Proper DPDK device and port initialization for transmission - dpdk

While writing a simple DPDK packet generator I noticed some additional initialization steps that are required for reliable and successful packet transmission:
calling rte_eth_link_get() or rte_eth_timesync_enable() after rte_eth_dev_start()
waiting 2 seconds before sending the first packet with rte_eth_tx_burst()
So these steps are necessary when I use the ixgbe DPDK vfio driver with an Intel X553 NIC.
When I'm using the AF_PACKET DPDK driver, it works without those extra steps.
Is this a bug or a feature?
Is there a better way than waiting 2 seconds before the first send?
Why is the wait required with the ixgbe driver? Is this a limitation of that NIC or the involved switch (Mikrotik CRS326 with Marvell chipset)?
Is there a more idiomatic function to call than rte_eth_link_get() in order to complete the device initialization for transmission?
Is there some way to keep the VFIO NIC initialized (while keeping its link up) to avoid re-initializing it over and over again during the usual edit/compile/test cycle? (i.e. to speed up that cycle ...)
Additional information: When I connect the NIC to a mirrored port (which is configured via Mikrotik's mirror-source/mirror-target ethernet switch settings) and the sleep(2) is removed then I see the first packet transmitted to the mirror target but not to the primary destination. Thus, it seems like the sleep is necessary to give the switch some time after the link is up (after the dpdk program start) to completely initialize its forwarding table or something like that?
Waiting just 1 second before the first transmission works less reliable, i.e. the packet reaches the receiver only every odd time.
My device/port initialization procedure implements the following setup sequence:
rte_eth_dev_count_avail()
rte_eth_dev_is_valid_port()
rte_eth_dev_info_get()
rte_eth_dev_adjust_nb_rx_tx_desc()
rte_eth_dev_configure(port_id, 0 /* rxrings */, 1 /* txrings */, &port_conf)
rte_eth_tx_queue_setup()
rte_eth_dev_start()
rte_eth_macaddr_get()
rte_eth_link_get() // <-- REQUIRED!
rte_eth_dev_get_mtu()
Without rte_eth_link_get() (or rte_eth_timesync_enable()) the first transmitted packet doesn't even show up on the mirrored port.
The above functions (and rte_eth_tx_burst()) complete successfully with/without rte_eth_link_get()/sleep(2) being present. Especially, the read MAC address, MTU have the expected values (MTU -> 1500) and rte_eth_tx_burst() returns 1 for a burst of one UDP packet.
The returned link status is: Link up at 1 Gbps FDX Autoneg
The fact that rte_eth_link_get() can be replaced with rte_eth_timesync_enable() probably can be explained by the latter calling ixgbe_start_timecounters() which calls rte_eth_linkstatus_get() which is also called by rte_eth_link_get().
I've checked the DPDK examples and most of them don't call rte_eth_link_get() before sending something. There is also no sleep after device initialization.
I'm using DPDK 20.11.2.
Even more information - to answer the comments:
I'm running this on Fedora 33 (5.13.12-100.fc33.x86_64).
Ethtool reports: firmware-version: 0x80000877
I had called rte_eth_timesync_enable() in order to work with the transmit timestamps. However, during debugging I removed it to arrive at an minimal reproducer. At that point I noticed that removing it made it actually worse (i.e. no packet transmitted over the mirror port). I thus investigated what part of that function might make the difference and found rte_eth_link_get() which has similar side-effects.
When switching to AF_PACKET I'm using the stock ixgbe kernel driver, i.e. ixgbe with default settings on a device that is initialized by networkd (dhcp enabled).
My expectation was that when rte_eth_dev_start() terminates that the link is up and the device is ready for transmission.
However, it would be nice, I guess, if one could avoid resetting the device after program restarts. I don't know if DPDK supports this.
Regarding delays: I've just tested the following: rte_eth_link_get() can be omitted if I increase the sleep to 6 seconds. Whereas a call to rte_eth_link_get() takes 3.3 s. So yeah, it's probably just helping due to the additional delay.

The difference between the two attempted approaches
In order to use af_packet PMD, you first bind the device in question to the kernel driver. At this point, a kernel network interface is spawned for that device. This interface typically has the link active by default. If not, you typically run ip link set dev <interface> up. When you launch your DPDK application, af_packet driver does not (re-)configure the link. It just unconditionally reports the link to be up on device start (see https://github.com/DPDK/dpdk/blob/main/drivers/net/af_packet/rte_eth_af_packet.c#L266) and vice versa when doing device stop. Link update operation is also no-op in this driver (see https://github.com/DPDK/dpdk/blob/main/drivers/net/af_packet/rte_eth_af_packet.c#L416).
In fact, with af_packet approach, the link is already active at the time you launch the application. Hence no need to await the link.
With VFIO approach, the device in question has its link down, and it's responsibility of the corresponding PMD to activate it. Hence the need to test link status in the application.
Is it possible to avoid waiting on application restarts?
Long story short, yes. Awaiting link status is not the only problem with application restarts. You effectively re-initialise EAL as a whole when you restart, and that procedure is also eye-wateringly time consuming. In order to cope with that, you should probably check out multi-process support available in DPDK (see https://doc.dpdk.org/guides/prog_guide/multi_proc_support.html).
This requires that you re-implement your application to have its control logic in one process (also, the primary process) and Rx/Tx datapath logic in another one (the secondary process). This way, you can keep the first one running all the time and re-start the second one when you need to change Rx/Tx logic / re-compile. Restarting the secondary process will re-attach to the existing EAL instance all the time. Hence no PMD restart being involved, and no more need to wait.

Based on the interaction via comments, the real question is summarized as I'm just asking myself if it's possible to keep the link-up between invocations of a DPDK program (when using a vfio device) to avoid dealing with the relatively long wait times before the first transmit comes through. IOW, is it somehow possible to skip the device reset when starting the program for the 2nd time?
The short answer is No for the packet-generator program between restarts, because any Physcial NIC which uses PCIe config space for both PF (IXGBE for X533) and VF (IXGBE_VF for X553) bound with uio_pci_generic|igb_uio|vfio-pci requires PCIe reset & configuration. But, when using AF_PACKET (ixgbe kernel diver) DPDK PMD, this is the virtual device that does not do any PCIe resets and directly dev->data->dev_link.link_status = ETH_LINK_UP; in eth_dev_start function.
For the second part Is the delay for the first TX packets expected?
[Answer] No, as a few factors contribute to delay in the first packet transmission
Switch software & firmware (PF only)
Switch port Auto-neg or fixed speed (PF only)
X533 software and firmware (PF and VF)
Autoneg enable or disabled (PF and VF)
link medium SFP (fiber) or DAC (Direct Attached Copper) or RJ-45 (cat5|cat6) connection (PF only)
PF driver version for NIC (X553 ixgbe) (PF and VF)
As per intel driver Software-generated layer two frames, like IEEE 802.3x (link flow control), IEEE 802.1Qbb (priority based flow-control), and others of this type (VF only)
Note: Since the issue is mentioned for VF ports only (and not PF ports), my assumption is
TX packet uses the SRC MAC address of VF to avoid MAC Spoof check on ASIC
configure all SR-IOV enabled ports for VLAN tagging from the administrative interface on the PF to avoid flooding of traffic to VF
PF driver is updated to avoid old driver issues such (VF reset causes PF link to reset). This can be identified via checking dmesg
Steps to isolate the problem is the NIC by:
Check if (X533) PF DPDK has the same delay as VF DPDK (Isolate if it is PF or VF) problem.
cross-connect 2 NIC (X533) on the same system. Then compare Linux vs DPDK link up events (to check if it is a NIC problem or PCIe LNK issue)
Disable Auto-neg for DPDK X533 and compare PF vs Vf in DPDK
Steps to isolate the problem is the Switch by:
Disable Auto-neg on Switch and set FD auto-neg-disable speed 1Gbps and check the behaviour
[EDIT-1] I do agree with the workaround solution suggested by #stackinside using DPDK primary-secondary process concept. As the primary is responsible for Link and port bring up. While secondary is used for actual RX and TX burst.

Related

Measuring Round Trip Time using DPDK

My system is CentOS 8 with kernel: 4.18.0-240.22.1.el8_3.x86_64 and I am using DPDK 20.11.1. Kernel:
I want to calculate the round trip time in an optimized manner such that the packet sent from Machine A to Machine B is looped back from Machine B to A and the time is measured. While this being done, Machine B has a DPDK forwarding application running (like testpmd or l2fwd/l3fwd).
One approach can be to use DPDK pktgen application (https://pktgen-dpdk.readthedocs.io/en/latest/), but I could not find it to be calculating the Round Trip Time in such a way. Though ping is another way but when Machine B receives ping packet from Machine A, it would have to process the packet and then respond back to Machine A, which would add some cycles (which is undesired in my case).
Open to suggestions and approaches to calculate this time. Also a benchmark to compare the RTT (Round Trip Time) of a DPDK based application versus non-DPDK setup would also give a better comparison.
Edit: There is a way to enable latency in DPDK pktgen. Can anyone share some information that how this latency is being calculated and what it signifies (I could not find solid information regarding the page latency in the documentation.
It really depends on the kind of round trip you want to measure. Consider the following timestamps:
-> t1 -> send() -> NIC_A -> t2 --link--> t3 -> NIC_B -> recv() -> t4
host_A host_B
<- t1' <- recv() <- NIC_A <- t2' <--link-- t3' <- NIC_B <- send() <- t4'
Do you want to measure t1' - t1? Then it's just a matter of writing a small DPDK program that stores the TSC value right before/after each transmit/receive function call on host A. (On host b runs a forwarding application.) See also rte_rdtsc_precise() and rte_get_tsc_hz() for converting the TSC deltas to nanoseconds.
For non-DPDK programs you can read out the TSC values/frequency by other means. Depending on your resolution needs you could also just call clock_gettime(CLOCK_REALTIME) which has an overhead of 18 ns or so.
This works for single packet transmits via rte_eth_tx_burst() and single packet receives - which aren't necessarily realistic for your target application. For larger bursts you would have to use get a timestamp before the first transmit and after the last transmit and compute the average delta then.
Timestamps t2, t3, t2', t3' are hardware transmit/receive timestamps provided by (more serious) NICs.
If you want to compute the roundtrip t2' - t2 then you first need to discipline the NIC's clock (e.g. with phc2ys), enable timestamping and get those timestamps. However, AFAICS dpdk doesn't support obtaining the TX timestamps, in general.
Thus, when using SFP transceivers, an alternative is to install passive optical TAPs on the RX/TX end of NIC_A and connect the monitor ports to a packet capture NIC that supports receive hardware timestamping. With such as setup, computing the t2' - t2 roundtrip is just a matter of writing a script that reads the timestamps of the matching packets from your pcap and computes the deltas between them.
The ideal way to latency for sending and receiving packets through an interface is setup external Loopback device on the Machine A NIC port. This will ensure the packet sent is received back to the same NIC without any processing.
The next best alternative is to enable Internal Loopback, this will ensure the desired packet is converted to PCIe payload and DMA to the Hardware Packet Buffer. Based on the PCIe config the packet buffer will share to RX descriptors leading to RX of send packet. But for this one needs a NIC
supports internal Loopback
and can suppress Loopback error handlers.
Another way is to use either PCIe port to port cross connect. In DPDK, we can run RX_BURST for port-1 on core-A and RX_BURST for port-2 on core-B. This will ensure an almost accurate Round Trip Time.
Note: Newer Hardware supports doorbell mechanism, so on both TX and RX we can enable HW to send a callback to driver/PMD which then can be used to fetch HW assisted PTP time stamps for nanosecond accuracy.
But in my recommendation using an external (Machine-B) is not desirable because of
Depending upon the quality of the transfer Medium, the latency varies
If machine-B has to be configured to the ideal settings (for almost 0 latency)
Machine-A and Machine-B even if physical configurations are the same, need to be maintained and run at the same thermal settings to allow the right clocking.
Both Machine-A and Machine-B has to run with same PTP grand master to synchronize the clocks.
If DPDK is used, either modify the PMD or use rte_eth_tx_buffer_flush to ensure the packet is sent out to the NIC
With these changes, a dummy UDP packet can be created, where
first 8 bytes should carry the actual TX time before tx_burst from Machine-A (T1).
second 8 bytes is added by machine-B when it actually receives the packet in SW via rx_burst (2).
third 8 bytes is added by Machine-B when tx_burst is completed (T3).
fourth 8 bytes are found in Machine-A when packet is actually received via rx-burst (T4)
with these Round trip Time = (T4 - T1) - (T3 - T2), where T4 and T1 gives receive and transmit time from Machine A and T3 and T2 gives the processing overhead.
Note: depending upon the processor and generation, no-variant TSC is available. this will ensure the ticks rte_get_tsc_cycles is not varying per frequency and power states.
[Edit-1] as mentioned in comments
#AmmerUsman, I highly recommend editing your question to reflect the real intention as to how to measure the round trip time is taken, rather than TX-RX latency from DUT?, this is because you are referring to DPDK latency stats/metric but that is for measuring min/max/avg latency between Rx-Tx on the same DUT.
#AmmerUsman latency library in DPDK is stats representing the difference between TX-callback and RX-callback and not for your use case described. As per Keith explanation pointed out Packet send out by the traffic generator should send a timestamp on the payload, receiver application should forward to the same port. then the receiver app can measure the difference between the received timestamp and the timestamp embedded in the packet. For this, you need to send it back on the same port which does not match your setup diagram

dpdk-19.11,ixgbe PMD got imissed when up to 8Mpps(decreased 3Mpps),any one have solution or know the reason

using DPDK 17.02 with my custom application, I get to see missed fo 11Mpps. Using 19.11 DPDK it has reduced to 8Mpps. are there compile flags or code changes for ixgbe PMD which has reduced the same.
new updates:
the application arch is rx_cores(3)-->worker cores(16)-->tx cores(2),
when I increased tx cores to 3,it can reach 10M pps,but increased to 4,It didn't take affects any more
imissed stands for packets missed in HW, due to less number of poll cycles for RX thread. Lower the value better it is. Hence using DPDK 19.11 it is having reduced impact.
reasons for imissed to be lower is 19.11 can be
better compiler flags
better code optimization.
assuming you are using static libraries, code logic might be better fitting into the instruction cache.
note: you should really run profiler and use objdump to decipher this.
reasons for imissed in your applications could be the following reasons
CPU frequency is in power save and not performance (impact of not disabling C states in BIOS).
The is additional work or sleep added in RX thread loop will prevent rx_burst been invoked frequently
RSS is enabled, but traffic send to DPDK port is falling on 1 queue only. In case of too many RX queues like 16, this leads to increase delay to pick packet from the relevant queue.
iF RX thread is feeding worker cores based on flow id, there could be retries if RING full scenarios leading to loss of rx_burst.
If testpmd or example/skeleton or example/l2fwd is not having imissed. then here are my suggestions to debug your applciation.
try sending RX-TX from single-core
set power governed from powersave to performance.
ensure you are running the core threads on isolated cores.

Qt modbus serial port flow control handling

I'm writing a small program using QModbusDevice over the serial port (using the QModbusRtuSerialMaster class) and have some problems.
One of the problems seems to be that the flow control of the serial port is incorrect. Checking in a serial port sniffer I see that a working client sets RTS on when it sends requests, and then RTS off to receive replies. When I use QModbusRtuSerialMaster to send messages that doesn't happen.
The message is sent correctly (sometimes, subject for another question) compared to the working client. It's just the control flow that doesn't work and which causes the servers to be unable to reply.
I have set the Windows port settings for the COM-port in question to hardware flow control but it doesn't matter, the sniffer still reports no flow control.
Is there a way to get QModbusRtuSerialMaster to set the flow control as I would like? Or is there a way to manually handle the flow control (which is what the working client does)? Or is the only solution to skip the Qt modbus classes and make up my own using the serial port directly?
A short summary of what I'm doing...
First the initialization of the QModbusRtuSerialMaster object:
QModbusDevice* modbusDevice = new QModbusRtuSerialMaster(myMainWindow);
modbusDevice->setConnectionParameter(QModbusDevice::SerialPortNameParameter, "COM3");
modbusDevice->setConnectionParameter(QModbusDevice::SerialParityParameter, QSerialPort::NoParity);
modbusDevice->setConnectionParameter(QModbusDevice::SerialBaudRateParameter, QSerialPort::Baud115200);
modbusDevice->setConnectionParameter(QModbusDevice::SerialDataBitsParameter, QSerialPort::Data8);
modbusDevice->setConnectionParameter(QModbusDevice::SerialStopBitsParameter, QSerialPort::OneStop);
modbusDevice->setTimeout(100);
modbusDevice->setNumberOfRetries(3);
modbusDevice->connectDevice();
Then how I send a request:
auto response = modbusDevice->sendReadRequest(QModbusDataUnit(QModbusDataUnit::Coils, 0, 1), 1);
QtModbus does not implement an automatic toggling for the RTS line because it expects your hardware to do it on its own (with a dedicated line instead).
This should be the case for most RS485 converters (even cheap ones). You would only need the RTS line if you have a separate transceiver like this one with a DE/~RE input.
If you were on Linux and had some specific hardware you could try to use the RS485 mode to toggle the RTS line for you automatically. But you don't seem to be on Linux and the supported hardware is certainly very limited.
You can also toggle the line manually with port.setRequestToSend(true), see here. But note that depending on the timing needs of the device you are talking too, this software solution might not be very reliable. This particular problem has been discussed at length here. Take a look at the links on my answer too, I made some benchmarks with libmodbus that show good results.
Enabling or disabling flow control on the driver won't have any effect on this issue because this is not actually a flow control problem but a direction control one. Modbus runs on two-wire half-duplex links very often, and that means you need a way to indicate which device is allowed to talk on the bus at all times. The RTS (flow control) from an RS232 port can be used for this purpose as a software workaround.
In the end, it would be much less of a headache if you just replace your transceiver with one that supports hardware direction control. If you have a serial port with an FTDI engine you should be able to use the TXEN line for this purpose. Sometimes this hardware line is not directly routed and available on a pin but you can reroute it with MProg.
I would like to highlight that you did not mention if you are running your Modbus on RS485. I guess it's fair to assume you are, but if you have only a couple of devices next to each other you might use RS232 (even on TTL levels) and forget about direction control (you would be running full-duplex with three wires: TX, RX and GND).

Connect one bluetooth device as multiple devices

I realize that multiple bluetooth devices can be connected to a master device.
My question is simple: can a single bluetooth chip with a single MAC address connect to another bluetooth device as more than one client?
EDIT:
Basically is it possible to accept multiple bluetooth clients with the same MAC address, if not can the client computer connect using different faux addresses?
For example, I am writing software that emulates a wiimote for the Wii/WiiU. I am hoping to emulate more than a one wiimote using a single bluetooth usb dongle.
If a hack is needed C or C++ code would be prefered.
Preferably for windows if platform dependent.
Please be descriptive in any answers.
Bluetooth HID Spec v1.0
4.4 Multiple Devices per Host/Multiple Hosts per Device
Bluetooth HIDs shall set no limitation on the number of devices per host (up to the seven simultaneous active devices allowed per piconet). All trusted devices (devices that have either been authenticated or have no security procedures required) shall be allowed to have simultaneous connections to the host, if the host so desires. For example, multiple Bluetooth mice and keyboards are allowed. The behavior in this case shall be the same as for the USB case; i.e., input from all devices is allowed and the data streams are logically ORed together.
Similarly, a single Bluetooth HID may have established a bond or have its address known by multiple hosts. However, if it has declared itself virtually cabled, it is mandatory that the device only support a single host connection, and only one control and one interrupt L2CAP channel to that host, at one time (see SDP attribute HIDVirtualCable). If the device has not declared itself virtually cabled, it is still recommended that the device only support a single host connection at one time, i.e. no more than one SDP, control, and interrupt channel may be open at a time. A Bluetooth HID that implements the Virtual Cable feature shall have sufficient resources to remember a minimum of two hosts, and four hosts is recommended, to make later reconnection easier without passkey entry.
I'm not sure what you are asking for but:
A bluetooth network is called piconet, a piconet must have a min number of 2 devices and max 8 devices (7 slaves and 1 master). A device can be the member of one or more piconets but he can be only the master of one of them, this device is called bridge because he blends more piconets in a scatternet.
Therefore you can connect a single bluetooth chip with a single MAC address to more bluetooth devices , but i think you can't connect the same device A as more than one client to the same Master M because when the Master M starts the inquiry phase A will respond with his MAC address and his clock's offset only one time, later during the page phase M and A will establish one connection.

controling individual pins on a serial port

I know that serial ports work by sending a single stream of bits in serial. I can write programs to send and receive data from that one pin.
However, there are a lot more other pins on the serial port connection that normal aren't used but from documentation all seem to have some sort of function for signalling as opposed to data transfer.
Is it possible in any way to cause the other pins that are not used for direct data transfer to be controlled individually? If so, how would i go about doing that?
EDIT: more information
I am working with a modern CPU running windows 7 64-bit on an intel core i7 870 processor. I'm using serial to usb ports because its imposable for me to do anything directly with a usb port and my computer does not come with serial ports and also for some inexplicable reason i have a bunch of these usb to serial port adapters lying around.
My goal is to control mutipul stepper motors (200 steps per rotation, 4 phase motors). My simple circuitry accepts single high pulses and interprets it as a command to cause the motor to rotate one step. The circuit itself will handle the power supply and phase switching. I wish to use the data transfer pin to send the rotation signals (we can control position and velocity by altering the number of high pulses and frequency of high pulses through the pin, however there is no real pulse width modulation).
I have many motors to control but they do not need to be controlled simultaneously. I hope to use the rest of the pins and run them through a simple combination logic circuit to identify which motor is being moved and which direction it is to move in. This is part of the power switching circuitry.
The data transfer pin will operate normally at some low end frequency. However, i want to control the other pins to allow me to give a solid on or off signal (they wont be flipping very quickly, only changes when i switch to controlling another motor).
Based of the suggestion of Hans Passant , I'd like to suggest that you use an Arduino instead of an USB-to-serial converter. The "Duemilanove" is an Arduino-based board that provides 6 PWM outputs (as well as 8 other digitial I/Os and 6 analog). Some more specialized boards might be even cheaper (Arduino Pro Mini, $15 in volume, some soldering required).
Using the handshaking pins to send data can work very well, though probably not on a multitasking OS, it's just very processor intensive (because the port needs to be polled constantly) and requires some custom cables. In fact, back in the day, this is exactly how Laplink got such high transfer rates over serial connections (and why to get those rates you needed a special 'Laplink' cable). And you need both sides of hte link to be aware of what's going on and be able to deal with the custom communications. Laplink would send a packet of data over both the normal UART pins while trying to send data from the other end of the packet over the handshaking pins. If the correct cable wasn't used (or there was some other problem with sending over the handshaking pins) there was no problem - all the data would just get send normally.
Embedded developers might know this as 'bit banging' - often on small embedded systems there's no dedicated UART circuitry - to get serial communications to work they have to toggle a general I/O pin with the correct timing. The same can be done on a UART's handshaking pins. But like I said, it can be detrimental to the system if other work needs to be done.
You can use DTR and RTS only, but that is four possible states. You do need to be careful that the device on the other end uses TTL levels. At he end of this link Serial there are tips on hardware if you need it.
What kind of data rate are you thinking of when you say high frequency? What kind of serial port do you have? With the old 9 pin connectors on the back of the computer the best you can do is around 115Kbps. With a USB adapter I have done test where I could push close to 1Mbps through the port.
Here's an article from Microsoft that goes into great detail on how to work with serial ports:
http://msdn.microsoft.com/en-us/library/ms810467.aspx
It mentions EscapeCommFunction for directly controlling the DTR line.
Before you check out this information, I'm joining in with the others that say a serial port is inappropriate for your application.
I´ve been trying to find an answer to your question for 3 hours, seems like there is no "simple way" to get a simple boolean signal from a computer...
But, there is always a way, and jet, as simple (maybe even stupid) as this may sound, have you considered using the audio jack connector as an output?, It is stereo so you would have 2 outputs available,the programming would is not that difficult. and you don#t need to buy expensive shit to make it work.
If you also need an input, just disassemble a mouse... and bridge the sensors to the servos, probably the most cheap and easiest way of doing it...
Another way would be using the leds for the Num-lock, caps-lock and the dspl-lock on the keyboard, these can be activated using software, and you just need to take a cheap external keyboard, and use the connectors for these 3 leds.
you are describing maybe a parallel port - where you can set bit patterns all at once - then toggle the xmit line to send it all...
Lets take a look from the "bottom up" point of view:
The serial port pins
Pins on the serial port may be connected to a "controller" or directly connected to the processor. In order for the processor to have access (control) the pins, there must be an electrical connection from the pins to the processor. If not, the processor nor the program can control the pins.
Using a serial controller
A controller, such as a USART, would be connected between the serial port and the processor. The controller may function as to convert 8 parallel data bits into serial bitstream. In the big picture, the controller must provide access to the port pins in order for them to be controlled. If it doesn't, the pins can't be accessed. The controller must be connected to the processor in order to control the pins if a controller is connected.
The Processor and the Serial port
Assuming that the pins you want to control are connected to the processor, the processor must be able to access them. Sometimes they are mapped as physical addresses (such as with an ARM processor), or they may be connected to a port (such as the intel 8086). A program would access the pins via a pointer or using a i/o instruction. In some processor, the i/o ports must be enabled and initialized before they can be used.
Support from the OS
Here's a big ticket item: If your platform has an Operating System, the Operating System must provide services to access the pins of the serial port. The services could be a driver or an API function call. If the OS doesn't provide services, you can't access the serial port pins.
Permission from the OS
Assuming the OS has support for the serial port, your program must now have permission to access the port. In some operating systems, permission may only be granted to root or drivers and not users. If your account does not have permission to access the pins, you are not going to read them.
Support from the Programming Language
Lastly, the programming language must have support for the port. If the language doesn't provide support for the port you may have to change languages, or even program in assembly.
Accessing the "unused" pins of a serial port require extensive research into the platform. Not all platforms have serial ports. Serial port access is platform dependent and may change across different platforms.
Ask another, more detailed question and you will get more detailed answers. Please provide the kind of platform and OS that you are using.