I have a following piece of code, which is creating a simple object of Name and inside that it is creating another object Name, with a shared_from_this() reference. As I am reading from here
https://en.cppreference.com/w/cpp/memory/enable_shared_from_this/shared_from_this
"Effectively executes std::shared_ptr(weak_this), where weak_this is the private mutable std::weak_ptr member of enable_shared_from_this."
Which I am understanding as shared_from_this() is only creating a weak pointer to shared obj. But I don't see this is the case in runtime. There is effectively a circular reference getting created.
At the end of the I was expecting the Name obj should be destructed, but it is not because the reference counter is 2.
Can someone help me understand how should I use enable_shared_from_this(), that can effectively cleanup the Name obj, once it goes out of reference.
#include <iostream>
#include <memory>
#include <string>
#include <chrono>
#include <thread>
using namespace std;
struct Another;
struct Name : public std::enable_shared_from_this<Name> {
std::string t;
int m, n, p;
shared_ptr<Another> ann;
Name() {
std::cout << "constructor\n";
}
void MakeSomething() {
ann = std::make_shared<Another>(shared_from_this());
}
~Name() {
std::cout << "destructor\n";
}
};
struct Another {
shared_ptr<Name> nn;
Another(shared_ptr<Name> n) : nn(n) {
std::cout << "from another constructor " << nn.use_count() << "\n";
}
~Another() {
std::cout << "from another destructor\n";
}
};
int main()
{
{
auto n = std::make_shared<Name>();
std::cout << "Name ref count so far: " << n.use_count() << "\n";
auto p = n.get();
//delete p;
std::cout << "Name ref count so far: " << n.use_count() << "\n";
n->MakeSomething();
std::cout << "Name ref count so far: " << n.use_count() << "\n";
{
shared_ptr<Name> m = n;
std::cout << "Name ref count so far: " << n.use_count() << "\n";
}
std::cout << "Name ref count so far: " << n.use_count() << "\n";
}
// problem: at this point Name obj, should go out of reference and destructor to be called, which is NOT happening
return 0;
}
And here is the runtime output (compiler used msvc)
constructor
Name ref count so far: 1
Name ref count so far: 1
from another constructor 3
Name ref count so far: 2
Name ref count so far: 3
Name ref count so far: 2
Which I am understanding as shared_from_this() is only creating a weak pointer to shared obj. But I don't see this is the case in runtime. There is effectively a circular reference getting created.
shared_from_this() is creating a weak_ptr, which you're passing to a shared_ptr constructor, as specified by (11) here. That constructor creates a shared_ptr to the same object, increasing the reference count.
Also keep in mind that weak_ptr does not contribute to the reference count at all, so it has no bearing on your confusion over the reference count. Focus on what the shared_ptrs are doing.
Related
How can a vector of objects and a single object be iterated over as-if they were the same range, without any copying or moving, in range-v3?
One possibility is to cast the single value to a std::array<Object, 1> and then concatenate this array with the vector of objects via range::views::concat:
Improvised solution
#include <array>
#include <iostream>
#include <range/v3/view/concat.hpp>
struct Object {
int value = 0;
Object() { std::cout << "Default " << value << "\n"; }
Object( int value) : value(value) { std::cout << "Value " << value << "\n"; }
Object(Object const& object) : value(object.value) { std::cout << "Copy " << value << "\n"; }
Object(Object && object) : value(std::move(object.value)) { std::cout << "Move " << value << "\n"; }
};
int main() {
// Prints "Value 0"
std::array<Object, 1> objects {0};
// Prints "Value 1"
Object object {1};
for(Object const& object : ranges::views::concat(objects, *reinterpret_cast<std::array<Object, 1>*>(&object))) {
// Prints "0 1"
std::cout << object.value << " ";
}
return 0;
}
I don't know if the cast is safe. Assuming it is, developers are at risk of having to spend time to verify this. Hence this improvised solution is wanting.
Question: Is there an elegant solution for concatenating a view and a single value without copying or moving data?
I am aware of range::views::single but this causes object to be copied once and moved thrice when used in place of reinterpret_cast in the improvised solution.
For the following code:
#include <memory>
#include <iostream>
#include <vector>
using namespace std;
struct pm
{
pm() : a(make_unique<vector<int>>(1, 10)){};
unique_ptr<vector<int>> a;
};
struct parms
{
parms() : a(make_unique<pm>()){};
unique_ptr<pm> a;
};
class test
{
public:
test() : p(make_unique<parms>()) {}
unique_ptr<const parms> getParms()
{
return move(p);
}
void setParms(int b)
{
p->a->a->push_back(b);
}
void pp()
{
cout << p->a->a->at(0) << "\n";
}
private:
unique_ptr<parms> p;
};
int main()
{
auto t = make_unique<test>();
t->pp();
cout << t->getParms()->a->a->at(0) << "\n";
cout << (t->getParms()==nullptr) << "\n"; ;
}
t->getParms() is a nullptr after we "cout << t->getParms()->a->a->at(0) << "\n";".
If we do the same thing for the ptr,
int main()
{
auto t = make_unique<test>();
t->setParms(5);
t->pp();
auto ptr = t->getParms();
cout << ptr->a->a->at(0) << "\n";
cout << (ptr==nullptr) << "\n"; ;
}
ptr is not a nullptr.
My question is: why cout t->getParms(), then t->getParms() is a nullptr but prt is not? Is it because of the life scope of unique_ptr? Or the temporary rvalue? What's the reason behind this behavior?
Your method getParams() transfers ownership to the caller.
unique_ptr<const parms> getParms()
{
return move(p);
}
Member is moved to the return value and now the caller owns the pointee. You are not storing the returned value here:
cout << t->getParms()->a->a->at(0) << "\n";
Though, even if you did, t does not own the param anymore, hence when you ask t again:
cout << (t->getParms()==nullptr) << "\n"; ;
It doesnt know about the param anymore.
In the second example you transfer ownership from t to ptr:
auto ptr = t->getParms();
Now ptr owns the param. And you can inspect the pointer or the value as often as you like:
cout << ptr->a->a->at(0) << "\n";
cout << (ptr==nullptr) << "\n"; ;
There is no transfer of ownership in those two lines.
What's the reason behind this behavior?
The reason, as stated above, is that getParams() transfers ownership to the caller. Thats rather uncommon for a getter method. Perhaps "stealer-method" would be a better name ;). If you don't want to give up ownership (and you are certain that the pointer is a valid one) you can simply return a reference:
const parms& getParms() const { return *p; }
My question is: why cout t->getParms(), then t->getParms() is a nullptr but prt is not?
t->getParms() transfers the ownership to the caller. This sets t->p to null. Since t->p no longer owns a pointer, there is nothing to transfer when you call t->getParms() a second time.
You never transferred ownership from ptr, so it hasn't been set to null.
I have two classes, let's call them A and B
class A:
{
public:
//Some functions
A *getNewA() const;
private:
//some attributes
}
class B:
{
public:
//Some functions
private:
A &reftoA;
}
In the main code, I must generate a new A thanks to the A::getNewA() method. And this must go to B::reftoA, as written in class B.
Here is the A::getNewA() method :
A *A::getNewA()
{
A *newA = new A;
return newA;
}
OK. So now I call getNewA and want to store the results in reftoA, which is a reference to A. In a B function (which take a reference to A as parameter)
B::foo(A ¶mA)
{
reftoA = *(paramA.getNewA());
}
I thought this should have been working, but it won't.
Because when dereferencing, reftoA will always take the this object and not the new allocated object.
Let's be clearer and let's modify the functions to output the results
A * A::getNewA()
{
A *newA = new A;
std::cout << "New pointer " << newA << std::endl;
std::cout << "this pointer" << this << std::endl;
return A;
}
void B::foo(A ¶mA)
{
reftoA = *(paramA.getNewA());
std::cout << "new generated pointer " << &reftoA << std::endl;
}
Here is one of the output :
New pointer : 004FFAEC
this pointer: 0069D888
New generated pointer : 0069D888 //Expected : 004FFAEC
I can't get this "new generated pointer" to be the same than the new pointer the A::getNewA() returns after having allocated the memory. Of course, I guess there is some point with dereferencing the pointer to store it in a reference.
I know reference are used with existing object. Maybe the new object A::getNewA() should allocate memory for won't work as I expected.
I could use pointer instead reference in B::foo(), I know, but I can't
I think I am misunderstanding something about refrence and pointer, but I don't know what.
Any help greatly appreciated
The problem is that you can not reassign a reference. You can change only the value of the referenced object.
So you have to initialize the reference in the initializer list of the constructor of the class B.
Take into account that there is a typo in your code snippet
A*A::getNewA()
{
A *newA = new A;
std::cout << "New pointer " << newA << std::endl;
std::cout << "this pointer" << this << std::endl;
return A;
^^^^^^^^^
}
I think you mean
A*A::getNewA() const
^^^^^
{
A *newA = new A;
std::cout << "New pointer " << newA << std::endl;
std::cout << "this pointer" << this << std::endl;
return newA;
^^^^^^^^^^^
}
Always try to provide a verifiable complete example.
Here is a demonstrative program
#include <iostream>
class A
{
public :
//Some functions
A* getNewA() const
{
A *newA = new A;
std::cout << "New pointer " << newA << std::endl;
std::cout << "this pointer" << this << std::endl;
return newA;
}
private :
//some attributes
};
class B
{
public :
B( const A& a ) : reftoA( *a.getNewA() )
{
std::cout << "&reftoA " << &reftoA << std::endl;
}
private :
A& reftoA;
};
int main()
{
A a;
B b( a );
return 0;
}
Its output is
New pointer 0x2b392afbec20
this pointer0x7ffd287ad0af
&reftoA 0x2b392afbec20
As you can see the values of the New pointer and &reftoA are equal each other.
To make it more clear consider a very simple example
#include <iostream>
int main()
{
int x = 10;
int y = 20;
int &r = x;
r = y;
std::cout << "x = " << x << std::endl;
std::cout << "y = " << y << std::endl;
std::cout << "r = " << r << std::endl;
std::cout << std::endl;
std::cout << "&x = " << &x << std::endl;
std::cout << "&y = " << &y << std::endl;
std::cout << "&r = " << &r << std::endl;
return 0;
}
The program output is
x = 20
y = 20
r = 20
&x = 0x7ffd88ad47a8
&y = 0x7ffd88ad47ac
&r = 0x7ffd88ad47a8
This statement
r = y;
did not force the reference to refer the object y. It just reassigned the value of the referenced object x.
References have to be initialized when they are created.
Yes, you are misunderstanding something.
getNewA() is returning a pointer. it's not a smart pointer, you want to look into those and that's all I'll say on the matter.
on returning a pointer, you must keep a reference to this pointer else you will be unable to delete it and you'll get a memory leak. Thus you MUST have somewhere A* a = A::getNewA() and then later, when you no longer need it delete a;
Where you need to pass a reference to A, you can do foo(*a) which will dereference the pointer and pass a reference to the object it's pointing to.
But in summary, for all new code, smart pointers; there's no excuse to not use them.
Side note: Your code example had a few other issues; such as getNewA wasn't static; I'm going to take the code as a working example of your understanding, and not a working example.
Edit: On re-reading your example, the getNewA is intentionally non-static. I think this question is actually an XY problem (ie you're asking a question you've forced yourself into but isn't your actual problem); but I hope this addresses your misunderstanding of pointers and references.
You are not returning the pointer in the getNewA-Method
A* A::getNewA()
{
A *newA = new A;
return A; // you are returning A and not newA
}
And if you want to reassign the reference to a you can use a std::reference_wrapper
class B :
{
public :
void foo(A& paramA) {
reftoA = *(paramA.getNewA());
}
private :
std::reference_wrapper<A> reftoA;
}
This question already has answers here:
What are the differences between a pointer variable and a reference variable?
(44 answers)
Closed 9 years ago.
I have objects that I put into a std::vector. Later on I need to iterate through the vector and change some member variables in the objects in each position.
I think I want to pass the object once I have it by reference to a function to operate on it, but I seem to be getting an error:
Non-const lvalue reference to type 'Object' cannot bind to a value of unrelated type 'Object *'
Here is the general gist with code between omitted:
Object* o1 = Object::createWithLocation(p.x, p.y);
v.push_back(o1);
// later on
for (int f=0; f < v.size(); f++)
{
Object* obj1 = v.at(f);
addChild(h->createLayer(obj1), 3); // add the HUD
}
createLayer is defined at:
static PlantingHUD* createLayer(Object &o);
Can anyone explain my confusion between pointers and passing by reference? Do I have to do a cast of some sort?
static PlantingHUD* createLayer(Object &o);
this method need a reference to Object as the parameter,
but your input is a pointer.
Object* obj1 = v.at(f);
addChild(h->createLayer(obj1), 3); // add the HUD
That's the problem.
void foo(Object o)
Declares a function, foo, which will begin execution with a fresh, new, instance of class 'Object' called 'o'.
This is called "passing by value", but it's more accurately 'copying' because what foo receives is it's own, personal copy of the Object instances we call foo with. When "foo" ends, the "Object o" it knew, fed and put through school, will cease to be.
void foo(Object& o)
Declares a function, foo, which will begin executing with a reference to an existing instance of an 'Object', this reference will be called 'o'. If you poke or prod it, you will be changing the original.
This is called "pass by reference".
void foo(Object* o)
Declares a function, foo, which will begin executing with a variable, called "o", containing the address of what is supposed to be an instance of "Object". If you change this variable, by doing something like "o = nullptr", it will only affect the way things look inside foo. But if you send Samuel L Jackson to the address, he can deliver furious vengance that lasts beyond the lifetime of foo.
void foo(Object*& o)
Declares a function, foo, which will begin executing with a variable called "o", which is a reference to a pointer to an instance of object o - it's like an alias, except that without compiler optimization, it's actually implemented by the compiler using a sort of pointer.
Lets try these separately.
#include <iostream>
#include <cstdint>
struct Object
{
int m_i;
void event(const char* what, const char* where)
{
std::cout <<
what<< " " << (void*)this <<
" value " << m_i <<
" via " << where <<
std::endl;
}
// Construct an object with a specific value.
Object(int i) : m_i(i)
{
event("Constructed", "Operator(int i)");
}
// This is called the copy constructor, create one object from another.
Object(const Object& rhs) : m_i(rhs.m_i)
{
event("Constructed", "Operator(const Object&)");
}
// This is how to handle Object o1, o2; o1 = o2;
Object& operator=(const Object& rhs)
{
m_i = rhs.m_i;
event("Assigned", "operator=");
return *this;
}
// Handle destruction of an instance.
~Object() { event("Destructed", "~Object"); }
};
void foo1(Object o)
{
std::cout << "Entered foo1, my o has value " << o.m_i << std::endl;
// poke our local o
o.m_i += 42;
std::cout << "I changed o.m_i, it is " << o.m_i << std::endl;
}
void foo2(Object* o)
{
std::cout << "Foo2 starts with a pointer, it's value is " << (uintptr_t)o << std::endl;
std::cout << "That's an address: " << (void*)o << std::endl;
std::cout << "m_i of o has the value " << o->m_i << std::endl;
o->m_i += 42;
std::cout << "I've changed it tho, now it's " << o->m_i << std::endl;
}
void foo3(Object& o)
{
std::cout << "foo3 begins with a reference called o, " << std::endl <<
"which is sort of like a pointer but the compiler does some magic " << std::endl <<
"and we can use it like a local concrete object. " <<
std::endl <<
"Right now o.m_i is " << o.m_i <<
std::endl;
o.m_i += 42;
std::cout << "Only now, it is " << o.m_i << std::endl;
}
void foo4(Object*& o)
{
std::cout << "foo4 begins with a reference to a pointer, " << std::endl <<
"the pointer has the value " << (uintptr_t)o << " which is " <<
(void*)o <<
std::endl <<
"But the pointer points to an Object with m_i of " << o->m_i << std::endl <<
"which we accessed with '->' because the reference is to a pointer, " <<
"not to an Object." <<
std::endl;
o->m_i += 42;
std::cout << "I poked o's m_i and now it is " << o->m_i << std::endl;
// Now for something really dastardly.
o = new Object(999);
std::cout << "I just changed the local o to point to a new object, " <<
(uintptr_t)o << " or " << (void*)o << " with m_i " << o->m_i <<
std::endl;
}
int main()
{
std::cout << "Creating our first objects." << std::endl;
Object o1(100), o2(200);
std::cout << "Calling foo1 with o1" << std::endl;
foo1(o1);
std::cout << "back in main, o1.m_i is " << o1.m_i << std::endl;
std::cout << "Calling foo2 with &o1" << std::endl;
foo2(&o1);
std::cout << "back in main, o1.m_i is " << o1.m_i << std::endl;
std::cout << "Calling foo3(o2), which looks like the way we called foo1." << std::endl;
foo3(o2);
std::cout << "back in main, o2.m_i is " << o2.m_i << std::endl;
std::cout << "Creating our pointer." << std::endl;
Object* optr;
std::cout << "Setting it to point to 'o2'" << std::endl;
optr = &o2;
std::cout << "optr now has the value " << (uintptr_t)optr <<
" which is the address " << (void*)optr <<
" which points to an Object with m_i = " << optr->m_i <<
std::endl;
foo4(optr);
std::cout << "back in main, o2 has the value " << o2.m_i << std::endl <<
"and now optr has the value " << (uintptr_t)optr << std::endl <<
"and optr->m_i is now " << optr->m_i <<
std::endl;
if (optr != &o2)
delete optr; // otherwise we'd technically be leaking memory.
return 0;
}
Live demo on ideone.com.
Passing by Value
This term confuses people early in their C++ development because, in lay terms, it sounds like this is what "Object& foo" would do.
The term "pass by value" actually arises from what the language has to do to call such a function, to value-wise copy the whole of the original object/struct onto the stack or, in the case where a copy ctor is available, forward them to a value-wise constructor and recreate a copy of the original, value-by-value.
Pass-by-value should be used for most simple cases where you do not want side-effects on the values in your current scope from the function you are calling.
bool checkWidthdrawl(Dollars balance, Dollars amountToWithdraw)
{
// it's safe for me to change "balance" here because balance is mine
}
vs
bool checkWidthdrawl(Dollars& balance, Dollars amountToWithdraw)
{
balance -= amountToWithdraw;
if (balance < 0)
std::complaint << "My account seems to be missing $" << amountToWithdraw;
}
However, passing by reference can become expensive.
struct FourK { char a[1024], b[1024], c[1024], d[1024]; }
If you pass this around by value all day, you risk blowing up your stack at some point, as well as spending daft amounts of time copying all those bytes.
void foo(int i); // Unless you need to see the changes to i, this is perfectly fine.
void foo(FourK f); // Someone should hunt you down and yell "PEANUT" in your ear.
Passing by reference
References are really a contract over the pointer system that allow the language to ensure you're really talking about a concrete instance of an object, and thus allow you to refer to a pre-existing instance of a value outside of a function.
Of course, there are ways to break this, but the language tries very, very hard to make them difficult to do. For example, try adding this to the above code:
Object& makeObjectNotWar(int i)
{
Object thisObjectGoesAway(i);
return thisObjectGoesAway /*right about now*/;
}
You can also provide callers with an assurance that the function won't have any side effects on a variable with the "const" modifier.
void fooc(const Object& o)
{
o.m_i += 42; // Error
}
You can even use that within a function as a hint to yourself (and the compiler) that you don't want to accidentally change a value, here's a case where it can provide an optimization hint to the compiler:
std::vector<int> foo;
add1000valuesTo(foo);
const size_t fooSize = foo.size();
for (size_t i = 0; i < fooSize; ++i) {
// ... stuff you're sure won't decrease foo.size()
}
Without the const fooSize
for (size_t i = 0; i < foo.size(); ++i) {
The compiler has to start by assuming that "foo.size()" could be changed at any given iteration of the loop. It can probably figure out that it doesn't, but by giving it the hint, you've saved a little compile time, possibly improved your performance, and made it easier for a human to tell exactly what behavior you expected. Downside: If your loop does actually change the size of foo, you'll find out by bug reports :(
One last thing to know about pass-by-reference is that C++ references aren't protected or "ref counted". The language only promises that a reference will be valid for the duration of its scope, so long as you don't do anything stupid like, say, call something that deletes the object.
// Author intended this function to be called
// by the owner of a Dog.
void doneWithFoo(Dog& dog)
{
Dog* deadDog = &dog;
delete deadDog;
}
Rover& Babysitter::babysitDog(Dog& rover, int hours)
{
rover.feed(FeedType::Donut);
if (rover.pooped())
doneWithDog(rover);
// ...
return rover; // I have a bad feeling about this.
}
Obviously, you're not expecting "babysitDog" to result in the dog being disposed of. But bear in mind that because we passed in a reference, it to "babysitDog" that it's also gone from the caller too, and if that was using a reference... rover's dead, Dave, dead.
As with pointers, if you're going to store references beyond the scope in which you have access to them, then you become responsible for making sure the objects being referenced stick around or that the references are removed from the container before the objects do go away.
I have set up this example:
class UsefulClass {
public:
int id;
const bool operator< (const UsefulClass &other) const {
return this->id > other.id;
}
UsefulClass(int _id): id(_id) {
std::cout << "constructing " << id << std::endl;
}
~UsefulClass() {
std::cout << "destructing " << id << std::endl;
}
};
std::set<UsefulClass> set;
void create() {
UsefulClass object_1(1);
UsefulClass object_2(2);
set.insert(object_1);
set.insert(std::move(object_2));
std::cout << "create end" << std::endl;
}
int main() {
create();
std::cout << "main end" << std::endl;
}
I am expecting that the objects get destructed once when set gets deleted at the end of the program. But the objects get deleted twice:
constructing 1
constructing 2
create end
destructing 2
destructing 1
main end
destructing 1
destructing 2
Why is set.insert creating a copy here?
The objects in the set are different from the objects local to create(). The ones in the set are constructed using a copy constructor and move constructor, not the constructor UsefulClass(int), so you don't see their construction. The local objects get destroyed when the function create() returns, and then the objects in the set get destroyed at global cleanup after main ends.
object_1 and object_2 are created on stack and will be destroyed once the create() function ends. They need to be copied in the memory managed by set's allocator.
If you redefine the copy constructor, to trace its execution, you'll notice it is called at both inserts.
Rule of 3 applies to your case, if you print from dtor and want meaningful trace you should instrument copy (and maybe move) ctor also.
If you do that output will make sense and things should be properly paired.
Because your objects get copied on insertion into the set. Hence, when the create() function returns, the two local objects are destroyed. After main ends, the two copies that are in the set are destroyed, leading to the second pair of messages.
To illustrate whatever everybody has said before me, just create this simple example (it uses a new copy constructor for the set to use and uses a global variable to generate different ids each time a constructor is executed ---it's been tested, so you can put it in a file and compile):
#include <iostream>
#include <string>
#include <set>
using namespace std;
class UsefulClass {
static int instance;
public:
int id;
int i;
const bool operator<(const UsefulClass &other) const {
return id < other.id;
}
UsefulClass(int i){
id = instance++;
this->i = i;
cout << "constructing "
<< id
<< ":"
<< this->i
<< endl;
}
UsefulClass(const UsefulClass& other) {
id = instance++;
i = other.i;
cout << "constructing "
<< id
<< ":"
<< i
<< endl;
}
~UsefulClass(){
cout << "destructing "
<< id
<< ":"
<< i
<< endl;
}
};
int UsefulClass::instance = 0;
std::set<UsefulClass> myset;
void create() {
UsefulClass object_1(1);
UsefulClass object_2(2);
myset.insert(object_1);
/* please, explain what you mean with std::move, or which move
* have you used for the next statement. All i have is
* std::move(... ) for strings, but you have not defined
* string UsefulClass::operator string();
*/
myset.insert(/*std::move*/(object_2));
cout << "create end"
<< endl;
}
int main() {
create();
cout << "main end"
<< std::endl;
}
so you'll get a different instance id whenever you create a UsefulClass object and you'll see that when inserting into the set they are being copied as new instances. You'll see when each object is being created and when they are being deleted.
$ pru
constructing 0:1
constructing 1:2
constructing 2:1
constructing 3:2
create end
destructing 1:2
destructing 0:1
main end
destructing 2:1
destructing 3:2