Using interrupts with DPDK - dpdk

I'm trying to enable interrupts in DPDK so that my network receive thread can sleep on an epoll until packets arrive. I am using the igb_uio and ixgbe drivers with an Intel 82599ES 10Gbps NIC.
I'm doing roughly the following to enable the interrupts, but the epoll never indicates that packets have arrived. The thread only handles packets when the epoll times out. I don't even see interrupts arrive from the device when monitoring /proc/interrupts.
port_conf.intr_conf.rxq = 1;
...
CHECK_EQ(rte_eth_dev_rx_intr_ctl_q(kPort, kQueue, RTE_EPOLL_PER_THREAD,
RTE_INTR_EVENT_ADD, nullptr),
0);
CHECK_EQ(rte_eth_dev_rx_intr_enable(kPort, kQueue), 0);
...
rte_epoll_event event;
while (true) {
int n = rte_epoll_wait(RTE_EPOLL_PER_THREAD, &event, /*maxevents=*/1,
/*timeout=*/1000);
if (n == 0) {
// Timeout expired.
} else {
// Received RX interrupt.
}
}
Given that I don't see anything coming through in /proc/interrupts, I am going to start digging through the ixgbe driver. However, I wanted to ask here first to see if my setup is missing anything obvious since this is supposed to be easy to do. I based my code closely on the l3fwd-power example.

I talked with Dmitry Kozlyuk who pointed out that the ixgbe driver requires interrupts to be re-armed before each call to rte_epoll_wait. So rte_eth_dev_rx_intr_enable should be called before each call to rte_epoll_wait in the while loop:
rte_epoll_event event;
while (true) {
CHECK_EQ(rte_eth_dev_rx_intr_enable(kPort, kQueue), 0);
int n = rte_epoll_wait(RTE_EPOLL_PER_THREAD, &event, /*maxevents=*/1,
/*timeout=*/1000);
if (n == 0) {
// Timeout expired.
} else {
// Received RX interrupt.
}
}
You need to do the re-arm before each call to rte_poll_wait for some other drivers, too, such as vmxnet3.

Related

ESP8266-01 does not react to AT Commands over UART with TM4C123GH6PM

I am trying to connect my TM4C123GH6PM Microcontroller from Texas Instruments with my Smartphone and use it to control an alarm clock and LED Lights. (the LEDs are controlled over a Transistor, which is controlled over an GPIO Pin).
I have some experience with coding in C++ and the TM4C123GH6PM, but I am still learning a lot. So please excuse some foolish mistakes I might have made.
I want to connect the ESP8266 with the Microcontroller using UART and the TivaWare Framework.
I have written some code and my UART works correctly (I tested it by sending chars from UART 4 to 3).
According to the AT commands of ESP8266 It should respond to "AT" with "OK". But whenever I send something to the ESP it responds with exactly what I sent to it. I checked the wiring, and that's not The Issue. Or at least I think so. Please correct me, if the wiring is wrong.
ESP -> TM4C123GH6PM:
GND -> GND
VCC -> 3.3V
Tx -> Rx (UART3 / PC6)
Rx -> Tx (UART4 / PC5)
CH_PD -> 3.3V
I also checked for the power consumption of the ESP. Everything is powered by the USB-port of my laptop, since that helps keep the cable mess down. I monitor the power consumption with (https://www.amazon.de/gp/product/B07C8CM5TG/ref=ppx_yo_dt_b_asin_title_o08_s00?ie=UTF8&psc=1). The ESP is drawing about 150mA from the computer, but the port can provide a lot more. I checked with some LEDs and 400mA is not a problem.
Can anyone help me? I am working on this now for over two days and can't find a Solution. What is the Problem with the ESP not responding correctly to the AT command? The blue light is one, when the code is running.
PS: The attached code contains also code for the alarm clock control and LEDs. I attached it, since it could be part of the problem, but some of it is commented out and most of it is not used.
#include<stdint.h>
#include<stdbool.h>
#include"inc/hw_ints.h"
#include"inc/hw_memmap.h"
#include"inc/hw_types.h"
#include"driverlib/gpio.h"
#include"driverlib/sysctl.h"
#include"driverlib/timer.h"
#include"driverlib/interrupt.h"
#include"driverlib/uart.h"
#include"driverlib/pin_map.h"
#include "driverlib/rom.h"
// stores the time since system start in ms
uint32_t systemTime_ms;
//bools or controling the alarm clock and LEDS
bool an_aus = false;
bool alarm_clock = false;
void InterruptHandlerTimer0A (void)
{
// Clear the timer interrupt flag to avoid calling it up again directly
TimerIntClear(TIMER0_BASE, TIMER_TIMA_TIMEOUT);
// increase the ms counter by 1 ms
systemTime_ms++;
}
void clockSetup(void)
{
uint32_t timerPeriod;
//configure clock
SysCtlClockSet(SYSCTL_SYSDIV_5|SYSCTL_USE_PLL|SYSCTL_XTAL_16MHZ| SYSCTL_OSC_MAIN);
//activate peripherals for the timer
SysCtlPeripheralEnable(SYSCTL_PERIPH_TIMER0);
// configure timers as 32 bit timers in periodic mode
TimerConfigure(TIMER0_BASE, TIMER_CFG_PERIODIC);
// set the variable timerPeriod to the number of periods to generate a timeout every ms
timerPeriod = (SysCtlClockGet()/1000);
// pass the variable timerPeriod to the TIMER-0-A
TimerLoadSet(TIMER0_BASE, TIMER_A, timerPeriod-1);
// register the InterruptHandlerTimer0A function as an interrupt service routine
TimerIntRegister(TIMER0_BASE, TIMER_A, &(InterruptHandlerTimer0A));
// activate the interrupt on TIMER-0-A
IntEnable(INT_TIMER0A);
// generate an interrupt when TIMER-0-A generates a timeout
TimerIntEnable(TIMER0_BASE, TIMER_TIMA_TIMEOUT);
// all interrupts are activated
IntMasterEnable();
// start the timer
TimerEnable(TIMER0_BASE, TIMER_A);
}
void UART (void)
{
//configure UART 4:
SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOC);
SysCtlPeripheralEnable(SYSCTL_PERIPH_UART4);
while(!SysCtlPeripheralReady(SYSCTL_PERIPH_UART4));
//GPIO pins for transmitting and receiving
GPIOPinConfigure(GPIO_PC4_U4RX);
GPIOPinConfigure(GPIO_PC5_U4TX);
GPIOPinTypeUART(GPIO_PORTC_BASE, GPIO_PIN_4 | GPIO_PIN_5);
//configure UART 8Bit, no parity, baudrat 38400
UARTConfigSetExpClk(UART4_BASE, SysCtlClockGet(), 38400, (UART_CONFIG_WLEN_8 | UART_CONFIG_STOP_ONE | UART_CONFIG_PAR_NONE));
//configure UART 3:
SysCtlPeripheralEnable(SYSCTL_PERIPH_UART3);
while(!SysCtlPeripheralReady(SYSCTL_PERIPH_UART3));
GPIOPinConfigure(GPIO_PC6_U3RX);
GPIOPinConfigure(GPIO_PC7_U3TX);
GPIOPinTypeUART(GPIO_PORTC_BASE, GPIO_PIN_6 | GPIO_PIN_7);
UARTConfigSetExpClk(UART3_BASE, SysCtlClockGet(), 38400, (UART_CONFIG_WLEN_8 | UART_CONFIG_STOP_ONE | UART_CONFIG_PAR_NONE));
}
void delay_ms(uint32_t waitTime)
{
// Saves the current system time in ms
uint32_t aktuell = systemTime_ms;
// Wait until the current system time corresponds to the sum of the time at the start of the delay and the waiting time
while(aktuell + waitTime > systemTime_ms);
}
void ex_int_handler(void)
{
// press the button to start timer for alarm clock
alarm_clock = true;
GPIOIntClear(GPIO_PORTF_BASE,GPIO_PIN_4);
}
int main(void)
{
//Peripherals for LED and GPIO
SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOB);
SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOF);
//UART
UART();
//Timer
clockSetup();
// button
GPIOPinTypeGPIOInput(GPIO_PORTF_BASE,GPIO_PIN_4);
GPIOPadConfigSet(GPIO_PORTF_BASE,GPIO_PIN_4,GPIO_STRENGTH_2MA,GPIO_PIN_TYPE_STD_WPU);
//OnboardLED
GPIOPinTypeGPIOOutput(GPIO_PORTF_BASE,GPIO_PIN_1);
GPIOPinTypeGPIOOutput(GPIO_PORTF_BASE,GPIO_PIN_3);
//Interrupt Timer
GPIOIntDisable(GPIO_PORTF_BASE,GPIO_PIN_4);
GPIOIntClear(GPIO_PORTF_BASE,GPIO_PIN_4);
GPIOIntTypeSet(GPIO_PORTF_BASE,GPIO_PIN_4,GPIO_FALLING_EDGE);
GPIOIntRegister(GPIO_PORTF_BASE,ex_int_handler);
GPIOIntEnable(GPIO_PORTF_BASE,GPIO_PIN_4);
//Transistor Gate
GPIOPinTypeGPIOOutput(GPIO_PORTB_BASE,GPIO_PIN_0);
//GPIOPadConfigSet(GPIO_PORTB_BASE,GPIO_PIN_0,GPIO_STRENGTH_6MA,GPIO_PIN_TYPE_STD_WPU);
//debugging only: save all the received data from the ESP in an array to look at while debugging
int32_t data[20] = {0};
int32_t j = 0;
//Code for debugging the UART and ESP8266
while(1){
//Checks for Data in the FIFO
while(!UARTCharsAvail(UART4_BASE));
//send AT-command to ESP8266
UARTCharPut(UART4_BASE, 'A');
while(UARTBusy(UART4_BASE));
UARTCharPut(UART4_BASE, 'T');
while(UARTBusy(UART4_BASE));
if(UARTCharsAvail(UART3_BASE))
{
while(UARTCharsAvail(UART3_BASE))
{
//Read data from the FIFO in UART3 -> received from ESP8266
data[j] = UARTCharGet(UART3_BASE);
j++;
}
}
//clear array when its full
if (j >= 20)
{
j = 0;
for(int32_t a = 0; a <21; a++)
{
data[a] = 0;
}
}
}
//code to run the alarm clock and leds
/*
while(1)
{
if (alarm_clock)
{
GPIOPinWrite(GPIO_PORTF_BASE,GPIO_PIN_3,GPIO_PIN_3);
//Wait
delay_ms(30600000);
GPIOPinWrite(GPIO_PORTB_BASE,GPIO_PIN_0,GPIO_PIN_0);
alarm_clock = false;
GPIOPinWrite(GPIO_PORTF_BASE,GPIO_PIN_3,0x00);
//Start Red LED blinking when it is finished
while(1)
{
GPIOPinWrite(GPIO_PORTF_BASE,GPIO_PIN_1,GPIO_PIN_1);
delay_ms(1000);
GPIOPinWrite(GPIO_PORTF_BASE,GPIO_PIN_1,0x00);
delay_ms(1000);
}
}
}
*/
}
According to the AT commands of ESP8266 It should respond to "AT" with
"OK". But whenever I send something to the ESP it responds with
exactly what I sent to it
Modems with AT Commands commonly ship with the echo mode turned on, so that when you are interacting with it manually through serial port, it will echo the characters you sent first, and then send the reply.
So, when you are automating the process, you first send the characters, then wait for the reply until you reach a '\r'. Well, you are reaching a '\r', but its the one from the echo. You might have some other characters next. You send AT, you should receive AT first, then you have the OK.
To solve this problem, you should turn echo mode off.
The command to turn off echo is ATE0.

UDP sendto packet sent signal

I'm developing an application that sends a lot of messages by an UDP connection.
Sometimes some packets were lost and after some tests I conclude that the socket was busy.
Thus I put a tiny sleep between calls to sendto API trying to prevent a new send before the last one ends.
It worked, but I want to use a better approach, like treat a signal or something else which point me that the previous send was done.
Is there anything like that?
I'm using C++ language on a Linux environment.
The below code snippet shows what I'm doing:
#define MAX_SIZE 4096
string long_msg = GetLongMessage();
if (!long_msg.empty()) {
long int to_send = long_msg.size();
while (to_send) {
long int ret = sendto(socket_fd,
&long_msg[long_msg.size() - to_send],
(to_send > MAX_SIZE ? MAX_SIZE : to_send), 0,
reinterpret_cast<struct sockaddr*>(&addr_client),
addr_client_len);
if (ret > 0) {
to_send -= ret;
sleep(10);
} else {
// Log error
}
}
}
Edit: The intent of this question is to know a way to detect if a UDP socket is busy due a previous send call and not discuss TCP vs UDP advantages/disadvantages.

How do I interrupt xcb_wait_for_event?

In a separate thread (std::thread), I have an event loop that waits on xcb_wait_for_event. When the program exits, I'd like to shut things down nicely by interrupting (I have a solution that sets a thread-local variable, and checkpoints in the loop throw an exception), and then joining my event thread into the main thread. The issue is xcb_wait_for_event; I need a way to return from it early, or I need an alternative to the function.
Can anyone suggest a solution? Thanks for your help!
I believe I've come up with a suitable solution. I've replaced xcb_wait_for_event with the following function:
xcb_generic_event_t *WaitForEvent(xcb_connection_t *XConnection)
{
xcb_generic_event_t *Event = nullptr;
int XCBFileDescriptor = xcb_get_file_descriptor(XConnection);
fd_set FileDescriptors;
struct timespec Timeout = { 0, 250000000 }; // Check for interruptions every 0.25 seconds
while (true)
{
interruptible<std::thread>::check();
FD_ZERO(&FileDescriptors);
FD_SET(XCBFileDescriptor, &FileDescriptors);
if (pselect(XCBFileDescriptor + 1, &FileDescriptors, nullptr, nullptr, &Timeout, nullptr) > 0)
{
if ((Event = xcb_poll_for_event(XConnection)))
break;
}
}
interruptible<std::thread>::check();
return Event;
}
Making use of xcb_get_file_descriptor, I can use pselect to wait until there are new events, or until a specified timeout has occurred. This method incurs negligible additional CPU costs, resting at a flat 0.0% (on this i7). The only "downside" is having to wait a maximum of 0.25 seconds to check for interruptions, and I'm sure that limit could be safely lowered.
A neater way would be to do something like this (the code snippet is extracted from some code I am currently working on):
void QXcbEventQueue::sendCloseConnectionEvent() const {
// A hack to close XCB connection. Apparently XCB does not have any APIs for this?
xcb_client_message_event_t event;
memset(&event, 0, sizeof(event));
event.response_type = XCB_CLIENT_MESSAGE;
event.format = 32;
event.sequence = 0;
event.window = m_connection->clientLeader();
event.type = m_connection->atom(QXcbAtom::_QT_CLOSE_CONNECTION);
event.data.data32[0] = 0;
xcb_connection_t *c = m_connection->xcb_connection();
xcb_send_event(c, false, m_connection->clientLeader(),
XCB_EVENT_MASK_NO_EVENT, reinterpret_cast<const char *>(&event));
xcb_flush(c); }
For _QT_CLOSE_CONNECTION use your own atom to signal an exit and in my case clientLeader() is some invisible window that is always present on my X11 connection. If you don't have any invisible windows that could be reused for this purpose, create one :)
With this you can terminate the thread with xcb_wait_for_event when you see this special event arriving.

Linux poll on serial transmission end

I'm implementing RS485 on arm developement board using serial port and gpio for data enable.
I'm setting data enable to high before sending and I want it to be set low after transmission is complete.
It can be simply done by writing:
//fd = open("/dev/ttyO2", ...);
DataEnable.Set(true);
write(fd, data, datalen);
tcdrain(fd); //Wait until all data is sent
DataEnable.Set(false);
I wanted to change from blocking-mode to non-blocking and use poll with fd. But I dont see any poll event corresponding to 'transmission complete'.
How can I get notified when all data has been sent?
System: linux
Language: c++
Board: BeagleBone Black
I don't think it's possible. You'll either have to run tcdrain in another thread and have it notify the the main thread, or use timeout on poll and poll to see if the output has been drained.
You can use the TIOCOUTQ ioctl to get the number of bytes in the output buffer and tune the timeout according to baud rate. That should reduce the amount of polling you need to do to just once or twice. Something like:
enum { writing, draining, idle } write_state;
while(1) {
int write_event, timeout = -1;
...
if (write_state == writing) {
poll_fds[poll_len].fd = write_fd;
poll_fds[poll_len].event = POLLOUT;
write_event = poll_len++
} else if (write == draining) {
int outq;
ioctl(write_fd, TIOCOUTQ, &outq);
if (outq == 0) {
DataEnable.Set(false);
write_state = idle;
} else {
// 10 bits per byte, 1000 millisecond in a second
timeout = outq * 10 * 1000 / baud_rate;
if (timeout < 1) {
timeout = 1;
}
}
}
int r = poll(poll_fds, poll_len, timeout);
...
if (write_state == writing && r > 0 && (poll_fds[write_event].revent & POLLOUT)) {
DataEnable.Set(true); // Gets set even if already set.
int n = write(write_fd, write_data, write_datalen);
write_data += n;
write_datalen -= n;
if (write_datalen == 0) {
state = draining;
}
}
}
Stale thread, but I have been working on RS-485 with a 16550-compatible UART under Linux and find
tcdrain works - but it adds a delay of 10 to 20 msec. Seems to be polled
The value returned by TIOCOUTQ seems to count bytes in the OS buffer, but NOT bytes in the UART FIFO, so it may underestimate the delay required if transmission has already started.
I am currently using CLOCK_MONOTONIC to timestamp each send, calculating when the send should be complete, when checking that time against the next send, delaying if necessary. Sucks, but seems to work

Waiting for interrupt-loop

I need a code construction for my project which waits for some time, but when there is an interrupt (e.g. incoming udp packets) it leaves this loop, does something, and after this restart the waiting.
How can I implement this? My first idea is using while(wait(2000)), but wait is a void construct...
Thank you!
I would put the loop inside a function
void awesomeFunction() {
bool loop = true;
while (loop) {
wait(2000);
...
...
if (conditionMet)
loop = false;
}
}
Then i would put this function inside another loop
while (programRunning) {
awesomeFunction();
/* Loop ended, do stuff... */
}
There are a few things I am not clear about from the question. Is this a multi-threaded application, where one thread handles (say) the UDP packets, and the other waits for the event, or is this single-threaded? You also didn't mention what operating system this is, which is relevant. So I am going to assume Linux, or something that supports the poll API, or something similar (like select).
Let's assume a single threaded application that waits for UDP packets. The main idea is that once you have the socket's file descriptor, you have an infinite loop on a call to poll. For instance:
#include <poll.h>
// ...
void handle_packets() {
// m_fd was created with `socket` and `bind` or `connect`.
struct pollfd pfd = {.fd = m_fd, .events = POLLIN};
int timeout;
timeout = -1; // Wait indefinitely
// timeout = 2000; // Wait for 2 seconds
while (true) {
pfd.revents = 0;
poll(&pfd, 1, timeout);
if ((pfd.revents & POLLIN) != 0) {
handle_single_packet(); // Method to actually read and handle the packet
}
if ((pfd.revents & (POLLERR | POLLHUP)) != 0) {
break; // return on error or hangup
}
}
}
A simple example of select can be found here.
If you are looking at a multi-threaded application, trying to communicate between the two threads, then there are several options. Two of which are:
Use the same mechanism above. The file descriptor is the result of a call to pipe. The thread sleeping gets the read end of the pipe. The thread waking get the write end, and writes a character when it's time to wake up.
Use C++'s std::condition_variable. It is documented here, with a complete example. This solution depends on your context, e.g., whether you have a variable that you can wait on, or what has to be done.
Other interrupts can also be caught in this way. Signals, for instance, have a signalfd. Timer events have timerfd. This depends a lot on what you need, and in what environment you are running. For instance, timerfd is Linux-specific.