Why does C++ allow this pointer polymorphism of private parent? - c++

If I inherit a derived class privately from a base class, I cannot get the polymorphism of the inhritetted class.
But I can get the polymorphism of 'this' pointer inside the derived class.
I'm very curious about why 'this' pointer is allowed to polymorphism to its private parent, however, a pointer outside of the class is not.
Thanks in advance!
#include <iostream>
class Shape
{
public:
virtual void say() const = 0;
virtual void who()
{
std::cout << "Shape" << std::endl;
}
void whoAmI() {
this->who();
}
};
class Squire : private Shape
{
public:
virtual void say() const
{
std::cout << "Squire" << std::endl;
}
void doSay()
{
// why this pointer to Shape type is allowed in class?
privateSay(this);
}
private:
void privateSay(Shape* s)
{
s->say();
}
};
void say(Shape* s)
{
s->say();
}
int main(int argc, const char * argv[]) {
// insert code here...
Squire* s = new Squire();
// allowed
s->doSay();
// not allowd, compile errors
// Cannot cast 'Squire' to its private base class 'Shape'
say(s);
return 0;
}
=========
Edit to clarify.
Thanks for all the answers.
To clarify my question, I think if C++ allows this behavior, mybe it violates the encapsulation a little.
A clearer case:
#include <iostream>
class Base
{
public:
void baseFunc() const
{
std::cout << "baseFunc" << std::endl;
}
};
class Worker
{
public:
Worker(Base *pBase)
{
base_ = pBase;
}
void breakFunc() const
{
base_->baseFunc();
}
private:
Base *base_;
};
class Derived : private Base
{
public:
void init()
{
worker_ = new Worker(this);
}
Worker* getWorker()
{
return worker_;
}
private:
Worker *worker_;
};
int main()
{
Derived derived;
derived.init();
Worker *worker = derived.getWorker();
worker->breakFunc();
}
The object of Base class only exisits in the object of Derived class as the parent object part, however, the Derived class inheritents Base class privately, which means the object of the Derived class has-an object of the Base class, privately.
The code above violates the encapsulation rule of the Derived class, however, even no warnning is given during compilation.
In my opinion, an explicit cast should be used under the circumstances,or an warning should be given during compilation.

The question asked here is why a base class is accessible when privately inherited.
The answer is rather simple: Because base classes are always visible to inherited regardless of the type of inheritance.
You can static_cast to a base class when the base is visible within the context.
class base
{
};
class inherited : base
{
public:
void foo()
{
// works, base is visible within the method.
auto pBase = static_cast<base*>(this);
}
};
int main() {
inherited i{};
// auto pBase = static_cast<base*>(&i); // won't compile, base is not visible
return 0;
}

Private inheritance means that both public and protected symbols from the base class become private symbols of the derived class. private symbols of the base class are inaccessible to the derived class. With exception of private virtual methods which can still be overridden.
this pointers, or in general Class* ptr used inside the class, can access private fields of the class.
Since the symbol Shape::say is public in Shape, it becomes private in Squire(BTW Did you mean Square?). This prevents its usage by public but not by this. Due to rules of virtuals, this "privatizes" the whole chain of overridden methods.
void Squire::privateSay(Shape* s)
{
// Works because `Shape::say` is a public symbol of Shape -> private symbol of Squire and `this` can access private symbols.
s->say();
}
void say(Shape* s)
{
// Shape::say is a private symbol, obviously cannot be called.
s->say();
}
If there existed private Shape::foo() method, it would not be accessible even through this in any of the Squire's methods.

Related

DerivedA pointer pointing to DerivedB

I have a base class which serves as an interface (if I use that word correctly). The idea is that the base class has some derived classes that implement one virtual function of the base class. Then I also need another class that extends the base class (lets call it extended base). What I would like is that I can store a class derived from base into an extended base pointer.
MWE:
class Base {
public:
virtual ~Base();
virtual double value();
}
class Derived : public Base{
public:
double value() override {return 5;}
}
class ExtendedBase : public Base {
public:
virtual ~ExtendedBase ();
virtual double value2(){return 10;}
}
int main() {
ExtendedBase * object;
object = new Derived();
std::cout << object->value(); //should give implementation in Derived, i.e. 5
std::cout << object->value2(); //should give implementation in ExtendedBase, i.e. 10
delete object;
return 0;
}
With this MWE I get a compile error at the second line in the main. error: cannot convert 'Derived*' to 'ExtendedBase*' in assignment object = new Derived();. Part of me understands why it doesn't work (although I can't explain), but I would like to know if I can get the desired behaviour in some other way.
P.S. Sorry about the bad question name, I couldn't think of another way to keep it short
P.S.2 I know raw pointers like this are not advised. In the future I will change to smart pointers but I don't think they are needed for this simple example
ExtendedBase and Derived are each derived from Base. If you want to use an ExtendedBase* pointer to point to a Derived object, you will need to derive Derived from ExtendedBase.
To use a different example,
class Feline{
virtual void run();
}
class Housecat : Feline{
void run() {}
}
class BigCat : Feline{
virtual void run();
virtual void roar();
}
Here Feline, Housecat, and BigCat are analogous to Base, Derived, and ExtendedBase. BigCat and Housecat are each Feline, but since Housecat is not a BigCat, you can't use a BigCat* pointer to point to a Housecat.
This is the desired behavior from a language architect perspective.
For instance, if you have
class Ship
{
public:
virtual void move() = 0;
}
class Steamboat : public Ship
{
public:
virtual void move() override { ... }
}
class Sailboat : public Ship
{
public:
virtual void move() override { ... }
virtual void setSails() { ... }
}
Now, you don't want a Steamboat to become a Sailboat all of a sudden, hence:
Steamboat* tootoo = new Sailboat;
cannot be valid.
That's why your code cannot work. Conceptually.
So giving a quick fix is not possible, because your concept is not really clear.
When you are assigning an address to a pointer that means you should be able to access all the members of the type the pointer is pointing to through the pointer.
For ex,
class B {};
class D : B {};
B *p = new D();
now through p, at least you can access all the members of base portion of the derived class.
But in your code,
ExtendedBase * object;
object = new Derived();
object should be able to access all the members of ExtendedBase portion of the derived class. But how is it possible as derived class is not derived from ExtendeBase. So compiler is throwing error.
You need to do some changes in your code to work.
To make base as interface (abstract class), you need to define at
least one member function as pure virtual.
If you want to access the member function of ExtendedBase through
Base pointer, you should define same function 'val' in your
ExtendedBase.
Below are the changes.
#include <iostream>
using namespace std;
class Base {
public:
virtual ~Base() {};
virtual double value() = 0;
};
class Derived : public Base{
public:
~Derived() {};
double value() {
return 5;
}
};
class ExtendedBase : public Base {
public:
virtual ~ExtendedBase () {};
double value()
{
return 10;
}
};
int main() {
Base *p = new Derived();
std::cout << p->value() << std::endl;
delete p;
Base *p1 = new ExtendedBase();
std::cout << p1->value() << std::endl;
delete p1;
return 0;
}

The constructor function in a pure virtual class should be "protected" or "public"?

The following example is from the book "Inside C++ object model"
class Abstract_base {
public:
virtual ~Abstract_base () = 0;
virtual void interface () const = 0;
virtual const char* mumble () const
{
return _mumble;
}
protected:
char *_mumble;
};
The author says if I want to initialize _mumble, the data member of the pure virtual base class, a "protected constructor" should be implemented.
But why protected? And why "public constructor" is not suitable for this class?
Thanks for your answers, and it would be perfect if there's an example.
It doesn't really matter, since you're not allowed to construct objects of the base class anyway. Making it protected serves only as a reminder of the fact that the class is supposed to be a base class; it's only cosmetics/documentation.
Consider
struct Base {
virtual ~Base() = 0;
protected:
Base() { std::puts("Base constructor"); }
};
Base::~Base() { std::puts("Base destructor"); }
struct Derived : Base {};
int main()
{
//Base b; // compiler error
Derived d;
Base *b = new Derived();
delete b;
}
Removing the protected doesn't change the meaning of the program in any way.
Abstract classes and construction of such
It doesn't matter if the constructor is public or protected, since an abstract class cannot be instantiated.
You must inherit from it in order to have it's constructor called, and since the Derived class calls the constructor of the abstract class it doesn't matter what protection level you choose, as long as the Derived class can access it.
One reason that one could possibly have for making it protected is to serve as a reminder that the class must be constructed through inheritance, but honestly that should be clear enough when seeing that it has pure virtual member-functions.
example snippet
struct B {
virtual void func () = 0;
virtual ~B () = 0 { };
};
B::~B () { }
struct D : B {
void func () override;
};
int main () {
B b; // will error, no matter if Bs ctor is 'public' or 'protected'
// due to pure virtual member-function
D d; // legal, D has overriden `void B::func ()`
}
A pure virtual class cannot be instantiated, so it doesn't make a difference if the constructor is public or protected.
A public constructor is syntactically correct. However, making it protected will carry a stronger indication that the class cannot be instantiated.
For an example: http://ideone.com/L66Prq
#include <iostream>
using namespace std;
class PublicAbstract {
public:
PublicAbstract() { }
virtual void doThings() =0;
};
class ProtectedAbstract {
protected:
ProtectedAbstract() { }
public:
virtual void doMoreThings() =0;
};
class B: public PublicAbstract {
public:
void doThings() { }
};
class C: public ProtectedAbstract {
public:
void doMoreThings() { }
};
int main() {
B b;
C c;
return 0;
}
A public constructor would not be very useful, since abstract classes cannot be instantiated in the first place.
A protected constructor makes sense: this way, a derived concrete class can provide its own public constructor that chains to the protected constructor of the base abstract class.
Protecetd ctor will make sure the ctor gets called by only the classes which derive from Abstract_base.
Public ctor is not suitable because the class contains a pure virtual method! How are you planning to instantiate a pure-virtual class if not via its child classes?

How to make a member readonly for derived classes?

Given an abstract base class with a protected member, how can I provide read access only to derived classes?
To illustrate my intention I provide a minimal example. This is the base class.
class Base
{
public:
virtual ~Base() = 0;
void Foo()
{
Readonly = 42;
}
protected:
int Readonly; // insert the magic here
};
This is the derived class.
class Derived : public Base
{
void Function()
{
cout << Readonly << endl; // this should work
Readonly = 43; // but this should fail
}
};
Unfortunately I cannot use a const member since it have to be modifiable by the base class. How can I produce the intended behavior?
The usual way to do it is to make your member private in the base class, and provide a protected accessor:
class Base
{
public:
virtual ~Base() = 0;
void Foo()
{
m_Readonly = 42;
}
protected:
int Readonly() const { return m_Readonly; }
private:
int m_Readonly;
};
As protected member is visible in derived class, if you want the member to be readonly in derived class, you can make it private, and provide a getter function.
class Base {
public:
Base();
virtual Base();
public:
int getValue() {return value;}
private:
int value;
}
This way you can still change the value in base class, and it's readonly in children class.
Best-practice guidelines for inheritance should be to always make member variables private and accessor functions public. If you have public functions that you only want called from derived classes it means you are writing spaghetti code. (source: Meyer's Effective C++ item 22)

Is this c++ inheritance structure possible?

I have not programmed in c++ in a long time and want some simple behavior that no amount of virtual keywords has yet to produce:
class Base {
public:
int both() { return a(); }
};
class Derived : public Base {
protected:
int a();
};
class Problem : public Derived {
};
Problem* p = new Problem();
p.both();
Which gives me a compile-time error. Is this sort of behavior possible with c++? Do I just need forward declaration? Virtual keywords on everything?
No. You will have to use a pure virtual a in base.
class Base {
virtual int a() = 0;
int both() {
return a();
}
};
You should declare the a() function as a pure virtual method in the Base class.
class Base {
int both() {
return a();
}
virtual int a()=0;
};
Then implement the a() method in the Derived class
class Derived : public Base {
int a(){/*some code here*/}
};
And finally, Problem class doesn't see the both() method, since its private in Base. Make it public.
class Base {
public:
int both() {
return a();
}
};
Your function both() is private by default. Try:
class Base {
public:
int both() {
// ...
(In the future, it would be helpful if you tell us what the actual error message was.)
You need a() to be declared in class Base, otherwise the compiler doesn't know what to do with it.
Also, both() is currently a private method (that's the default for classes), and should be made public in order to call it from main.
You have multiple problems in your code :
unless you declare them public or protected, elements of a class are private as a default.
you need a virtual keyword to define a virtual function that would be callable in a parent.
new returns a pointer to Problem.
Here's a complete working code based on your test :
class Base {
protected:
virtual int a()=0;
public:
int both() {
return a();
}
};
class Derived : public Base {
private :
int a()
{
printf("passing through a!");
return 0;
}
};
class Problem : public Derived {
};
int main(void)
{
Problem* p = new Problem();
p->both();
}
tested on CodePad.
As others point out, you need to declare a() as pure virtual method of Base and change access to public to make your snippet work.
Here is another approach possible in c++: instead of virtual functions, you can use static polymorphism via the Curiously recurring template pattern:
template <class D>
class Base : public D
{
public:
int both() { return D::a(); }
};
class Derived : public Base<Derived>
{
public:
int a();
};
I'm posting this approach since you're asking what is possible in c++. In practice, virtual methods are most often a better choice because of their flexibility.

C++ Design (behavior in base class, private member supplied in derived class)

I have 6 classes which all perform the same actions. I would like to move common behavior to a common [base] class.
There are actions to be performed on 6 separate objects. The six objects are located in derived classes. Intuitively, the private member objects would be accessed through the child (derived class) in the base class.
What is the C++ pattern I am looking for?
class Base
{
// Common behavior, operate on m_object
...
void Foo()
{
m_object.Bar();
}
};
class Derived1 : public Base
{
// No methods, use Base methods
private:
MyObject1 m_object;
}
class Derived2 : public Base
{
// No methods, use Base methods
private:
MyObject2 m_object;
}
The thing that is boxing me into this situation is MyObject1, MyObject2, etc offer Bar(), but don't share a common base class. I really can't fix the derivation because the objects come from an external library.
If they are introduced in the derived classes, then the base class cannot directly access them. How would the base class know that all derived classes have a specific member?
You could use virtual protected methods like so:
class my_base
{
protected:
virtual int get_whatever();
virtual double get_whatever2();
private:
void process()
{
int y = get_whatever();
double x = get_whatever2();
//yay, profit?
}
}
class my_derived_1 : my_base
{
protected:
virtual int get_whatever()
{
return _my_integer;
}
virtual double get_whatever2()
{
return _my_double;
}
}
Another possibility (if you want to call the base methods from the derived classes) is to simply supply the arguments to the base methods.
class my_base
{
protected:
void handle_whatever(int & arg);
};
class my_derived : my_base
{
void do()
{
my_base::handle_whatever(member);
}
int member;
};
C++ does and doesn't. It has a very powerful multiple inheritance support, so there is no super keyword. Why? Imagine that your base class is, say, inherited by another two classes, or even is a part of virtual inheritance hierarchy. In that case you can't really tell what super is supposed to mean. On the other hand, there are virtual methods, you can always have them in base class and implement in derived classes (that's what languages like Java do, except that they they don't have multiple class inheritance support). If you don't want to go with polymorphism, you can use something like this:
#include <cstdio>
template <typename T>
struct Base
{
void foo ()
{
std::printf ("Base::foo\n");
static_cast<T *> (this)->bar ();
}
};
struct Derived : Base<Derived>
{
void bar ()
{
std::printf ("Derived::bar\n");
}
};
int
main ()
{
Derived d;
d.foo ();
}
This is an extremely simple example - you can extend the above example with access control, friends, compile-time assertions etcetera, but you get the idea.
Have you considered not using inheritance?
class FooBar
{
MyObject m_object;
public:
FooBar(MyObject m): m_object(m) {}
//operate on different m_objects all you want
};
What about deriving your six separate objects from a common base class? Then you can declare virtual methods in that base class to create your interface, and then implement them in the derived object classes.
Maybe you just need a template instead of superclass and 6 derived classes?
It seems that you need to access not the parent's, but child's field. You should do it by introducing an abstract method:
class ParentClass
{
public:
void f();
protected:
virtual int getSomething() = 0;
};
ParentClass::f()
{
cout << getSomething() << endl;
}
class DerivedClass : public ParentClass
{
protected:
virtual int getSomething();
}
DerivedClass::getSomething() { return 42; }
If you need to access parent's method, just use ParentClass::method(...):
class ParentClass
{
public:
virtual void f();
};
class DerivedClass : public ParentClass
{
public:
virtual void f();
};
void DerivedClass::f()
{
ParentClass::f();
}