vkCreateComputePipelines takes too long - glsl

I encountered a strange problem with compiling Vulkan compute shader.
I have this shader (which is not even all that complex)
#version 450
#extension GL_GOOGLE_include_directive : enable
//#extension GL_EXT_debug_printf : enable
#extension GL_KHR_shader_subgroup_basic : enable
#extension GL_KHR_shader_subgroup_arithmetic : enable
#define IS_AVAILABLE_BUFFER_ANN_ENTITIES
#define IS_AVAILABLE_BUFFER_GLOBAL_MUTABLES
#define IS_AVAILABLE_BUFFER_BONES
#define IS_AVAILABLE_BUFFER_WORLD
//#define IS_AVAILABLE_BUFFER_COLLISION_GRID
#include "descriptors_compute.comp"
layout (local_size_x_id = GROUP_SIZE_CONST_ID) in;
#include "utils.comp"
shared float[ANN_MAX_SIZE] tmp1;
shared float[ANN_MAX_SIZE] tmp2;
shared uint[ANN_TOUCHED_BLOCK_COUNT] touched_block_ids;
mat3 rotation_mat_from_yaw_and_pitch(vec2 yaw_and_pitch){
const vec2 Ss = sin(yaw_and_pitch); // let S denote sin(yaw) and s denote sin(pitch)
const vec2 Cc = cos(yaw_and_pitch); // let C denote cos(yaw) and c denote cos(pitch)
const vec4 Cs_cC_Sc_sS = vec4(Cc,Ss) * vec4(Ss.y,Cc,Ss.x);
return mat3(Cs_cC_Sc_sS.y,-Ss.y,-Cs_cC_Sc_sS.z,Cs_cC_Sc_sS.x,Cc.y,-Cs_cC_Sc_sS.w,Ss.x,0,Cc.x);
}
void main() {
const uint entity_id = gl_WorkGroupID.x;
const uint lID = gl_LocalInvocationID.x;
const uint entities_count = global_mutables.ann_entities;
if (entity_id < entities_count){
const AnnEntity entity = ann_entities[entity_id];
const Bone bone = bones[entity.bone_idx];
const mat3 rotation = rotation_mat_from_yaw_and_pitch(bone.yaw_and_pitch);
const uint BLOCK_TOUCH_SENSE_OFFSET = 0;
const uint LIDAR_LENGTH_SENSE_OFFSET = BLOCK_EXTENDED_SENSORY_FEATURES_LEN*ANN_TOUCHED_BLOCK_COUNT;
for(uint i=lID;i<ANN_LIDAR_COUNT;i+=GROUP_SIZE){
const vec3 rotated_lidar_direction = rotation * entity.lidars[i].direction;
const RayCastResult ray = ray_cast(bone.new_center, rotated_lidar_direction);
tmp1[LIDAR_LENGTH_SENSE_OFFSET+i] = ray.ratio_of_traversed_length;
}
for(uint i = lID;i<ANN_OUTPUT_SIZE;i+=GROUP_SIZE){
const AnnSparseOutputNeuron neuron = entity.ann_output[i];
float sum = neuron.bias;
for(uint j=0;j<neuron.incoming.length();j++){
sum += tmp1[neuron.incoming[j].src_neuron] * neuron.incoming[j].weight;
}
tmp2[i] = max(0,sum);//ReLU activation
}
vec2 rotation_change = vec2(0,0);
for(uint i = lID;i<ANN_OUTPUT_ROTATION_MUSCLES_SIZE;i+=GROUP_SIZE){
rotation_change += tmp2[ANN_OUTPUT_ROTATION_MUSCLES_OFFSET+i] * ANN_IMPULSES_OF_ROTATION_MUSCLES[i];
}
rotation_change = subgroupAdd(rotation_change);
if(lID==0){
bones[entity.bone_idx].yaw_and_pitch += rotation_change;
}
}
}
The function ray_cast is probably the most complex part of this shader, but I also reuse this exact same function in many other shaders that compile instantly. I was wondering whether GL_KHR_shader_subgroup_arithmetic might be slowing down vkCreateComputePipelines, but if removing it makes no difference. It takes Vulkan over a minute to finish vkCreateComputePipelines. I also have a bunch of utility functions included but I only use a few constants from there and ray_cast, so 90% of that code is unused and should be removed by glslc. Could it be that Vulkan is quietly trying to perform any other kind of optimisation and it's causing the delay? I thought that all optimisations are done by glslc and there is not much postprocessing done on SPIR-V. I use
Nvidia with their proprietary drivers by the way.
It really puzzles me why this shader is so slow to create, even though I have other shaders that are ten times longer and more complex and yet they load instantly.
Is there any way to profile this?

Upon closer inspection I noticed that normally all the generated SPIR-V files for my shaders take about 10-30KB. However, this one shader takes 178KB.
With help of spirv-dis I looked inside the generated assembly and noticed that vast majority of the op-codes was OpConstant. It was because I had structs that looked like
struct AnnSparseOutputNeuron{
AnnSparseConnection[ANN_LATENT_CONNECTIONS_PER_OUTPUT_NEURON] incoming;
float bias;
};
They contain large arrays. As a result both
const AnnEntity entity = ann_entities[entity_id];
and
const AnnSparseOutputNeuron neuron = entity.ann_output[i];
would be compiled to lots of op-codes that write those constant values for every single element of the array. So instead of writing code of the form
const A a = buffer_of_As[i];
f(a.some_filed)
it's better to use
f(buffer_of_As[i].some_filed)
This seems to have solved the problem. I thought that glslc would be smart enough to figure out such optimizations but apparently it's not.

Related

GLSL-ES3(webGL2): how to test extensions from fragment shader?

In webGL1 it was possible to test the availability of a GLSL extension from a fragment shader using (for instance) #ifdef GL_EXT_shader_texture_lod .
It seems to no longer be working in webGL2 (=GLSL-ES3.0): Extensions are not the same, but for instance #ifdef GL_EXT_color_buffer_float seems false despite https://webglreport.com/?v=2 tells that the extension is there.
Or what am I doing wrong ?
It's up to the extension whether or not it adds a flag to GLSL
EXT_shader_texture_lod is specifically an extension that effects GLSL. It's spec says it adds that macro
The GLSL macro GL_EXT_shader_texture_lod is defined as 1.
EXT_color_buffer_float is not an extension that affects GLSL. It's spec does not mention any GLSL macros. No change from WebGL1
Those flags though are mostly nonsense in WebGL anyway. You can trivially do your own string manipulation
const shaderTextureLodExt = gl.getExtension('EXT_shader_texture_lod');
const shader = `
#if ${shaderTextureLodExt ? 1 : 0}
... code if shader texture lod exists
#else
... code if shader texture lod does not exist
#endif
...
`;
Or a thousand other ways to manipulate shader strings.
Here's another
const colorBufferFloatExt = gl.getExtension('EXT_color_buffer_float');
function replaceIfDefs(s) {
return `
${colorBufferExtension ? '#define EXTENSION_color_buffer_float' : ''}
${s.replace(/GL_EXT_color_buffer_float/g 'EXTENSION_color_buffer_float')}
`;
}
const shader = replaceIfDefs(`
#ifdef GL_EXT_color_buffer_float
...
#endif
...
`);
etc...
Also since there never was a GL_EXT_color_buffer_float even in OpenGL there isn't much point in calling the macro GL_EXT_color_buffer_float. In fact it would arguably be a bad idea because it would end up looking like an official specified macro even though it's not. Best to chose your own name that doesn't start with GL_ .
Also consider that using #ifdef might not even be a good idea since you can just use string manipulation. For example
const colorBufferFloatExt = gl.getExtension('EXT_color_buffer_float');
const snippet = colorBufferFloatExt
? `
float decode_float(vec4 v) {
return v;
}
`
: `
float decode_float(vec4 v) {
vec4 bits = v * 255.0;
float sign = mix(-1.0, 1.0, step(bits[3], 128.0));
float expo = floor(mod(bits[3] + 0.1, 128.0)) * 2.0 +
floor((bits[2] + 0.1) / 128.0) - 127.0;
float sig = bits[0] +
bits[1] * 256.0 +
floor(mod(bits[2] + 0.1, 128.0)) * 256.0 * 256.0;
return sign * (1.0 + sig / 8388607.0) * pow(2.0, expo);
}
`;
const shader = `
precision highp float;
${snippet}
uniform sampler2D data;
uniform vec2 dataSize;
void main(
vec4 d = texture2D(data, gl_FragCoord.xy / dataSize);
vec4 v = decode_float(d) * 2.0;
gl_FragColor = v;
}
`;
...etc...

Metal Prevented Device Address Mode

I am creating a graphics application that uses Metal to render everything. When I did a frame debug under pipeline statistics for all of my draw calls there is a !! priority alert titled "Prevented Device Address Mode Load" with the details:
Indexing using unsigned int for offset prevents addressing calculation in device. To prevent this extra ALU operation use int for offset.
So for my simplest draw call that involves this here is what is going on. There is a large amount of vertex data followed by an index buffer. The index buffer is created and filled at the start and is then constant from then on. The vertex data is constantly all changing.
I have the following types:
struct Vertex {
float3 data;
};
typedef int32_t indexType;
Then the following draw call
[encoder drawIndexedPrimitives:MTLPrimitiveTypeTriangle indexCount:/*int here*/ indexType:MTLIndexTypeUInt32 indexBuffer:indexBuffer indexBufferOffset:0];
Which goes to the following vertex function
vertex VertexOutTC vertex_fun(constant Vertex * vertexBuffer [[ buffer(0) ]],
indexType vid [[ vertex_id ]],
constant matrix_float3x3* matrix [[buffer(1)]]) {
const float2 coords[] = {float2(-1, -1), float2(-1, 1), float2(1, -1), float2(1, 1)};
CircleVertex vert = vertexBuffer[vid];
VertexOutTC out;
out.position = float4((*matrix * float3(vert.data.x, vert.data.y, 1.0)).xy, ((float)((int)vid/4))/10000.0, 1.0);
out.color = HSVtoRGB(vert.data.z, 1.0, 1.0);
out.tc = coords[vid % 4];
return out;
}
I am very confused what exactly I am doing wrong here. The error would seem to suggest I shouldnt use an unsigned type for the offset which I am guessing is the index buffer.
The thing is is ultimately for the index buffer there is only MTLIndexTypeUInt32 and MTLIndexTypeUInt16 both of which are unsigned. Furthermore if I try to use a raw int as the type the shader wont compile. What is going on here?
In Table 5.1 of the Metal Shading Language Specification, they list the "Corresponding Data Type" for vertex_id as ushort or uint. (There are similar tables in that document for all the rest of the types, my examples will use thread_position_in_grid which is the same).
Meanwhile, the hardware prefers signed types for addressing. So if you do
kernel void test(uint position [[thread_position_in_grid]], device float *test) {
test[position] = position;
test[position + 1] = position;
test[position + 2] = position;
}
we are indexing test by an unsigned integer. Debugging this shader we can see that it involves 23 instructions, and has the "Prevented Device Mode Store" warning:
If we convert to int instead, this uses only 18 instructions:
kernel void test(uint position [[thread_position_in_grid]], device float *test) {
test[(int)position] = position;
test[(int)position + 1] = position;
test[(int)position + 2] = position;
}
However, not all uint can fit into int, so this optimization only works for half the range of uint. Still, that's many usecases.
What about ushort? Well,
kernel void test(ushort position [[thread_position_in_grid]], device float *test) {
test[position] = position;
test[position + 1] = position;
test[position + 2] = position;
}
This version is only 17 instructions. We are also "warned" about using unsigned indexing here, even though it is faster than the signed versions above. This suggests to me the warning is not especially well-designed and requires significant interpretation.
kernel void test(ushort position [[thread_position_in_grid]], device float *test) {
short p = position;
test[p] = position;
test[p + 1] = position;
test[p + 2] = position;
}
This is the signed version of short, and fixes the warning, but is also 17 instructions. So it makes Xcode happier, but I'm not sure it's actually better.
Finally, here's the case I was in. My position ranges above signed short, but below unsigned short. Does it make sense to promote short to int for the indexing?
kernel void test(ushort position [[thread_position_in_grid]], device float *test) {
int p = position;
test[p] = position;
test[p + 1] = position;
test[p + 2] = position;
}
This is also 17 instructions, and generates the device store warning. I believe the compiler proves ushort fits into int, and ignores the conversion. This "unsigned" arithmetic then produces a warning telling me to use int, even though that's exactly what I did.
In summary, these warnings are a bit naive, and should really be confirmed or refuted through on-device testing.

Recursion in GLSL prohibited?

I ran into this error when trying to write the following recursive call. I have seen a lot of demos of implementations of recursive Ray tracing in GLSL so I assumed that GLSL supported recursion.
Is this not the case?
OpenGL is returning a compile time error message:
Error: Function trace(vec3, vec3, vec3, int) has static recursion
This is my function definition:
vec3 trace(vec3 origin, vec3 direction, vec3 illum, int order)
{
float dist;
int s_index = getSphereIntersect(origin, direction, dist);
//if light hit
float light_dist = 200;
for(int k = 0; k < L_COUNT;k++)
if(s_intersects(l_center[k], l_radius[k],
origin, direction,
light_dist))
if(light_dist < dist )
return l_color[k]; //light is pure color
if (s_index != -1)
{
illum = s_color[s_index];
for(int j = 0; j < L_COUNT; j++)
{
float ambient = 0.68;
float diffuse = 0.5;
vec3 poi = view + (direction * dist);
vec3 li_disp = normalize( poi - l_center[j]);
vec3 poi_norm = s_normal(s_center[s_index], s_radius[s_index], poi);
float shade= dot(li_disp, normalize(poi_norm));
if(shade < 0) shade = 0;
illum = illum*l_color[j]*ambient + diffuse * shade;
//test shadow ray onto objects, if shadow then 0
if(order > 0)
illum = trace(poi+.0001*poi_norm, poi_norm, illum, order-1);
}
}
else
illum = vec3(0,0,0);
return illum;
}
I assumed that GLSL supported recursion
No. GLSL doesn't support or better said allow recursive function calls.
GLSL does not. The GLSL memory model does not allow for recursive function calls. This allows GLSL to execute on hardware that simply doesn't allow for recursion. It allows GLSL to function when there is no ability to write arbitrarily to memory, which is true of most shader hardware (though it is becoming less true with time).
So, no recursion in GLSL. Of any kind.
– OpenGL Wiki – Core Language (GLSL)
and
Recursion is not allowed, not even statically. Static recursion is present if the static function-call graph of
a program contains cycles. This includes all potential function calls through variables declared as
subroutine uniform (described below). It is a compile-time or link-time error if a single compilation unit
(shader) contains either static recursion or the potential for recursion through subroutine variables.
– GLSL 4.5 Specification, Page 115

How to send const data to shaders?

I want to send const int variable from CPU side to shader so I could initialize the array in the shader conveniently.
But if sending with usual glUniform1ui(programm, N) shader compiler says that N must be const.
#version 450 core
uniform const int N;
int myArray[N];
void main() {
//...
}
Is this possible ? If yes what are the workarounds ?
p.s.
I know that this is not related to the definition of uniform variables which clarifies that uniforms are immutable per shaders executing
A constant is as the name says constant and cannot be changed from outside via one of the glUniform methods and is NOT a uniform.
If you want to change the constant value, you've to recompile the hole shader and changing the shaders text before.
Sample ( Pseudocode )
GLchar** shaderSources = new GLChar*[3];
shaderSources[0] = "#version 450 core\n";
shaderSources[1] = "#define ARRAY_LENGTH 5\n";
shaderSources[2] = myShaderCode;
glShaderSource(shader, 2, shaderSources, LENGTH_OF_EACH(shaderSources, 2));
Shader:
int myArray[ARRAY_LENGTH];
void main()
{
for (int i = 0; i < ARRAY_LENGTH; i++) myArray[i] ....;
}
A different approach is using textures ( or SSBO ) instead of arrays and get values of the texture without interpolation between the values.

Gaussian-distributed pseudo-random number generator in GLSL [duplicate]

As the GPU driver vendors don't usually bother to implement noiseX in GLSL, I'm looking for a "graphics randomization swiss army knife" utility function set, preferably optimised to use within GPU shaders. I prefer GLSL, but code any language will do for me, I'm ok with translating it on my own to GLSL.
Specifically, I'd expect:
a) Pseudo-random functions - N-dimensional, uniform distribution over [-1,1] or over [0,1], calculated from M-dimensional seed (ideally being any value, but I'm OK with having the seed restrained to, say, 0..1 for uniform result distribution). Something like:
float random (T seed);
vec2 random2 (T seed);
vec3 random3 (T seed);
vec4 random4 (T seed);
// T being either float, vec2, vec3, vec4 - ideally.
b) Continous noise like Perlin Noise - again, N-dimensional, +- uniform distribution, with constrained set of values and, well, looking good (some options to configure the appearance like Perlin levels could be useful too). I'd expect signatures like:
float noise (T coord, TT seed);
vec2 noise2 (T coord, TT seed);
// ...
I'm not very much into random number generation theory, so I'd most eagerly go for a pre-made solution, but I'd also appreciate answers like "here's a very good, efficient 1D rand(), and let me explain you how to make a good N-dimensional rand() on top of it..." .
For very simple pseudorandom-looking stuff, I use this oneliner that I found on the internet somewhere:
float rand(vec2 co){
return fract(sin(dot(co, vec2(12.9898, 78.233))) * 43758.5453);
}
You can also generate a noise texture using whatever PRNG you like, then upload this in the normal fashion and sample the values in your shader; I can dig up a code sample later if you'd like.
Also, check out this file for GLSL implementations of Perlin and Simplex noise, by Stefan Gustavson.
It occurs to me that you could use a simple integer hash function and insert the result into a float's mantissa. IIRC the GLSL spec guarantees 32-bit unsigned integers and IEEE binary32 float representation so it should be perfectly portable.
I gave this a try just now. The results are very good: it looks exactly like static with every input I tried, no visible patterns at all. In contrast the popular sin/fract snippet has fairly pronounced diagonal lines on my GPU given the same inputs.
One disadvantage is that it requires GLSL v3.30. And although it seems fast enough, I haven't empirically quantified its performance. AMD's Shader Analyzer claims 13.33 pixels per clock for the vec2 version on a HD5870. Contrast with 16 pixels per clock for the sin/fract snippet. So it is certainly a little slower.
Here's my implementation. I left it in various permutations of the idea to make it easier to derive your own functions from.
/*
static.frag
by Spatial
05 July 2013
*/
#version 330 core
uniform float time;
out vec4 fragment;
// A single iteration of Bob Jenkins' One-At-A-Time hashing algorithm.
uint hash( uint x ) {
x += ( x << 10u );
x ^= ( x >> 6u );
x += ( x << 3u );
x ^= ( x >> 11u );
x += ( x << 15u );
return x;
}
// Compound versions of the hashing algorithm I whipped together.
uint hash( uvec2 v ) { return hash( v.x ^ hash(v.y) ); }
uint hash( uvec3 v ) { return hash( v.x ^ hash(v.y) ^ hash(v.z) ); }
uint hash( uvec4 v ) { return hash( v.x ^ hash(v.y) ^ hash(v.z) ^ hash(v.w) ); }
// Construct a float with half-open range [0:1] using low 23 bits.
// All zeroes yields 0.0, all ones yields the next smallest representable value below 1.0.
float floatConstruct( uint m ) {
const uint ieeeMantissa = 0x007FFFFFu; // binary32 mantissa bitmask
const uint ieeeOne = 0x3F800000u; // 1.0 in IEEE binary32
m &= ieeeMantissa; // Keep only mantissa bits (fractional part)
m |= ieeeOne; // Add fractional part to 1.0
float f = uintBitsToFloat( m ); // Range [1:2]
return f - 1.0; // Range [0:1]
}
// Pseudo-random value in half-open range [0:1].
float random( float x ) { return floatConstruct(hash(floatBitsToUint(x))); }
float random( vec2 v ) { return floatConstruct(hash(floatBitsToUint(v))); }
float random( vec3 v ) { return floatConstruct(hash(floatBitsToUint(v))); }
float random( vec4 v ) { return floatConstruct(hash(floatBitsToUint(v))); }
void main()
{
vec3 inputs = vec3( gl_FragCoord.xy, time ); // Spatial and temporal inputs
float rand = random( inputs ); // Random per-pixel value
vec3 luma = vec3( rand ); // Expand to RGB
fragment = vec4( luma, 1.0 );
}
Screenshot:
I inspected the screenshot in an image editing program. There are 256 colours and the average value is 127, meaning the distribution is uniform and covers the expected range.
Gustavson's implementation uses a 1D texture
No it doesn't, not since 2005. It's just that people insist on downloading the old version. The version that is on the link you supplied uses only 8-bit 2D textures.
The new version by Ian McEwan of Ashima and myself does not use a texture, but runs at around half the speed on typical desktop platforms with lots of texture bandwidth. On mobile platforms, the textureless version might be faster because texturing is often a significant bottleneck.
Our actively maintained source repository is:
https://github.com/ashima/webgl-noise
A collection of both the textureless and texture-using versions of noise is here (using only 2D textures):
http://www.itn.liu.se/~stegu/simplexnoise/GLSL-noise-vs-noise.zip
If you have any specific questions, feel free to e-mail me directly (my email address can be found in the classicnoise*.glsl sources.)
Gold Noise
// Gold Noise ©2015 dcerisano#standard3d.com
// - based on the Golden Ratio
// - uniform normalized distribution
// - fastest static noise generator function (also runs at low precision)
// - use with indicated fractional seeding method.
float PHI = 1.61803398874989484820459; // Φ = Golden Ratio
float gold_noise(in vec2 xy, in float seed){
return fract(tan(distance(xy*PHI, xy)*seed)*xy.x);
}
See Gold Noise in your browser right now!
This function has improved random distribution over the current function in #appas' answer as of Sept 9, 2017:
The #appas function is also incomplete, given there is no seed supplied (uv is not a seed - same for every frame), and does not work with low precision chipsets. Gold Noise runs at low precision by default (much faster).
There is also a nice implementation described here by McEwan and #StefanGustavson that looks like Perlin noise, but "does not require any setup, i.e. not textures nor uniform arrays. Just add it to your shader source code and call it wherever you want".
That's very handy, especially given that Gustavson's earlier implementation, which #dep linked to, uses a 1D texture, which is not supported in GLSL ES (the shader language of WebGL).
After the initial posting of this question in 2010, a lot has changed in the realm of good random functions and hardware support for them.
Looking at the accepted answer from today's perspective, this algorithm is very bad in uniformity of the random numbers drawn from it. And the uniformity suffers a lot depending on the magnitude of the input values and visible artifacts/patterns will become apparent when sampling from it for e.g. ray/path tracing applications.
There have been many different functions (most of them integer hashing) being devised for this task, for different input and output dimensionality, most of which are being evaluated in the 2020 JCGT paper Hash Functions for GPU Rendering. Depending on your needs you could select a function from the list of proposed functions in that paper and simply from the accompanying Shadertoy.
One that isn't covered in this paper but that has served me very well without any noticeably patterns on any input magnitude values is also one that I want to highlight.
Other classes of algorithms use low-discrepancy sequences to draw pseudo-random numbers from, such as the Sobol squence with Owen-Nayar scrambling. Eric Heitz has done some amazing research in this area, as well with his A Low-Discrepancy Sampler that Distributes Monte Carlo Errors as a Blue Noise in Screen Space paper.
Another example of this is the (so far latest) JCGT paper Practical Hash-based Owen Scrambling, which applies Owen scrambling to a different hash function (namely Laine-Karras).
Yet other classes use algorithms that produce noise patterns with desirable frequency spectrums, such as blue noise, that is particularly "pleasing" to the eyes.
(I realize that good StackOverflow answers should provide the algorithms as source code and not as links because those can break, but there are way too many different algorithms nowadays and I intend for this answer to be a summary of known-good algorithms today)
Do use this:
highp float rand(vec2 co)
{
highp float a = 12.9898;
highp float b = 78.233;
highp float c = 43758.5453;
highp float dt= dot(co.xy ,vec2(a,b));
highp float sn= mod(dt,3.14);
return fract(sin(sn) * c);
}
Don't use this:
float rand(vec2 co){
return fract(sin(dot(co.xy ,vec2(12.9898,78.233))) * 43758.5453);
}
You can find the explanation in Improvements to the canonical one-liner GLSL rand() for OpenGL ES 2.0
hash:
Nowadays webGL2.0 is there so integers are available in (w)GLSL.
-> for quality portable hash (at similar cost than ugly float hashes) we can now use "serious" hashing techniques.
IQ implemented some in https://www.shadertoy.com/view/XlXcW4 (and more)
E.g.:
const uint k = 1103515245U; // GLIB C
//const uint k = 134775813U; // Delphi and Turbo Pascal
//const uint k = 20170906U; // Today's date (use three days ago's dateif you want a prime)
//const uint k = 1664525U; // Numerical Recipes
vec3 hash( uvec3 x )
{
x = ((x>>8U)^x.yzx)*k;
x = ((x>>8U)^x.yzx)*k;
x = ((x>>8U)^x.yzx)*k;
return vec3(x)*(1.0/float(0xffffffffU));
}
Just found this version of 3d noise for GPU, alledgedly it is the fastest one available:
#ifndef __noise_hlsl_
#define __noise_hlsl_
// hash based 3d value noise
// function taken from https://www.shadertoy.com/view/XslGRr
// Created by inigo quilez - iq/2013
// License Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.
// ported from GLSL to HLSL
float hash( float n )
{
return frac(sin(n)*43758.5453);
}
float noise( float3 x )
{
// The noise function returns a value in the range -1.0f -> 1.0f
float3 p = floor(x);
float3 f = frac(x);
f = f*f*(3.0-2.0*f);
float n = p.x + p.y*57.0 + 113.0*p.z;
return lerp(lerp(lerp( hash(n+0.0), hash(n+1.0),f.x),
lerp( hash(n+57.0), hash(n+58.0),f.x),f.y),
lerp(lerp( hash(n+113.0), hash(n+114.0),f.x),
lerp( hash(n+170.0), hash(n+171.0),f.x),f.y),f.z);
}
#endif
A straight, jagged version of 1d Perlin, essentially a random lfo zigzag.
half rn(float xx){
half x0=floor(xx);
half x1=x0+1;
half v0 = frac(sin (x0*.014686)*31718.927+x0);
half v1 = frac(sin (x1*.014686)*31718.927+x1);
return (v0*(1-frac(xx))+v1*(frac(xx)))*2-1*sin(xx);
}
I also have found 1-2-3-4d perlin noise on shadertoy owner inigo quilez perlin tutorial website, and voronoi and so forth, he has full fast implementations and codes for them.
I have translated one of Ken Perlin's Java implementations into GLSL and used it in a couple projects on ShaderToy.
Below is the GLSL interpretation I did:
int b(int N, int B) { return N>>B & 1; }
int T[] = int[](0x15,0x38,0x32,0x2c,0x0d,0x13,0x07,0x2a);
int A[] = int[](0,0,0);
int b(int i, int j, int k, int B) { return T[b(i,B)<<2 | b(j,B)<<1 | b(k,B)]; }
int shuffle(int i, int j, int k) {
return b(i,j,k,0) + b(j,k,i,1) + b(k,i,j,2) + b(i,j,k,3) +
b(j,k,i,4) + b(k,i,j,5) + b(i,j,k,6) + b(j,k,i,7) ;
}
float K(int a, vec3 uvw, vec3 ijk)
{
float s = float(A[0]+A[1]+A[2])/6.0;
float x = uvw.x - float(A[0]) + s,
y = uvw.y - float(A[1]) + s,
z = uvw.z - float(A[2]) + s,
t = 0.6 - x * x - y * y - z * z;
int h = shuffle(int(ijk.x) + A[0], int(ijk.y) + A[1], int(ijk.z) + A[2]);
A[a]++;
if (t < 0.0)
return 0.0;
int b5 = h>>5 & 1, b4 = h>>4 & 1, b3 = h>>3 & 1, b2= h>>2 & 1, b = h & 3;
float p = b==1?x:b==2?y:z, q = b==1?y:b==2?z:x, r = b==1?z:b==2?x:y;
p = (b5==b3 ? -p : p); q = (b5==b4 ? -q : q); r = (b5!=(b4^b3) ? -r : r);
t *= t;
return 8.0 * t * t * (p + (b==0 ? q+r : b2==0 ? q : r));
}
float noise(float x, float y, float z)
{
float s = (x + y + z) / 3.0;
vec3 ijk = vec3(int(floor(x+s)), int(floor(y+s)), int(floor(z+s)));
s = float(ijk.x + ijk.y + ijk.z) / 6.0;
vec3 uvw = vec3(x - float(ijk.x) + s, y - float(ijk.y) + s, z - float(ijk.z) + s);
A[0] = A[1] = A[2] = 0;
int hi = uvw.x >= uvw.z ? uvw.x >= uvw.y ? 0 : 1 : uvw.y >= uvw.z ? 1 : 2;
int lo = uvw.x < uvw.z ? uvw.x < uvw.y ? 0 : 1 : uvw.y < uvw.z ? 1 : 2;
return K(hi, uvw, ijk) + K(3 - hi - lo, uvw, ijk) + K(lo, uvw, ijk) + K(0, uvw, ijk);
}
I translated it from Appendix B from Chapter 2 of Ken Perlin's Noise Hardware at this source:
https://www.csee.umbc.edu/~olano/s2002c36/ch02.pdf
Here is a public shade I did on Shader Toy that uses the posted noise function:
https://www.shadertoy.com/view/3slXzM
Some other good sources I found on the subject of noise during my research include:
https://thebookofshaders.com/11/
https://mzucker.github.io/html/perlin-noise-math-faq.html
https://rmarcus.info/blog/2018/03/04/perlin-noise.html
http://flafla2.github.io/2014/08/09/perlinnoise.html
https://mrl.nyu.edu/~perlin/noise/
https://rmarcus.info/blog/assets/perlin/perlin_paper.pdf
https://developer.nvidia.com/gpugems/GPUGems/gpugems_ch05.html
I highly recommend the book of shaders as it not only provides a great interactive explanation of noise, but other shader concepts as well.
EDIT:
Might be able to optimize the translated code by using some of the hardware-accelerated functions available in GLSL. Will update this post if I end up doing this.
lygia, a multi-language shader library
If you don't want to copy / paste the functions into your shader, you can also use lygia, a multi-language shader library. It contains a few generative functions like cnoise, fbm, noised, pnoise, random, snoise in both GLSL and HLSL. And many other awesome functions as well. For this to work it:
Relays on #include "file" which is defined by Khronos GLSL standard and suported by most engines and enviroments (like glslViewer, glsl-canvas VS Code pluging, Unity, etc. ).
Example: cnoise
Using cnoise.glsl with #include:
#ifdef GL_ES
precision mediump float;
#endif
uniform vec2 u_resolution;
uniform float u_time;
#include "lygia/generative/cnoise.glsl"
void main (void) {
vec2 st = gl_FragCoord.xy / u_resolution.xy;
vec3 color = vec3(cnoise(vec3(st * 5.0, u_time)));
gl_FragColor = vec4(color, 1.0);
}
To run this example I used glslViewer.
Please see below an example how to add white noise to the rendered texture.
The solution is to use two textures: original and pure white noise, like this one: wiki white noise
private static final String VERTEX_SHADER =
"uniform mat4 uMVPMatrix;\n" +
"uniform mat4 uMVMatrix;\n" +
"uniform mat4 uSTMatrix;\n" +
"attribute vec4 aPosition;\n" +
"attribute vec4 aTextureCoord;\n" +
"varying vec2 vTextureCoord;\n" +
"varying vec4 vInCamPosition;\n" +
"void main() {\n" +
" vTextureCoord = (uSTMatrix * aTextureCoord).xy;\n" +
" gl_Position = uMVPMatrix * aPosition;\n" +
"}\n";
private static final String FRAGMENT_SHADER =
"precision mediump float;\n" +
"uniform sampler2D sTextureUnit;\n" +
"uniform sampler2D sNoiseTextureUnit;\n" +
"uniform float uNoseFactor;\n" +
"varying vec2 vTextureCoord;\n" +
"varying vec4 vInCamPosition;\n" +
"void main() {\n" +
" gl_FragColor = texture2D(sTextureUnit, vTextureCoord);\n" +
" vec4 vRandChosenColor = texture2D(sNoiseTextureUnit, fract(vTextureCoord + uNoseFactor));\n" +
" gl_FragColor.r += (0.05 * vRandChosenColor.r);\n" +
" gl_FragColor.g += (0.05 * vRandChosenColor.g);\n" +
" gl_FragColor.b += (0.05 * vRandChosenColor.b);\n" +
"}\n";
The fragment shared contains parameter uNoiseFactor which is updated on every rendering by main application:
float noiseValue = (float)(mRand.nextInt() % 1000)/1000;
int noiseFactorUniformHandle = GLES20.glGetUniformLocation( mProgram, "sNoiseTextureUnit");
GLES20.glUniform1f(noiseFactorUniformHandle, noiseFactor);
FWIW I had the same questions and I needed it to be implemented in WebGL 1.0, so I couldn't use a few of the examples given in previous answers. I tried the Gold Noise mentioned before, but the use of PHI doesn't really click for me. (distance(xy * PHI, xy) * seed just equals length(xy) * (1.0 - PHI) * seed so I don't see how the magic of PHI should be put to work when it gets directly multiplied by seed?
Anyway, I did something similar just without PHI and instead added some variation at another place, basically I take the tan of the distance between xy and some random point lying outside of the frame to the top right and then multiply with the distance between xy and another such random point lying in the bottom left (so there is no accidental match between these points). Looks pretty decent as far as I can see. Click to generate new frames.
(function main() {
const dim = [512, 512];
twgl.setDefaults({ attribPrefix: "a_" });
const gl = twgl.getContext(document.querySelector("canvas"));
gl.canvas.width = dim[0];
gl.canvas.height = dim[1];
const bfi = twgl.primitives.createXYQuadBufferInfo(gl);
const pgi = twgl.createProgramInfo(gl, ["vs", "fs"]);
gl.canvas.onclick = (() => {
twgl.bindFramebufferInfo(gl, null);
gl.useProgram(pgi.program);
twgl.setUniforms(pgi, {
u_resolution: dim,
u_seed: Array(4).fill().map(Math.random)
});
twgl.setBuffersAndAttributes(gl, pgi, bfi);
twgl.drawBufferInfo(gl, bfi);
});
})();
<script src="https://twgljs.org/dist/4.x/twgl-full.min.js"></script>
<script id="vs" type="x-shader/x-vertex">
attribute vec4 a_position;
attribute vec2 a_texcoord;
void main() {
gl_Position = a_position;
}
</script>
<script id="fs" type="x-shader/x-fragment">
precision highp float;
uniform vec2 u_resolution;
uniform vec2 u_seed[2];
void main() {
float uni = fract(
tan(distance(
gl_FragCoord.xy,
u_resolution * (u_seed[0] + 1.0)
)) * distance(
gl_FragCoord.xy,
u_resolution * (u_seed[1] - 2.0)
)
);
gl_FragColor = vec4(uni, uni, uni, 1.0);
}
</script>
<canvas></canvas>