Rotate list by the input number - list

when I try to input the function below. I come up with how to rotate the func when the input is positive, however, when it is negative, I don't how to solve it. The code is below:
-- rotate : Takes a list, and a value, and rotates the list around
-- by the number of elements indicated
rotate :: [a] -> Int -> [a]
rotate ls m = case ls of
[] -> []
x:xs
| m == 0 -> x:xs
| otherwise -> rotate (xs ++ [x]) (m-1)

A simple way to solve this is by seeing a rotation of m places to the left as a rotation of m mod n items to the right, with n the length of the list to rotate.
We thus can implement this as:
rotate :: [a] -> Int -> [a]
rotate xs m
| m < 0 = rotate xs (m `mod` length xs)
rotate ls m = case ls of
[] -> []
x:xs
| m == 0 -> x:xs
| otherwise -> rotate (xs ++ [x]) (m-1)
It might also be better to look for a way to rotate more efficiently than rotating one position at a time.

Related

Breaking a list into sublists of a specified size using foldr

I'm taking a functional programming class and I'm having a hard time leaving the OOP mindset behind and finding answers to a lot of my questions.
I have to create a function that takes an ordered list and converts it into specified size sublists using a variation of fold.
This isn't right, but it's what I have:
splitList :: (Ord a) => Int -> [a] -> [[a]]
splitList size xs
| [condition] = foldr (\item subList -> item:subList) [] xs
| otherwise =
I've been searching and I found out that foldr is the variation that works better for what I want, and I think I've understood how fold works, I just don't know how I'll set up the guards so that when length sublist == size haskell resets the accumulator and goes on to the next list.
If I didn't explain myself correctly, here's the result I want:
> splitList 3 [1..10]
> [[1,2,3],[4,5,6],[7,8,9],[10]]
Thanks!
While Fabián's and chi's answers are entirely correct, there is actually an option to solve this puzzle using foldr. Consider the following code:
splitList :: Int -> [a] -> [[a]]
splitList n =
foldr (\el acc -> case acc of
[] -> [[el]]
(h : t) | length h < n -> (el : h) : t
_ -> [el] : acc
) []
The strategy here is to build up a list by extending its head as long as its length is lesser than desired. This solution has, however, two drawbacks:
It does something slightly different than in your example;
splitList 3 [1..10] produces [[1],[2,3,4],[5,6,7],[8,9,10]]
It's complexity is O(n * length l), as we measure length of up to n–sized list on each of the element which yields linear number of linear operations.
Let's first take care of first issue. In order to start counting at the beginning we need to traverse the list left–to–right, while foldr does it right–to–left. There is a common trick called "continuation passing" which will allow us to reverse the direction of the walk:
splitList :: Int -> [a] -> [[a]]
splitList n l = map reverse . reverse $
foldr (\el cont acc ->
case acc of
[] -> cont [[el]]
(h : t) | length h < n -> cont ((el : h) : t)
_ -> cont ([el] : acc)
) id l []
Here, instead of building the list in the accumulator we build up a function that will transform the list in the right direction. See this question for details. The side effect is reversing the list so we need to counter that by reverse application to the whole list and all of its elements. This goes linearly and tail-recursively tho.
Now let's work on the performance issue. The problem was that the length is linear on casual lists. There are two solutions for this:
Use another structure that caches length for a constant time access
Cache the value by ourselves
Because I guess it is a list exercise, let's go for the latter option:
splitList :: Int -> [a] -> [[a]]
splitList n l = map reverse . reverse . snd $
foldr (\el cont (countAcc, listAcc) ->
case listAcc of
[] -> cont (countAcc, [[el]])
(h : t) | countAcc < n -> cont (countAcc + 1, (el : h) : t)
(h : t) -> cont (1, [el] : (h : t))
) id l (1, [])
Here we extend our computational state with a counter that at each points stores the current length of the list. This gives us a constant check on each element and results in linear time complexity in the end.
A way to simplify this problem would be to split this into multiple functions. There are two things you need to do:
take n elements from the list, and
keep taking from the list as much as possible.
Lets try taking first:
taking :: Int -> [a] -> [a]
taking n [] = undefined
taking n (x:xs) = undefined
If there are no elemensts then we cannot take any more elements so we can only return an empty list, on the other hand if we do have an element then we can think of taking n (x:xs) as x : taking (n-1) xs, we would only need to check that n > 0.
taking n (x:xs)
| n > 0 = x :taking (n-1) xs
| otherwise = []
Now, we need to do that multiple times with the remainder so we should probably also return whatever remains from taking n elements from a list, in this case it would be whatever remains when n = 0 so we could try to adapt it to
| otherwise = ([], x:xs)
and then you would need to modify the type signature to return ([a], [a]) and the other 2 definitions to ensure you do return whatever remained after taking n.
With this approach your splitList would look like:
splitList n [] = []
splitList n l = chunk : splitList n remainder
where (chunk, remainder) = taking n l
Note however that folding would not be appropriate since it "flattens" whatever you are working on, for example given a [Int] you could fold to produce a sum which would be an Int. (foldr :: (a -> b -> b) -> b -> [a] -> b or "foldr function zero list produces an element of the function return type")
You want:
splitList 3 [1..10]
> [[1,2,3],[4,5,6],[7,8,9],[10]]
Since the "remainder" [10] in on the tail, I recommend you use foldl instead. E.g.
splitList :: (Ord a) => Int -> [a] -> [[a]]
splitList size xs
| size > 0 = foldl go [] xs
| otherwise = error "need a positive size"
where go acc x = ....
What should go do? Essentially, on your example, we must have:
splitList 3 [1..10]
= go (splitList 3 [1..9]) 10
= go [[1,2,3],[4,5,6],[7,8,9]] 10
= [[1,2,3],[4,5,6],[7,8,9],[10]]
splitList 3 [1..9]
= go (splitList 3 [1..8]) 9
= go [[1,2,3],[4,5,6],[7,8]] 9
= [[1,2,3],[4,5,6],[7,8,9]]
splitList 3 [1..8]
= go (splitList 3 [1..7]) 8
= go [[1,2,3],[4,5,6],[7]] 8
= [[1,2,3],[4,5,6],[7,8]]
and
splitList 3 [1]
= go [] 1
= [[1]]
Hence, go acc x should
check if acc is empty, if so, produce a singleton list [[x]].
otherwise, check the last list in acc:
if its length is less than size, append x
otherwise, append a new list [x] to acc
Try doing this by hand on your example to understand all the cases.
This will not be efficient, but it will work.
You don't really need the Ord a constraint.
Checking the accumulator's first sublist's length would lead to information flow from the right and the first chunk ending up the shorter one, potentially, instead of the last. Such function won't work on infinite lists either (not to mention the foldl-based variants).
A standard way to arrange for the information flow from the left with foldr is using an additional argument. The general scheme is
subLists n xs = foldr g z xs n
where
g x r i = cons x i (r (i-1))
....
The i argument to cons will guide its decision as to where to add the current element into. The i-1 decrements the counter on the way forward from the left, instead of on the way back from the right. z must have the same type as r and as the foldr itself as a whole, so,
z _ = [[]]
This means there must be a post-processing step, and some edge cases must be handled as well,
subLists n xs = post . foldr g z xs $ n
where
z _ = [[]]
g x r i | i == 1 = cons x i (r n)
g x r i = cons x i (r (i-1))
....
cons must be lazy enough not to force the results of the recursive call prematurely.
I leave it as an exercise finishing this up.
For a simpler version with a pre-processing step instead, see this recent answer of mine.
Just going to give another answer: this is quite similar to trying to write groupBy as a fold, and actually has a couple gotchas w.r.t. laziness that you have to bear in mind for an efficient and correct implementation. The following is the fastest version I found that maintains all the relevant laziness properties:
splitList :: Int -> [a] -> [[a]]
splitList m xs = snd (foldr f (const ([],[])) xs 1)
where
f x a i
| i <= 1 = let (ys,zs) = a m in ([], (x : ys) : zs)
| otherwise = let (ys,zs) = a (i-1) in (x : ys , zs)
The ys and the zs gotten from the recursive processing of the rest of list indicate the first and the rest of the groups into which the rest of the list will be broken up, by said recursive processing. So we either prepend the current element before that first subgroup if it is still shorter than needed, or we prepend before the first subgroup when it is just right and start a new, empty subgroup.

Implementing Haskell's `take` function using `foldl`

Implementing Haskell's take and drop functions using foldl.
Any suggestions on how to implement take and drop functions using foldl ??
take x ls = foldl ???
drop x ls = foldl ???
i've tried these but it's showing errors:
myFunc :: Int -> [a] -> [a]
myFunc n list = foldl func [] list
where
func x y | (length y) > n = x : y
| otherwise = y
ERROR PRODUCED :
*** Expression : foldl func [] list
*** Term : func
*** Type : a -> [a] -> [a]
*** Does not match : [a] -> [a] -> [a]
*** Because : unification would give infinite type
Can't be done.
Left fold necessarily diverges on infinite lists, but take n does not. This is so because left fold is tail recursive, so it must scan through the whole input list before it can start the processing.
With the right fold, it's
ntake :: Int -> [a] -> [a]
ntake 0 _ = []
ntake n xs = foldr g z xs 0
where
g x r i | i>=n = []
| otherwise = x : r (i+1)
z _ = []
ndrop :: Int -> [a] -> [a]
ndrop 0 xs = xs
ndrop n xs = foldr g z xs 0 xs
where
g x r i xs#(_:t) | i>=n = xs
| otherwise = r (i+1) t
z _ _ = []
ndrop implements a paramorphism nicely and faithfully, up to the order of arguments to the reducer function g, giving it access to both the current element x and the current list node xs (such that xs == (x:t)) as well as the recursive result r. A catamorphism's reducer has access only to x and r.
Folds usually encode catamorphisms, but this shows that right fold can be used to code up a paramorphism just as well. It's universal that way. I think it is beautiful.
As for the type error, to fix it just switch the arguments to your func:
func y x | ..... = .......
The accumulator in the left fold comes as the first argument to the reducer function.
If you really want it done with the left fold, and if you're really sure the lists are finite, two options:
ltake n xs = post $ foldl' g (0,id) xs
where
g (i,f) x | i < n = (i+1, f . (x:))
| otherwise = (i,f)
post (_,f) = f []
rltake n xs = foldl' g id xs r n
where
g acc x = acc . f x
f x r i | i > 0 = x : r (i-1)
| otherwise = []
r _ = []
The first counts from the left straight up, potentially stopping assembling the prefix in the middle of the full list traversal that it does carry to the end nevertheless, being a left fold.
The second also traverses the list in full turning it into a right fold which then gets to work counting down from the left again, being able to actually stop working as soon as the prefix is assembled.
Implementing drop this way is bound to be (?) even clunkier. Could be a nice exercise.
I note that you never specified the fold had to be over the supplied list. So, one approach that meets the letter of your question, though probably not the spirit, is:
sillytake :: Int -> [a] -> [a]
sillytake n xs = foldl go (const []) [1..n] xs
where go f _ (x:xs) = x : f xs
go _ _ [] = []
sillydrop :: Int -> [a] -> [a]
sillydrop n xs = foldl go id [1..n] xs
where go f _ (_:xs) = f xs
go _ _ [] = []
These each use left folds, but over the list of numbers [1..n] -- the numbers themselves are ignored, and the list is just used for its length to build a custom take n or drop n function for the given n. This function is then applied to the original supplied list xs.
These versions work fine on infinite lists:
> sillytake 5 $ sillydrop 5 $ [1..]
[6,7,8,9,10]
Will Ness showed a nice way to implement take with foldr. The least repulsive way to implement drop with foldr is this:
drop n0 xs0 = foldr go stop xs0 n0
where
stop _ = []
go x r n
| n <= 0 = x : r 0
| otherwise = r (n - 1)
Take the efficiency loss and rebuild the whole list if you have no choice! Better to drive a nail in with a screwdriver than drive a screw in with a hammer.
Both ways are horrible. But this one helps you understand how folds can be used to structure functions and what their limits are.
Folds just aren't the right tools for implementing drop; a paramorphism is the right tool.
You are not too far. Here are a pair of fixes.
First, note that func is passed the accumulator first (i.e. a list of a, in your case) and then the list element (an a). So, you need to swap the order of the arguments of func.
Then, if we want to mimic take, we need to add x when the length y is less than n, not greater!
So we get
myFunc :: Int -> [a] -> [a]
myFunc n list = foldl func [] list
where
func y x | (length y) < n = x : y
| otherwise = y
Test:
> myFunc 5 [1..10]
[5,4,3,2,1]
As you can see, this is reversing the string. This is because we add x at the front (x:y) instead of at the back (y++[x]). Or, alternatively, one could use reverse (foldl ....) to fix the order at the end.
Also, since foldl always scans the whole input list, myFunc 3 [1..1000000000] will take a lot of time, and myFunc 3 [1..] will fail to terminate. Using foldr would be much better.
drop is more tricky to do. I don't think you can easily do that without some post-processing like myFunc n xs = fst (foldl ...) or making foldl return a function which you immediately call (which is also a kind of post-processing).

Rotating a list about an index

I have a list, lets say [1, 2, 3, 4, 5] and I have to rotate the list at an index.
For example:
rotate 2 [1, 2, 3, 4, 5] gives [3, 4, 5, 1, 2]
Through researching online, I came across the cycle function which gets around the problem of losing the list when you drop it, but I feel as if I would benefit far more from producing my own working solution in terms of understanding, even if it is less efficient than a library function. The working solution I have is below:
rotate :: Int -> [a] -> [a]
rotate _ [] = []
rotate n l = take (length l) $ drop n (cycle l)
Could you suggest, without code, alternative ways of achieving this solution so I can have a crack at those? As I'm stuck without ideas now I have seen this way of doing it!
Cheers
You can simply do:
rotate n l = drop n l ++ take n l
to achieve the same without cycle.
Since here already exists a solution with code, I'll post another version:
rotate :: Int -> [a] -> [a]
rotate n [] = []
rotate n xs = xs2 ++ xs1
where (xs1, xs2) = splitAt (n `rem` length xs) xs
Some tests:
main = do
print $ rotate 0 [1..5] -- [1,2,3,4,5]
print $ rotate 2 [1..5] -- [3,4,5,1,2]
print $ rotate 5 [1..5] -- [1,2,3,4,5]
print $ rotate 7 [1..5] -- [3,4,5,1,2]
...what about straightforward solution?
rotate :: Int -> [a] -> [a]
rotate 0 xs = xs
rotate _ [] = []
rotate n (x:xs) = rotate (pred n) (xs ++ [x])

Rotate list in OCaml

I want to write a function rotate n l that returns a new list containing the same elements as l, "rotated" n times to the right. For example,
rotate 0 [1;2;3;4] should return [1;2;3;4]
rotate 1 [1;2;3;4] should return [4;1;2;3]
rotate 2 [1;2;3;4] should return [3;4;1;2]
rotate 3 [1;2;3;4] should return [2;3;4;1]
rotate 4 [1;2;3;4] should return [1;2;3;4]
etc.
The behavior of rotate n for n less than 0 should be the same as for n equal to 0.
I want to write this without using the list concatenation operator # from Pervasives.
Update: Here is the rotation function I wrote:
let rot1 l =
let rec iterate acc = function
[] -> []
| [x] -> x :: List.rev acc
| x :: l -> iterate (x :: acc) l
in
iterate [] l;;
But I want it to do the same thing without using List.rev.
Is there a way to do this?
Agree with Jeffrey, show us what you tried. Here's a small hint in case you need to get started. If you can write a function that performs only 1 rotation i.e. equivalent to rotate 1 l. (I call it one_rot). Then rotate can be easily defined as:
let rec rotate n l =
match n with
| 0 -> l
| _ -> rotate (n-1) (one_rot l)
Your solution is perfectly fine for me. Not sure what you have against List.rev but here's a completely stand alone one_rot. Note that we have to sacrifice tail recursion. You could probably make this quite a bit shorter too:
let rec last = function
| [] -> assert false
| [x] -> x
| x::xs -> last xs
let rec init = function
| [] -> []
| [x] -> []
| x::xs -> x::(init xs)
let one_rot l = (last l)::(init l)
This problem can be solved by combining these 3 functions:
cat(skip(list, places), take(list, places))
The implementation looks like:
let rec cat = function
([], y) -> y
| (x::xs, y) -> x :: cat (xs, y)
let rec skip = function
([], _) -> []
| (_::xs as xs1, c) -> if c > 0 then skip(xs, c - 1) else xs1
let rec take = function
([], _) -> []
| (x::xs, c) -> if c > 0 then x :: take(xs, c - 1) else []
let cycle l i =
cat (skip (l, i), take (l, i))
cycle ([1;2;3;4;5;6], 3);;
val it : int list = [4; 5; 6; 1; 2; 3]

Rotate char Matrix image in Haskell

I'm currently working on an assignment for my class and one of the requirements is to create a function called rotate90. This function basically takes in a [[Char]] and rotates it 90 degrees clockwise.
For example:
type Picture = [[Char]]
pic :: Picture
pic = [ "123",
"456",
"789" ]
turns into:
[ "741",
"852",
"963" ]
My code thus far looks something like this:
rotate90 :: Picture -> Picture
rotate90 (x:xs)
| (x:xs) == [] = []
| xs == [] && x /= [] = formRow ([[]]) (formCol x)
| xs /= [] = formRow (rotate90 xs) (formCol x)
formCol :: [Char] -> [[Char]]
formCol y = [[a] | a <- y]
formRow :: [[Char]] -> [[Char]] -> [[Char]]
formRow (x:xs) (y:ys)
| xs == [] || ys == [] = (x++y):[]
| otherwise = (x++y):formRow xs ys
Right now it only prints the first "line" of the matrix, which, from the example, is "741".
How do I get it to print the rest of it?
A simple implementation in terms of Data.List.transpose is
-- | Rotate clockwise
cw = map reverse . transpose
-- | Rotate counter-clockwise
cw = reverse . transpose
Transposing your original picture yields
147
258
369
and reversing each row results in the rotated picture
741
852
963
In general, you can express mirroring and rotating in arbitrary directions using combinations of the following three functions:
transpose
map reverse -- mirror left <-> right
reverse -- mirror top <-> bottom