alternative ways are there to write these two lines? Is there a more efficient way of writing this code?
data = [8,7,12,4,9,6,5]
N = len(data)
swapped = True
while swapped:
swapped = False
position = 0
while (position < N - 1):
if (data[position] > data[position + 1]):
hold = data[position]
data[position] = data[position + 1]
data[position + 1] = hold
else:
swapped = True
position = position + 1
N = N - 1
print(data)
len(data)=7 // length of array
position=0 //to set at beginning of the array
while(position<N-1) // scans your entire array till end of the array
if(data[position]>data[position+1]) // checks if 8 >7 if true store 8 in temp variable
then loop through to get smallest number at data[position] and
else
N=N-1 //get next value of N to meet the condition data[position]>data[position+1]
// prints(sorted array)
Equivalent code in C:
for(int x=0; x<n; x++)
{
for(int y=0; y<n-1; y++)
{
if(array[y]>array[y+1])
{
int temp = array[y+1];
array[y+1] = array[y];
array[y] = temp;
}
}
}
Notice that this will always loop n times from 0 to n, so the order of this algorithm is O(n^2). This is both the best and worst case scenario because the code contains no way of determining if the array is already in order.
Well "I think the bubble sort would be the wrong way to go." :)