Perspective projection turns cube into weird tv shaped cuboid - c++

This is my perspective projection matrix code
inline m4
Projection(float WidthOverHeight, float FOV)
{
float Near = 1.0f;
float Far = 100.0f;
float f = 1.0f/(float)tan(DegToRad(FOV / 2.0f));
float fn = 1.0f / (Near - Far);
float a = f / WidthOverHeight;
float b = f;
float c = Far * fn;
float d = Near * Far * fn;
m4 Result =
{
{{a, 0, 0, 0},
{0, b, 0, 0},
{0, 0, c, -1},
{0, 0, d, 0}}
};
return Result;
}
And here is the main code
m4 Project = Projection(ar, 90);
m4 Move = {};
CreateMat4(&Move,
1, 0, 0, 0,
0, 1, 0, 0,
0, 0, 1, -2,
0, 0, 0, 1);
m4 Rotate = Rotation(Scale);
Scale += 0.01f;
m4 FinalTransformation = Project * Move * Rotate;
SetShaderUniformMat4("Project", FinalTransformation, ShaderProgram);
Here are some pictures of the cube rotating.
In the shader code I just multiply the transformation by the position (with the transformation being on the left).
I am not sure if it's helpful but here is the rotation code:
float c = cos(Angle);
float s = sin(Angle);
m4 R =
{
{{ c, 0, s, 0},
{ 0, 1, 0, 0},
{-s, 0, c, 0},
{ 0, 0, 0, 1}}
};
return R;
I tried multiplying the matricies in the shader code instead of on the c++ side but then everything disappeared.

OpenGL matrixes are stored with column major order. You have to read the columns from left to right. For example the 1st column of the matrix R is { c, 0, s, 0}, the 2nd one is { 0, 1, 0, 0} the 3rd is {-s, 0, c, 0} and the 4th is { 0, 0, 0, 1}. The lines in your code are actually columns (not rows).
Therefore you need to to transpose you projection matrix (Project) and translation matrix (Move).

Related

How to ensure that the vector in homogeneous coordinates is still a vector after transformation

I performed an MVP transformation on the vertices of the model. In theory, I must apply the inverse transpose matrix of the MVP transformation to the normal.
This is the derivation process:
(A, B, C) is the normal of the plane where the point (x, y, z) lies
For a vector, such as (x0, y0, z0), it is (x0, y0, z0, 0) in homogeneous coordinates. After transformation, it should still be a vector, like (x1, y1, z1, 0), This requires that the last row of the 4 * 4 transformation matrix is all 0 except for the elements in the last column, otherwise it will become (x1, y1, z1, n) after the transformation.
In fact, my MVP transformation matrix cannot satisfy this point after undergoing inverse transpose transformation.
Code:
Mat<4, 4> View(const Vec3& pos){
Mat<4, 4> pan{1, 0, 0, -pos.x,
0, 1, 0, -pos.y,
0, 0, 1, -pos.z,
0, 0, 0, 1};
Vec3 v = Cross(camera.lookAt, camera.upDirection).Normalize();
Mat<4, 4> rotate{v.x, v.y, v.z, 0,
camera.upDirection.x, camera.upDirection.y, camera.upDirection.z, 0,
-camera.lookAt.x, -camera.lookAt.y, -camera.lookAt.z, 0,
0, 0, 0, 1};
return rotate * pan;
}
Mat<4, 4> Projection(double near, double far, double fov, double aspectRatio){
double angle = fov * PI / 180;
double t = -near * tan(angle / 2);
double b = -t;
double r = t * aspectRatio;
double l = -r;
Mat<4, 4> zoom{2 / (r - l), 0, 0, 0,
0, 2 / (t - b), 0, 0,
0, 0, 2 / (near - far), 0,
0, 0, 0, 1};
Mat<4, 4> pan{1, 0, 0, -(l + r) / 2,
0, 1, 0, -(t + b) / 2,
0, 0, 1, -(near + far) / 2,
0, 0, 0, 1};
Mat<4, 4> extrusion{near, 0, 0, 0,
0, near, 0, 0,
0, 0, near + far, -near * far,
0, 0, 1, 0};
Mat<4, 4> ret = zoom * pan * extrusion;
return ret;
}
Mat<4, 4> modelMatrix = Mat<4, 4>::identity();
Mat<4, 4> viewMatrix = View(camera.position);
Mat<4, 4> projectionMatrix = Projection(-0.1, -50, camera.fov, camera.aspectRatio);
Mat<4, 4> mvp = projectionMatrix * viewMatrix * modelMatrix;
Mat<4, 4> mvpInverseTranspose = mvp.Inverse().Transpose();
mvp:
-2.29032 0 0.763441 -2.68032e-16
0 -2.41421 0 0
-0.317495 0 -0.952486 2.97455
0.316228 0 0.948683 -3.16228
mvpInverseTranspose:
-0.392957 0 0.130986 0
0 -0.414214 0 0
-4.99 0 -14.97 -4.99
-4.69377 0 -14.0813 -5.01
I seem to understand the problem. The lighting should be calculated in world space, so I only need to apply the inverse transpose matrix of the model transformation to the normal.

Incorrect render of a cube mesh in DirectX 11

I am practicing DirectX 11 following Frank Luna's book.
I have implemented a demo that renders a cube, but the result is not correct.
https://i.imgur.com/2uSkEiq.gif
As I hope you can see from the image (I apologize for the low quality), it seems like the camera is "trapped" inside the cube even when I move it away. There is also a camera frustum clipping problem.
I think the problem is therefore in the definition of the projection matrix.
Here is the cube vertices definition.
std::vector<Vertex> vertices =
{
{XMFLOAT3(-1, -1, -1), XMFLOAT4(1, 1, 1, 1)},
{XMFLOAT3(-1, +1, -1), XMFLOAT4(0, 0, 0, 1)},
{XMFLOAT3(+1, +1, -1), XMFLOAT4(1, 0, 0, 1)},
{XMFLOAT3(+1, -1, -1), XMFLOAT4(0, 1, 0, 1)},
{XMFLOAT3(-1, -1, +1), XMFLOAT4(0, 0, 1, 1)},
{XMFLOAT3(-1, +1, +1), XMFLOAT4(1, 1, 0, 1)},
{XMFLOAT3(+1, +1, +1), XMFLOAT4(0, 1, 1, 1)},
{XMFLOAT3(+1, -1, +1), XMFLOAT4(1, 0, 1, 1)},
};
Here is how I calculate the view and projection matrices.
void TestApp::OnResize()
{
D3DApp::OnResize();
mProj = XMMatrixPerspectiveFovLH(XM_PIDIV4, AspectRatio(), 1, 1000);
}
void TestApp::UpdateScene(float dt)
{
float x = mRadius * std::sin(mPhi) * std::cos(mTheta);
float y = mRadius * std::cos(mPhi);
float z = mRadius * std::sin(mPhi) * std::sin(mTheta);
XMVECTOR EyePosition = XMVectorSet(x, y, z, 1);
XMVECTOR FocusPosition = XMVectorZero();
XMVECTOR UpDirection = XMVectorSet(0, 1, 0, 0);
mView = XMMatrixLookAtLH(EyePosition, FocusPosition, UpDirection);
}
And here is how I update the camera position on mouse move.
glfwSetCursorPosCallback(mMainWindow, [](GLFWwindow* window, double xpos, double ypos)
{
TestApp* app = reinterpret_cast<TestApp*>(glfwGetWindowUserPointer(window));
if (glfwGetMouseButton(window, GLFW_MOUSE_BUTTON_LEFT) == GLFW_PRESS)
{
float dx = 0.25f * XMConvertToRadians(xpos - app->mLastMousePos.x);
float dy = 0.25f * XMConvertToRadians(ypos - app->mLastMousePos.y);
app->mTheta += dx;
app->mPhi += dy;
app->mPhi = std::clamp(app->mPhi, 0.1f, XM_PI - 0.1f);
}
else if (glfwGetMouseButton(window, GLFW_MOUSE_BUTTON_RIGHT) == GLFW_PRESS)
{
float dx = 0.05f * XMConvertToRadians(xpos - app->mLastMousePos.x);
float dy = 0.05f * XMConvertToRadians(ypos - app->mLastMousePos.y);
app->mRadius += (dx - dy);
app->mRadius = std::clamp(app->mRadius, 3.f, 15.f);
}
app->mLastMousePos = XMFLOAT2(xpos, ypos);
});
Thanks.
The root problem here was in the constant buffer vs. CPU update.
HLSL defaults to column-major matrix definitions per Microsoft Docs. DirectXMath uses row-major matrices, so you have to transpose while updating the Constant Buffer.
Alternatively, you can declare the HLSL matrix with the row_major keyword, #pragma pack_matrix, or the /Zpr compiler switch.

Do I need Bind Pose Bone Transformation for my mesh Animation?

I have a Hand mesh which I want to animate.
I have the Skeleton which can be hierarchically animated.
My mesh is also weighted in Blender. So each vertex has 4 associated bones to be affected by.
When I apply the Animation of my Skeleton to the mesh, the hierarchy is applied correctly. (so the hierarchy of the mesh, matches the hierarchy of the Skeleton).
So far so good, now question:
the fingers look to be stretched (its like the fingers smashed by a heavy door). Why?
Note: (I didnt apply the bind pose bone Transformation Matrix explicitly, but I read about it and I believe its functionality is there, in the hierarchical Transformation I have for my Skeleton).
If you need more clarification of the steps, please ask.
vector<glm::mat4> Posture1Hand::HierarchyApplied(HandSkltn HNDSKs){
vector <glm::mat4> Matrices;
Matrices.resize(HNDSKs.GetLimbNum());
//non Hierarchical Matrices
for (unsigned int i = 0; i < Matrices.size(); i++){
Matrices[i] = newPose[i].getModelMatSkltn(HNDSKs.GetLimb(i).getLwCenter());
}
for (unsigned int i = 0; i < Matrices.size(); i++){
vector<Limb*>childeren = HNDSKs.GetLimb(i).getChildren();
for (unsigned int j = 0; j < childeren.size(); j++){
Matrices[childeren[j]->getId()] = Matrices[i] * Matrices[childeren[j]->getId()];
}
}
return Matrices;
}
Here is my getModelMatSkltn method.
inline glm::mat4 getModelMatSkltn(const glm::vec3& RotationCentre) const{//to apply the rotation on the whole heirarchy
glm::mat4 posMatrix = { 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1 };
posMatrix = glm::translate(posMatrix, newPos);
glm::mat4 trMatrix = { 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1 };
glm::mat4 OriginTranslate = glm::translate(trMatrix, -RotationCentre);
glm::mat4 InverseTranslate = glm::translate(trMatrix, RotationCentre);
glm::mat4 rotXMatrix = { 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1 };
rotXMatrix = glm::rotate(rotXMatrix, glm::radians(newRot.x), glm::vec3(1, 0, 0));
glm::mat4 rotYMatrix = { 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1 };
rotYMatrix = glm::rotate(rotYMatrix, glm::radians(newRot.y), glm::vec3(0, 1, 0));
glm::mat4 rotZMatrix = { 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1 };
rotZMatrix = glm::rotate(rotZMatrix, glm::radians(newRot.z), glm::vec3(0, 0, 1));
glm::mat4 scaleMatric = { 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1 };
scaleMatric = glm::scale(scaleMatric, newScale);
glm::mat4 rotMatrix = rotZMatrix*rotYMatrix*rotXMatrix;
rotMatrix = InverseTranslate*rotMatrix*OriginTranslate;
return posMatrix*rotMatrix*scaleMatric;
}
and this is how I send 20 transformation Matrix (because of 20 joints in Hand) to GPU:
void GLShader::Update(const vector trMat, const GLCamera& camera){
vector<glm::mat4> MVP; MVP.resize(trMat.size());
for (unsigned int i = 0; i < trMat.size(); i++){
MVP[i] = camera.getViewProjection()* trMat[i];
}
glUniformMatrix4fv(newUniform[TRANSFORM_U], trMat.size(), GL_FALSE, &MVP[0][0][0]);//4 floating value
}
I guess one should be familiar with calculation of vertex position in the shader in order to be able to answer the question, but I send a part of my vertex shader too.
attribute vec3 position;
attribute vec2 texCoord;
attribute vec4 weight;
attribute vec4 weightInd;
uniform mat4 transform[20];//vector of uniform for 20 number of joints in my skleton
void main(){
mat4 WMat;//weighted matrix
float w;
int Index;
for (int i=0; i<4; i++){
Index=int(weightInd[i]);
w=weight[i];
WMat += w*transform[Index];
}
gl_Position= WMat*vec4(position, 1.0);
}

OpenGl custom rotation issue

I'm trying to implement my custom opengl Rotation around y axix. Here is my code;
void mglRotateY(float angle)
{
float radians = angle * (PI/180);
GLfloat t[4][4] =
{
{cosf(angle), 0, -sinf(angle),0},
{0, 1, 0, 0},
{sinf(angle), 0, cosf(angle), 0},
{0, 0, 0, 1}
}; //Rotation matrix y
glMultMatrixf(*t);
}
The effect is a rotation around y axis, but the degrees seems to not correspond.
Does anyone know why?
Use radians not angle when calculating the sine and cosine.
In your code you reference angle instead of radian. Also you may want to precalc the values, as you have 4 calculations to populate the matrix t
perhaps something like
void mglRotateY(float angle)
{
float radians = angle * (PI/180);
float cosVal = cosf(radians);
float sinVal = sinf(radians);
GLfloat t[4][4] =
{
{cosVal, 0, -sinVal,0},
{0, 1, 0, 0},
{sinVal, 0, cosVal, 0},
{0, 0, 0, 1}
}; //Rotation matrix y
glMultMatrixf(*t);
}

gluLookAt alternative doesn't work

I'm trying to calculate a lookat matrix myself, instead of using gluLookAt().
My problem is that my matrix doesn't work. using the same parameters on gluLookAt does work however.
my way of creating a lookat matrix:
Vector3 Eye, At, Up; //these should be parameters =)
Vector3 zaxis = At - Eye; zaxis.Normalize();
Vector3 xaxis = Vector3::Cross(Up, zaxis); xaxis.Normalize();
Vector3 yaxis = Vector3::Cross(zaxis, xaxis); yaxis.Normalize();
float r[16] =
{
xaxis.x, yaxis.x, zaxis.x, 0,
xaxis.y, yaxis.y, zaxis.y, 0,
xaxis.z, yaxis.z, zaxis.z, 0,
0, 0, 0, 1,
};
Matrix Rotation;
memcpy(Rotation.values, r, sizeof(r));
float t[16] =
{
1, 0, 0, 0,
0, 1, 0, 0,
0, 0, 1, 0,
-Eye.x, -Eye.y, -Eye.z, 1,
};
Matrix Translation;
memcpy(Translation.values, t, sizeof(t));
View = Rotation * Translation; // i tried reversing this as well (translation*rotation)
now, when i try to use this matrix be calling glMultMatrixf, nothing shows up in my engine, while using the same eye, lookat and up values on gluLookAt works perfect as i said before.
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glMultMatrixf(View);
the problem must be in somewhere in the code i posted here, i know the problem is not in my Vector3/Matrix classes, because they work fine when creating a projection matrix.
I assume you have a right handed coordinate system (it is default in OpenGL).
Try the following code. I think you forgot to normalize up and you have to put "-zaxis" in the matrix.
Vector3 Eye, At, Up; //these should be parameters =)
Vector3 zaxis = At - Eye; zaxis.Normalize();
Up.Normalize();
Vector3 xaxis = Vector3::Cross(Up, zaxis); xaxis.Normalize();
Vector3 yaxis = Vector3::Cross(zaxis, xaxis); yaxis.Normalize();
float r[16] =
{
xaxis.x, yaxis.x, -zaxis.x, 0,
xaxis.y, yaxis.y, -zaxis.y, 0,
xaxis.z, yaxis.z, -zaxis.z, 0,
0, 0, 0, 1,
};