I am currently practicing algorithms and DS. I have stumbled upon a question that I can't figure out how to solve. So the question's link is there:
In summary, it says that there is a number of chairs in a circle, and the position of the person (relative to a certain chair), and how many M movements he should make.
So the input is as following:
3 integer numbers N, M, X , The number of chairs, the number of times the boy should move and the first chair he will start from respectively ( 1 ≤ X ≤ N < 2^63 , 0 ≤ M < 2^63 )
So, what have I done so far? I thought about the following:
So I thought that the relative position after M movements is (x+m) % n, and since this can cause Integer overflow, I have done it like that, ((x%n) + (m%n)) % n. I have figured out that if the person has reached the last index of chair, it will be 0 so I handled that. However, it passes only 2 tests. I don't need any code to be written, I want to directed in the right way of thinking. Here is my code so far:
#include <iostream>
using namespace std;
int main() {
long long n, m, x;
cin >> n >> m >> x;
// After each move, he reaches (X+1).
// X, N chairs.
// ((X % N) + (M % N)) % N;
// Odd conideration.
if ( m % 2 == 1) {
m += 1;
}
long long position = (x % n + m % n) % n;
if (position == 0) {
position = n;
}
cout << position;
return 0;
}
If the question required specific error handling, it should have stated so (so don't feel bad).
In every real-world project, there should be a standard to dictate what to do with weird input. Do you throw? Do you output a warning? If so, does it have to be translated to the system language?
In the absence of such instructions I would err toward excluding these values after reading them. Print an error to std::cerr (or throw an exception). Do this as close to where you read them as possible.
For overflow detection, you can use the methods described here. Some may disagree, and for a lab-exercise, it's probably not important. However, there is a saying in computing "Garbage in == Garbage out". It's a good habit to check for garbage before processing, rather than attempting to "recycle" garbage as you process.
Here's the problem:
Say the value of N is 2^63-1, and X and M are both 2^63 - 2.
When your program runs untill the ((X % N) + (M % N)) % N part,
X % N evaluates into 2^63 - 2 (not changed), and so does M % N.
Then, the addition between the two results occurs, 2^63 - 2 + 2^63 - 2 there is the overflow happening.
After the comment of #WBuck, the answer is actually rather easy which is to change the long long to unsigned because there are no negative numbers and therefore, increase the MAX VALUE of long long (when using unsigned).
Thank you so much.
Related
in this function i check if the no. is one less than the power of 2 and then make recursive calls for 2^b - 1 and n - 2^b(this call keeps happening till the no. here is one less than a power of 2)
now I know the code is wrong but why does it give segmentation fault.
int countSetBits(int n)
{
if (n == 0)
return 0;
int b = floor(log2(n));
if ( (n + 1) & n == 0 ) {
return (1<<b)* floor(log2(n + 1));
}
return (n - 1<<b + 1) + countSetBits(n - 1<<b) + countSetBits(1<<b - 1);
}
The infinite number of (recursive) function calls causes stack overflow. The program's stack has become too large and tries to "overflow" into the next memory segment. This is not allowed, and hence the segfault.
The reasons for the errors are two-fold:
You are using floating point numbers, in floor and log2. Those are imprecise and won't give you the exactness you need for this task.
You are left shifting your numbers (making them bigger). I didn't follow the logic you wanted, but usually, the approach is to take the least bits out and then right-shift the numbers (>>)
Lastly, either use a debugger, or introduce debug couts to see what your program is doing, that will make it overall much easier.
input : integer ( i'll call it N ) and (1 <= N <= 5,000,000 )
output : integer, multiple of N and only contains 0,7
Ex.
Q1 input : 1 -> output : 7 ( 7 mod 1 == 0 )
Q2 input : 2 -> output : 70 ( 70 mod 2 == 0 )
#include <string>
#include <iostream>
using namespace std;
typedef long long ll;
int remaind(string num, ll m)
{
ll mod = 0;
for (int i = 0; i < num.size(); i++) {
int digit = num[i] - '0';
mod = mod * 10 + digit;
mod = mod % m;
}
return mod;
}
int main()
{
int n;
string ans;
cin >> n;
ans.append(n, '7');
for (int i = ans.length() - 1; i >= 0; i--)
{
if (remaind(ans, n) == 0)
{
cout << ans;
return 0;
}
ans.at(i) = '0';
}
return 0;
}
is there a way to lessen the time complexity?
i just tried very hard and it takes little bit more time to run while n is more than 1000000
ps. changed code
ps2. changed code again because of wrong code
ps3. optimize code again
ps4. rewrite post
Your approach is wrong, let's say you divide "70" by 5. Then you result will be 2 which is not right (just analyze your code to see why that happens).
You can really base your search upon numbers like 77777770000000, but think more about that - which numbers you need to add zeros and which numbers you do not.
Next, do not use strings! Think of reminder for a * b if you know reminder of a and reminder of b. When you program it, be careful with integer size, use 64 bit integers.
Now, what about a + b?
Finally, find reminders for numbers 10, 100, 1000, 10000, etc (once again, do not use strings and still try to find reminder for any power of 10).
Well, if you do all that, you'll be able to easily solve the whole problem.
May I recommend any of the boost::bignum integer classes?
I suspect uint1024_t (or whatever... they also have 128, 256, and 512, bit ints already typedefed, and you can declare your own easily enough) will meet your needs, allowing you to perform a single %, rather than one per iteration. This may outweigh the performance lost when using bignum vs c++'s built-in ints.
2^1024 ~= 1.8e+308. Enough to represent any 308 digit number. That's probably excessive.
2^512 ~= 1.34e+154. Good for any 154 digit number.
etc.
I suspect you should first write a loop that went through n = 4e+6 -> 5e+6 and wrote out which string got the longest, then size your uint*_t appropriately. If that longest string length is more than 308 characters, you could just whip up your own:
typedef number<cpp_int_backend<LENGTH, LENGTH, unsigned_magnitude, unchecked, void> > myReallyUnsignedBigInt;
The modulo operator is probably the most expensive operation in that inner loop. Performing once per iteration on the outer loop rather than at the inner loop (O(n) vs O(n^2)) should save you quite a bit of time.
Will that plus the whole "not going to and from strings" thing pay for bignum's overhead? You'll have to try it and see.
In C++, I should write a program where the app detects which numbers are divisible by 3 from 1 till 10 and then multiply all of them and print the result. That means that I should multiply 3,6,9 and print only the result, which is 162, but I should do it by using a "While" loop, not just multiplying the 3 numbers with each other. How should I write the code of this? I attached my attempt to code the problem below. Thanks
#include <iostream>
using namespace std;
int main() {
int x, r;
int l;
x = 1;
r = 0;
while (x < 10 && x%3==0) {
r = (3 * x) + 3;
cout << r;
}
cin >> l;
}
Firstly your checking the condition x%3 == 0 brings you out of your while - loop right in the first iteration where x is 1. You need to check the condition inside the loop.
Since you wish to store your answer in variable r you must initialize it to 1 since the product of anything with 0 would give you 0.
Another important thing is you need to increment the value of x at each iteration i.e. to check if each number in the range of 1 to 10 is divisible by 3 or not .
int main()
{
int x, r;
int l;
x = 1;
r = 1;
while (x < 10)
{
if(x%3 == 0)
r = r*x ;
x = x + 1; //incrementing the value of x
}
cout<<r;
}
Lastly I have no idea why you have written the last cin>>l statement . Omit it if not required.
Ok so here are a few hints that hopefully help you solving this:
Your approach with two variables (x and r) outside the loop is a good starting point for this.
Like I wrote in the comments you should use *= instead of your formula (I still don't understand how it is related to the problem)
Don't check if x is dividable by 3 inside the while-check because it would lead to an too early breaking of the loop
You can delete your l variable because it has no affect at the moment ;)
Your output should also happen outside the loop, else it is done everytime the loop runs (in your case this would be 10 times)
I hope I can help ;)
EDIT: Forget about No.4. I didn't saw your comment about the non-closing console.
int main()
{
int result = 1; // "result" is better than "r"
for (int x=1; x < 10; ++x)
{
if (x%3 == 0)
result = result * x;
}
cout << result;
}
or the loop in short with some additional knowledge:
for (int x=3; x < 10; x += 3) // i know that 3 is dividable
result *= x;
or, as it is c++, and for learning purposes, you could do:
vector<int> values; // a container holding integers that will get the multiples of 3
for (int x=1; x < 10; ++x) // as usual
if ( ! x%3 ) // same as x%3 == 0
values.push_back(x); // put the newly found number in the container
// now use a function that multiplies all numbers of the container (1 is start value)
result = std::accumulate(values.begin(), values.end(), 1, multiplies<int>());
// so much fun, also get the sum (0 is the start value, no function needed as add is standard)
int sum = std::accumulate(values.begin(), values.end(), 0);
It's important to remember the difference between = and ==. = sets something to a value while == compares something to a value. You're on the right track with incrementing x and using x as a condition to check your range of numbers. When writing code I usually try and write a "pseudocode" in English to organize my steps and get my logic down. It's also wise to consider using variables that tell you what they are as opposed to just random letters. Imagine if you were coding a game and you just had letters as variables; it would be impossible to remember what is what. When you are first learning to code this really helps a lot. So with that in mind:
/*
- While x is less than 10
- check value to see if it's mod 3
- if it's mod 3 add it to a sum
- if not's mod 3 bump a counter
- After my condition is met
- print to screen pause screen
*/
Now if we flesh out that pseudocode a little more we'll get a skeletal structure.
int main()
{
int x=1//value we'll use as a counter
int sum=0//value we'll use as a sum to print out at the end
while(x<10)//condition we'll check against
{
if (x mod 3 is zero)
{
sum=x*1;
increment x
}
else
{
increment x
}
}
//screen output the sum the sum
//system pause or cin.get() use whatever your teacher gave you.
I've given you a lot to work with here you should be able to figure out what you need from this. Computer Science and programming is hard and will require a lot of work. It's important to develop good coding habits and form now as it will help you in the future. Coding is a skill like welding; the more you do it the better you'll get. I often refer to it as the "Blue Collar Science" because it's really a skillset and not just raw knowledge. It's not like studying history or Biology (minus Biology labs) because those require you to learn things and loosely apply them whereas programming requires you to actually build something. It's like welding or plumbing in my opinion.
Additionally when you come to sites like these try and read up how things should be posted and try and seek the "logic" behind the answer and come up with it on your own as opposed to asking for the answer. People will be more inclined to help you if they think you're working for something instead of asking for a handout (not saying you are, just some advice). Additionally take the attitude these guys give you with a grain of salt, Computer Scientists aren't known to be the worlds most personable people. =) Good luck.
gooday programers. I have to design a C++ program that reads a sequence of positive integer values that ends with zero and find the length of the longest increasing subsequence in the given sequence. For example, for the following
sequence of integer numbers:
1 2 3 4 5 2 3 4 1 2 5 6 8 9 1 2 3 0
the program should return 6
i have written my code which seems correct but for some reason is always returning zero, could someone please help me with this problem.
Here is my code:
#include <iostream>
using namespace std;
int main()
{
int x = 1; // note x is initialised as one so it can enter the while loop
int y = 0;
int n = 0;
while (x != 0) // users can enter a zero at end of input to say they have entered all their numbers
{
cout << "Enter sequence of numbers(0 to end): ";
cin >> x;
if (x == (y + 1)) // <<<<< i think for some reason this if statement if never happening
{
n = n + 1;
y = x;
}
else
{
n = 0;
}
}
cout << "longest sequence is: " << n << endl;
return 0;
}
In your program, you have made some assumptions, you need to validate them first.
That the subsequence always starts at 1
That the subsequence always increments by 1
If those are correct assumptions, then here are some tweaks
Move the cout outside of the loop
The canonical way in C++ of testing whether an input operation from a stream has worked, is simply test the stream in operation, i.e. if (cin >> x) {...}
Given the above, you can re-write your while loop to read in x and test that x != 0
If both above conditions hold, enter the loop
Now given the above assumptions, your first check is correct, however in the event the check fails, remember that the new subsequence starts at the current input number (value x), so there is no sense is setting n to 0.
Either way, y must always be current value of x.
If you make the above logic changes to your code, it should work.
In the last loop, your n=0 is execute before x != 0 is check, so it'll always return n = 0. This should work.
if(x == 0) {
break;
} else if (x > y ) {
...
} else {
...
}
You also need to reset your y variable when you come to the end of a sequence.
If you just want a list of increasing numbers, then your "if" condition is only testing that x is equal to one more than y. Change the condition to:
if (x > y) {
and you should have more luck.
You always return 0, because the last number that you read and process is 0 and, of course, never make x == (y + 1) comes true, so the last statement that its always executed before exiting the loop its n=0
Hope helps!
this is wrong logically:
if (x == (y + 1)) // <<<<< i think for some reason this if statement if never happening
{
Should be
if(x >= (y+1))
{
I think that there are more than one problem, the first and most important that you might have not understood the problem correctly. By the common definition of longest increasing subsequence, the result to that input would not be 6 but rather 8.
The problem is much more complex than the simple loop you are trying to implement and it is usually tackled with Dynamic Programming techniques.
On your particular code, you are trying to count in the if the length of the sequence for which each element is exactly the successor of the last read element. But if the next element is not in the sequence you reset the length to 0 (else { n = 0; }), which is what is giving your result. You should be keeping a max value that never gets reset back to 0, something like adding in the if block: max = std::max( max, n ); (or in pure C: max = (n > max? n : max );. Then the result will be that max value.
i have written a c++ code for generating first and last k digits of a number as large as 10^9. (k<=9).
cin>>n>>k;
cout << (unsigned long)floor(pow(10.0, modf(n*log10((double)n), &dummy) + k - 1)) << " "; // code that prints the first k digits
long long int ans = foo(n,k); // function that prints the last k digits
if(ans==0)
{
for(int i=0;i<k;i++) cout << "0";
}
else{
stringstream ss;
string s;
ss<<ans;
ss>>s;
if(s.size()!=k)
{
for(int i=0;i<(k-s.size());i++)
s="0"+s;
}
cout<<s;
}
where function foo() is:
long long int foo(int n, int k) // code of the function
{
long long int m=1;
for(; k > 0; k--) m*=10;
long long int r=1, t=n % m;
while(n)
{
if (n % 2)
r = r * t % m;
t = t * t % m;
n >>= 1;
}
return r;
}
this gives me output as:
if given 9 and 3 as inputs, it gives first and last 3 digits of 9 to the power 9 (9^9) i.e. 387 and 489. But I m still missing out some test cases.
Can anyone please help me finding out the test case for which my code wouldn't work ?
1 ≤ n ≤ 109, 1 ≤ k ≤ 9
the problem statement: http://www.codechef.com/problems/MARCHA4/
If n^n <= 10^9, in which case your code seems to work fine. However, if you allow bigger n, say 11^11, and ask for the last 4 digits of that, which are 0611, your code will only print 611. Basically, it doesn't print any leading zeroes when it should.
This doesn't really answer the question, and its almost trivially easy, but I figure it might be worth sharing. If there were a "long comment" capability I'd be using it.
EDIT: just noticed using str instead of repr will eliminate the L on its own
def firstAndLastDig(k, num):
s = str(num)
return (s[:k], s[-k:])
def firstAndLastDigSelfExp(k,n):
return firstAndLastDig(k,n**n)
Overflow is not an issue (the only thing is dealing with the L if you use repr instead of str),
firstAndLastDigSelfExp(6,12)
('891610', '448256')
firstAndLastDigSelfExp(42,491)
('209417336844579728122309696211520194012462', '160453713040914743773217804810667483135091')
And neither are leading zeroes
>>> firstAndLastDigSelfExp(4,9)
('3874', '0489')
This isn't do say the modular logs and stuff aren't cool - on the contrary I really liked reading about how you did this without generating the entire number. I didn't know about modf at all until reading OP's question and the body of foo is very interesting.
I think the problem is using floating point. Finding the first digit of a number actually requires perfect precision.
Unfortunately, the contest judge evidently doesn't understand that "number of significant digits" != "number of correct digits".
Perhaps there is some clever way to exactly compute (n*n, n = 10*9) without exhausting memory, but finding the first digits of a very good estimate is simply not the same as finding the first digits of the answer.
Assume that k = 9. Now, m = 1e9, and t <= 1e9 - 1.
t * t then may be as high as 1e18 - 2e9 + 1, which needs ... 59.8 bits.
Ok, not a problem with a 64-bit long long int, which has 63 bits of magnitude (and 1 of sign), but I'll leave this here so others don't repeat the same analysis.
Are you told that n is a positive integer? For example, (-8)^(-8) is perfectly well expressible in decimal but your program can't handle it.