Warning appear after I solve a recursion question in Haskell - list

I'm trying to implementing a code question below, but I got this type of warning. I don't know what happened since I could output the answer correctly. Below is my code and the warning:
continuous :: [Integer] -> Bool
continuous list = case list of
[] -> True
[x,y]
| abs (x-y) <= 1 -> True
| otherwise -> False
x:y:xs
| abs(x-y) <= 1 -> continuous (y:xs)
| otherwise -> False
Lists.hs:43:19: warning: [-Wincomplete-patterns]
Pattern match(es) are non-exhaustive
In a case alternative: Patterns not matched: [_]
|
43 | continuous list = case list of
| ^^^^^^^^^^^^^...

The warning notes, that your pattern matching is not exhaustive, since you are missing the case for a list with a single element, [x] for example.
Additionally, if you add a case for a single element, the case [x,y] is not needed anymore, since it is also handled by the case x:y:xs, because xs can also represent an empty list

Related

How recursion met the base case Haskell

I am trying to understand this piece of code which returns the all possible combinations of [a] passed to it:
-- Infinite list of all combinations for a given value domain
allCombinations :: [a] -> [[a]]
allCombinations [] = [[]]
allCombinations values = [] : concatMap (\w -> map (:w) values)
(allCombinations values)
Here i tried this sample input:
ghci> take 7 (allCombinations [True,False])
[[],[True],[False],[True,True],[False,True],[True,False],[False,False]]
Here it doesn't seems understandable to me which is that how the recursion will eventually stops and will return [ [ ] ], because allCombinations function certainly doesn't have any pointer which moves through the list, on each call and when it meets the base case [ ] it returns [ [ ] ]. According to me It will call allCombinations function infinite and will never stop on its own. Or may be i am missing something?
On the other hand, take only returns the first 7 elements from the final list after all calculation is carried out by going back after completing recursive calls. So actually how recursion met the base case here?
Secondly what is the purpose of concatMap here, here we could also use Map function here just to apply function to the list and inside function we could arrange the list? What is actually concatMap doing here. From definition it concatMap tells us it first map the function then concatenate the lists where as i see we are already doing that inside the function here?
Any valuable input would be appreciated?
Short answer: it will never meet the base case.
However, it does not need to. The base case is most often needed to stop a recursion, however here you want to return an infinite list, so no need to stop it.
On the other hand, this function would break if you try to take more than 1 element of allCombination [] -- have a look at #robin's answer to understand better why. That is the only reason you see a base case here.
The way the main function works is that it starts with an empty list, and then append at the beginning each element in the argument list. (:w) does that recursively. However, this lambda alone would return an infinitely nested list. I.e: [],[[True],[False]],[[[True,True],[True,False] etc. Concatmap removes the outer list at each step, and as it is called recursively this only returns one list of lists at the end. This can be a complicated concept to grasp so look for other example of the use of concatMap and try to understand how they work and why map alone wouldn't be enough.
This obviously only works because of Haskell lazy evaluation. Similarly, you know in a foldr you need to pass it the base case, however when your function is supposed to only take infinite lists, you can have undefined as the base case to make it more clear that finite lists should not be used. For example, foldr f undefined could be used instead of foldr f []
#Lorenzo has already explained the key point - that the recursion in fact never ends, and therefore this generates an infinite list, which you can still take any finite number of elements from because of Haskell's laziness. But I think it will be helpful to give a bit more detail about this particular function and how it works.
Firstly, the [] : at the start of the definition tells you that the first element will always be []. That of course is the one and only way to make a 0-element list from elements of values. The rest of the list is concatMap (\w -> map (:w) values) (allCombinations values).
concatMap f is as you observe simply the composition concat . (map f): it applies the given function to every element of the list, and concatenates the results together. Here the function (\w -> map (:w) values) takes a list, and produces the list of lists given by prepending each element of values to that list. For example, if values == [1,2], then:
(\w -> map (:w) values) [1,2] == [[1,1,2], [2,1,2]]
if we map that function over a list of lists, such as
[[], [1], [2]]
then we get (still with values as [1,2]):
[[[1], [2]], [[1,1], [2,1]], [[1,2], [2,2]]]
That is of course a list of lists of lists - but then the concat part of concatMap comes to our rescue, flattening the outermost layer, and resulting in a list of lists as follows:
[[1], [2], [1,1], [2,1], [1,2], [2,2]]
One thing that I hope you might have noticed about this is that the list of lists I started with was not arbitrary. [[], [1], [2]] is the list of all combinations of size 0 or 1 from the starting list [1,2]. This is in fact the first three elements of allCombinations [1,2].
Recall that all we know "for sure" when looking at the definition is that the first element of this list will be []. And the rest of the list is concatMap (\w -> map (:w) [1,2]) (allCombinations [1,2]). The next step is to expand the recursive part of this as [] : concatMap (\w -> map (:w) [1,2]) (allCombinations [1,2]). The outer concatMap
then can see that the head of the list it's mapping over is [] - producing a list starting [1], [2] and continuing with the results of appending 1 and then 2 to the other elements - whatever they are. But we've just seen that the next 2 elements are in fact [1] and [2]. We end up with
allCombinations [1,2] == [] : [1] : [2] : concatMap (\w -> map (:w) values) [1,2] (tail (allCombinations [1,2]))
(tail isn't strictly called in the evaluation process, it's done by pattern-matching instead - I'm trying to explain more by words than explicit plodding through equalities).
And looking at that we know the tail is [1] : [2] : concatMap .... The key point is that, at each stage of the process, we know for sure what the first few elements of the list are - and they happen to be all 0-element lists with values taken from values, followed by all 1-element lists with these values, then all 2-element lists, and so on. Once you've got started, the process must continue, because the function passed to concatMap ensures that we just get the lists obtained from taking every list generated so far, and appending each element of values to the front of them.
If you're still confused by this, look up how to compute the Fibonacci numbers in Haskell. The classic way to get an infinite list of all Fibonacci numbers is:
fib = 1 : 1 : zipWith (+) fib (tail fib)
This is a bit easier to understand that the allCombinations example, but relies on essentially the same thing - defining a list purely in terms of itself, but using lazy evaluation to progressively generate as much of the list as you want, according to a simple rule.
It is not a base case but a special case, and this is not recursion but corecursion,(*) which never stops.
Maybe the following re-formulation will be easier to follow:
allCombs :: [t] -> [[t]]
-- [1,2] -> [[]] ++ [1:[],2:[]] ++ [1:[1],2:[1],1:[2],2:[2]] ++ ...
allCombs vals = concat . iterate (cons vals) $ [[]]
where
cons :: [t] -> [[t]] -> [[t]]
cons vals combs = concat [ [v : comb | v <- vals]
| comb <- combs ]
-- iterate :: (a -> a ) -> a -> [a]
-- cons vals :: [[t]] -> [[t]]
-- iterate (cons vals) :: [[t]] -> [[[t]]]
-- concat :: [[ a ]] -> [ a ]
-- concat . iterate (cons vals) :: [[t]]
Looks different, does the same thing. Not just produces the same results, but actually is doing the same thing to produce them.(*) The concat is the same concat, you just need to tilt your head a little to see it.
This also shows why the concat is needed here. Each step = cons vals is producing a new batch of combinations, with length increasing by 1 on each step application, and concat glues them all together into one list of results.
The length of each batch is the previous batch length multiplied by n where n is the length of vals. This also shows the need to special case the vals == [] case i.e. the n == 0 case: 0*x == 0 and so the length of each new batch is 0 and so an attempt to get one more value from the results would never produce a result, i.e. enter an infinite loop. The function is said to become non-productive, at that point.
Incidentally, cons is almost the same as
== concat [ [v : comb | comb <- combs]
| v <- vals ]
== liftA2 (:) vals combs
liftA2 :: Applicative f => (a -> b -> r) -> f a -> f b -> f r
So if the internal order of each step results is unimportant to you (but see an important caveat at the post bottom) this can just be coded as
allCombsA :: [t] -> [[t]]
-- [1,2] -> [[]] ++ [1:[],2:[]] ++ [1:[1],1:[2],2:[1],2:[2]] ++ ...
allCombsA [] = [[]]
allCombsA vals = concat . iterate (liftA2 (:) vals) $ [[]]
(*) well actually, this refers to a bit modified version of it,
allCombsRes vals = res
where res = [] : concatMap (\w -> map (: w) vals)
res
-- or:
allCombsRes vals = fix $ ([] :) . concatMap (\w -> map (: w) vals)
-- where
-- fix g = x where x = g x -- in Data.Function
Or in pseudocode:
Produce a sequence of values `res` by
FIRST producing `[]`, AND THEN
from each produced value `w` in `res`,
produce a batch of new values `[v : w | v <- vals]`
and splice them into the output sequence
(by using `concat`)
So the res list is produced corecursively, starting from its starting point, [], producing next elements of it based on previous one(s) -- either in batches, as in iterate-based version, or one-by-one as here, taking the input via a back pointer into the results previously produced (taking its output as its input, as a saying goes -- which is a bit deceptive of course, as we take it at a slower pace than we're producing it, or otherwise the process would stop being productive, as was already mentioned above).
But. Sometimes it can be advantageous to produce the input via recursive calls, creating at run time a sequence of functions, each passing its output up the chain, to its caller. Still, the dataflow is upwards, unlike regular recursion which first goes downward towards the base case.
The advantage just mentioned has to do with memory retention. The corecursive allCombsRes as if keeps a back-pointer into the sequence that it itself is producing, and so the sequence can not be garbage-collected on the fly.
But the chain of the stream-producers implicitly created by your original version at run time means each of them can be garbage-collected on the fly as n = length vals new elements are produced from each downstream element, so the overall process becomes equivalent to just k = ceiling $ logBase n i nested loops each with O(1) space state, to produce the ith element of the sequence.
This is much much better than the O(n) memory requirement of the corecursive/value-recursive allCombsRes which in effect keeps a back pointer into its output at the i/n position. And in practice a logarithmic space requirement is most likely to be seen as a more or less O(1) space requirement.
This advantage only happens with the order of generation as in your version, i.e. as in cons vals, not liftA2 (:) vals which has to go back to the start of its input sequence combs (for each new v in vals) which thus must be preserved, so we can safely say that the formulation in your question is rather ingenious.
And if we're after a pointfree re-formulation -- as pointfree can at times be illuminating -- it is
allCombsY values = _Y $ ([] :) . concatMap (\w -> map (: w) values)
where
_Y g = g (_Y g) -- no-sharing fixpoint combinator
So the code is much easier understood in a fix-using formulation, and then we just switch fix with the semantically equivalent _Y, for efficiency, getting the (equivalent of the) original code from the question.
The above claims about space requirements behavior are easily tested. I haven't done so, yet.
See also:
Why does GHC make fix so confounding?
Sharing vs. non-sharing fixed-point combinator

f# - simple iterate on list of pairs

I need to go through a list of pairs and check for one of the values in the pair. Say I got this list:
let listOfPairs = [("Joe",100);("Bo",5);("Morten",60)]
And I have to check whether the int value of the pair is equal to 100 or not. I'm not looking for the List.exist method but rather some way to check this with pattern matching, going through every pair in the list and check if the value is 100 or not.
I've obviously tried a lot thing myself but it's too bad to have any good influence in this post. Any ideas or suggestions are very appreciated, thanks in advance.
If you don't want to use List.exist then you could write a recursive function that pattern matches to extract the value:
let rec listContainsHundred = function
| (_, 100)::_ -> true
| _::tail -> listContainsHundred tail
| [] -> false
Otherwise a simple solution with List.exists would be:
List.exists (snd >> ((=) 100)) listOfPairs

OCaml Error involving lists

I'm still fairly new to OCaml, and would like some assistance on optimizing code.
I'm trying to multiply each element of a given list by the list's last element.
Here's a snippet of my code:
(* Find the last element of a function *)
let rec lastE = function
| [] -> []
| [x] -> x
| _ :: t -> lastE t;;
(*multiply a list by the last element*)
let rec lmul list =
match list with
[] -> []
| hd::tl -> (hd *. (lastE tl)) :: lmul tl;;
When I run the code I get this error message:
Error: This expression has type float list but
an expression was expected of type 'a list list
I'm been studying it for a while, but any assistance on this problem will be much appreciated.
To rephrase differently what Dave Newman is telling you, your basic problem is that lastE needs to handle an empty list differently. If lastE is supposed to return a number, it has to return a number in all cases. As it stands, lastE returns a list when it receives an empty list.
If you don't want to use List.map (again as Dave Newman suggests), you might at least consider calling lastE just once rather than once for each element of the list. This will make a big difference for long lists.

Grouping a list into lists of n elements in Haskell

Is there an operation on lists in library that makes groups of n elements? For example: n=3
groupInto 3 [1,2,3,4,5,6,7,8,9] = [[1,2,3],[4,5,6],[7,8,9]]
If not, how do I do it?
A quick search on Hoogle showed that there is no such function. On the other hand, it was replied that there is one in the split package, called chunksOf.
However, you can do it on your own
group :: Int -> [a] -> [[a]]
group _ [] = []
group n l
| n > 0 = (take n l) : (group n (drop n l))
| otherwise = error "Negative or zero n"
Of course, some parentheses can be removed, I left there here for understanding what the code does:
The base case is simple: whenever the list is empty, simply return the empty list.
The recursive case tests first if n is positive. If n is 0 or lower we would enter an infinite loop and we don't want that. Then we split the list into two parts using take and drop: take gives back the first n elements while drop returns the other ones. Then, we add the first n elements to the list obtained by applying our function to the other elements in the original list.
This function, among other similar ones, can be found in the popular split package.
> import Data.List.Split
> chunksOf 3 [1,2,3,4,5,6,7,8,9]
[[1,2,3],[4,5,6],[7,8,9]]
You can write one yourself, as Mihai pointed out. But I would use the splitAt function since it doesn't require two passes on the input list like the take-drop combination does:
chunks :: Int -> [a] -> [[a]]
chunks _ [] = []
chunks n xs =
let (ys, zs) = splitAt n xs
in ys : chunks n zs
This is a common pattern - generating a list from a seed value (which in this case is your input list) by repeated iteration. This pattern is captured in the unfoldr function. We can use it with a slightly modified version of splitAt (thanks Will Ness for the more concise version):
chunks n = takeWhile (not . null) . unfoldr (Just . splitAt n)
That is, using unfoldr we generate chunks of n elements while at the same time we shorten the input list by n elements, and we generate these chunks until we get the empty list -- at this point the initial input is completely consumed.
Of course, as the others have pointed out, you should use the already existing function from the split module. But it's always good to accustom yourself with the list processing functions in the standard Haskell libraries.
This is ofte called "chunk" and is one of the most frequently mentioned list operations that is not in base. The package split provides such an operation though, copy and pasting the haddock documentation:
> chunksOf 3 ['a'..'z']
["abc","def","ghi","jkl","mno","pqr","stu","vwx","yz"]
Additionally, against my wishes, hoogle only searches a small set of libraries (those provided with GHC or perhaps HP), but you can explicitly add packages to the search using +PKG_NAME - hoogle with Int -> [a] -> [[a]] +split gets what you want. Some people use Hayoo for this reason.

OCaml Option get

I'm new to OCaml, I'm trying to understand how you're supposed to get the value from an 'a option. According to the doc at http://ocaml-lib.sourceforge.net/doc/Option.html, there is a get function of type 'a option -> 'a that does what I want. but when I type:
# let z = Some 3;;
val z : int option = Some 3
# get z;;
Error: Unbound value get
# Option.get z;;
Error: Unbound module Option
Why isnt this working?
The traditional way to obtain the value inside any kind of constructor in OCaml is with pattern-matching. Pattern-matching is the part of OCaml that may be most different from what you have already seen in other languages, so I would recommend that you do not just write programs the way you are used to (for instance circumventing the problem with ocaml-lib) but instead try it and see if you like it.
let contents =
match z with
Some c -> c;;
Variable contents is assigned 3, but you get a warning:
Warning 8: this pattern-matching is not exhaustive. Here is an example
of a value that is not matched: None
In the general case, you won't know that the expression you want to look inside is necessarily a Some c. The reason an option type was chosen is usually that sometimes that value can be None. Here the compiler is reminding you that you are not handling one of the possible cases.
You can pattern-match “in depth” and the compiler will still check for exhaustivity. Consider this function that takes an (int option) option:
let f x =
match x with
Some (Some c) -> c
| None -> 0
;;
Here you forgot the case Some (None) and the compiler tells you so:
Warning 8: this pattern-matching is not exhaustive. Here is an example
of a value that is not matched: Some None
The usual way to do this is with pattern matching.
# let x = Some 4;;
val x : int option = Some 4
# match x with
| None -> Printf.printf "saw nothing at all\n"
| Some v -> Printf.printf "saw %d\n" v;;
saw 4
- : unit = ()
You can write your own get function (though you have to decide
what you want to do when the value is None).
You should listen to the above posters advice regarding type safety but also be aware that unsafe function such as Option.get (which is available in batteries btw) are usually suffixed with exn. If you're curious this is how Option.get or Option.get_exn could be implemented then:
let get_exn = function
| Some x -> x
| None -> raise (Invalid_argument "Option.get")