Why are parameters allocated below the frame pointer instead of above? - c++

I have tried to understand this basing on a square function in c++ at godbolt.org . Clearly, return, parameters and local variables use “rbp - alignment” for this function.
Could someone please explain how this is possible?
What then would rbp + alignment do in this case?
int square(int num){
int n = 5;// just to test how locals are treated with frame pointer
return num * num;
}
Compiler (x86-64 gcc 11.1)
Generated Assembly:
square(int):
push rbp
mov rbp, rsp
mov DWORD PTR [rbp-20], edi. ;\\Both param and local var use rbp-*
mov DWORD PTR[rbp-4], 5. ;//
mov eax, DWORD PTR [rbp-20]
imul eax, eax
pop rbp
ret

This is one of those cases where it’s handy to distinguish between parameters and arguments. In short: arguments are the values given by the caller, while parameters are the variables holding them.
When square is called, the caller places the argument in the rdi register, in accordance with the standard x86-64 calling convention. square then allocates a local variable, the parameter, and places the argument in the parameter. This allows the parameter to be used like any other variable: be read, written into, having its address taken, and so on. Since in this case it’s the callee that allocated the memory for the parameter, it necessarily has to reside below the frame pointer.
With an ABI where arguments are passed on the stack, the callee would be able to reuse the stack slot containing the argument as the parameter. This is exactly what happens on x86-32 (pass -m32 to see yourself):
square(int): # #square(int)
push ebp
mov ebp, esp
push eax
mov eax, dword ptr [ebp + 8]
mov dword ptr [ebp - 4], 5
mov eax, dword ptr [ebp + 8]
imul eax, dword ptr [ebp + 8]
add esp, 4
pop ebp
ret
Of course, if you enabled optimisations, the compiler would not bother with allocating a parameter on the stack in the callee; it would just use the value in the register directly:
square(int): # #square(int)
mov eax, edi
imul eax, edi
ret

GCC allows "leaf" functions, those that don't call other functions, to not bother creating a stack frame. The free stack is fair game to do so as these fns wish.

Related

Why does using the ternary operator to return a string generate considerably different code from returning in an equivalent if/else block?

I was playing with the Compiler Explorer and I stumbled upon an interesting behavior with the ternary operator when using something like this:
std::string get_string(bool b)
{
return b ? "Hello" : "Stack-overflow";
}
The compiler generated code for this (clang trunk, with -O3) is this:
get_string[abi:cxx11](bool): # #get_string[abi:cxx11](bool)
push r15
push r14
push rbx
mov rbx, rdi
mov ecx, offset .L.str
mov eax, offset .L.str.1
test esi, esi
cmovne rax, rcx
add rdi, 16 #< Why is the compiler storing the length of the string
mov qword ptr [rbx], rdi
xor sil, 1
movzx ecx, sil
lea r15, [rcx + 8*rcx]
lea r14, [rcx + 8*rcx]
add r14, 5 #< I also think this is the length of "Hello" (but not sure)
mov rsi, rax
mov rdx, r14
call memcpy #< Why is there a call to memcpy
mov qword ptr [rbx + 8], r14
mov byte ptr [rbx + r15 + 21], 0
mov rax, rbx
pop rbx
pop r14
pop r15
ret
.L.str:
.asciz "Hello"
.L.str.1:
.asciz "Stack-Overflow"
However, the compiler generated code for the following snippet is considerably smaller and with no calls to memcpy, and does not care about knowing the length of both strings at the same time. There are 2 different labels that it jumps to
std::string better_string(bool b)
{
if (b)
{
return "Hello";
}
else
{
return "Stack-Overflow";
}
}
The compiler generated code for the above snippet (clang trunk with -O3) is this:
better_string[abi:cxx11](bool): # #better_string[abi:cxx11](bool)
mov rax, rdi
lea rcx, [rdi + 16]
mov qword ptr [rdi], rcx
test sil, sil
je .LBB0_2
mov dword ptr [rcx], 1819043144
mov word ptr [rcx + 4], 111
mov ecx, 5
mov qword ptr [rax + 8], rcx
ret
.LBB0_2:
movabs rdx, 8606216600190023247
mov qword ptr [rcx + 6], rdx
movabs rdx, 8525082558887720019
mov qword ptr [rcx], rdx
mov byte ptr [rax + 30], 0
mov ecx, 14
mov qword ptr [rax + 8], rcx
ret
The same result is when I use the ternary operator with:
std::string get_string(bool b)
{
return b ? std::string("Hello") : std::string("Stack-Overflow");
}
I would like to know why the ternary operator in the first example generates that compiler code. I believe that the culprit lies within the const char[].
P.S: GCC does calls to strlen in the first example but Clang doesn't.
Link to the Compiler Explorer example: https://godbolt.org/z/Exqs6G
Thank you for your time!
sorry for the wall of code
The overarching difference here is that the first version is branchless.
16 isn’t the length of any string here (the longer one, with NUL, is only 15 bytes long); it’s an offset into the return object (whose address is passed in RDI to support RVO), used to indicate that the small-string optimization is in use (note the lack of allocation). The lengths are 5 or 5+1+8 stored in R14, which is stored in the std::string as well as passed to memcpy (along with a pointer chosen by CMOVNE) to load the actual string bytes.
The other version has an obvious branch (although part of the std::string construction has been hoisted above it) and actually does have 5 and 14 explicitly, but is obfuscated by the fact that the string bytes have been included as immediate values (expressed as integers) of various sizes.
As for why these three equivalent functions produce two different versions of the generated code, all I can offer is that optimizers are iterative and heuristic algorithms; they don’t reliably find the same “best” assembly independently of their starting point.
The first version returns a string object which is initialized with a not-constant expression yielding one of the string literals, so the constructor is run as for any other variable string object, thus the memcpy to do the initialization.
The other variants return either one string object initialized with a string literal or another string object initialized with another string literal, both of which can be optimized to a string object constructed from a constant expression where no memcpy is needed.
So the real answer is: the first version operates the ?: operator on char[] expressions before initializing the objects and the other versions on the string objects already being initialized.
It does not matter whether one of the versions is branchless.

C++ Return Performance

I have a question about performance. I think this can also applies to other languages (not only C++).
Imagine that I have this function:
int addNumber(int a, int b){
int result = a + b;
return result;
}
Is there any performance improvement if I write the code above like this?
int addNumber(int a, int b){
return a + b;
}
I have this question because the second function doesn´t declare a 3rd variable. But would the compiler detect this in the first code?
To answer this question you can look at the generated assembler code. With -O2, x86-64 gcc 6.2 generates exactly the same code for both methods:
addNumber(int, int):
lea eax, [rdi+rsi]
ret
addNumber2(int, int):
lea eax, [rdi+rsi]
ret
Only without optimization turned on, there is a difference:
addNumber(int, int):
push rbp
mov rbp, rsp
mov DWORD PTR [rbp-20], edi
mov DWORD PTR [rbp-24], esi
mov edx, DWORD PTR [rbp-20]
mov eax, DWORD PTR [rbp-24]
add eax, edx
mov DWORD PTR [rbp-4], eax
mov eax, DWORD PTR [rbp-4]
pop rbp
ret
addNumber2(int, int):
push rbp
mov rbp, rsp
mov DWORD PTR [rbp-4], edi
mov DWORD PTR [rbp-8], esi
mov edx, DWORD PTR [rbp-4]
mov eax, DWORD PTR [rbp-8]
add eax, edx
pop rbp
ret
However, performance comparison without optimization is meaningless
In principle there is no difference between the two approaches. The majority of compilers have handled this type of optimisation for some decades.
Additionally, if the function can be inlined (e.g. its definition is visible to the compiler when compiling code that uses such a function) the majority of compilers will eliminate the function altogether, and simply emit code to add the two variables passed and store the result as required by the caller.
Obviously, the comments above assume compiling with a relevant optimisation setting (e.g. not doing a debug build without optimisation).
Personally, I would not write such a function anyway. It is easier, in the caller, to write c = a + b instead of c = addNumber(a, b), so having a function like that offers no benefit to either programmer (effort to understand) or program (performance, etc). You might as well write comments that give no useful information.
c = a + b; // add a and b and store into c
Any self-respecting code reviewer would complain bitterly about uninformative functions or uninformative comments.
I'd only use such a function if its name conveyed some special meaning (i.e. more than just adding two values) for the application
c = FunkyOperation(a,b);
int FunkyOperation(int a, int b)
{
/* Many useful ways of implementing this operation.
One of those ways happens to be addition, but we need to
go through 25 pages of obscure mathematical proof to
realise that
*/
return a + b;
}

C/C++ returning struct by value under the hood

(This question is specific to my machine's architecture and calling conventions, Windows x86_64)
I don't exactly remember where I had read this, or if I had recalled it correctly, but I had heard that, when a function should return some struct or object by value, it will either stuff it in rax (if the object can fit in the register width of 64 bits) or be passed a pointer to where the resulting object would be (I'm guessing allocated in the calling function's stack frame) in rcx, where it would do all the usual initialization, and then a mov rax, rcx for the return trip. That is, something like
extern some_struct create_it(); // implemented in assembly
would really have a secret parameter like
extern some_struct create_it(some_struct* secret_param_pointing_to_where_i_will_be);
Did my memory serve me right, or am I incorrect? How are large objects (i.e. wider than the register width) returned by value from functions?
Here's a simple disassembling of a code exampling what you're saying
typedef struct
{
int b;
int c;
int d;
int e;
int f;
int g;
char x;
} A;
A foo(int b, int c)
{
A myA = {b, c, 5, 6, 7, 8, 10};
return myA;
}
int main()
{
A myA = foo(5,9);
return 0;
}
and here's the disassembly of the foo function, and the main function calling it
main:
push ebp
mov ebp, esp
and esp, 0FFFFFFF0h
sub esp, 30h
call ___main
lea eax, [esp+20] ; placing the addr of myA in eax
mov dword ptr [esp+8], 9 ; param passing
mov dword ptr [esp+4], 5 ; param passing
mov [esp], eax ; passing myA addr as a param
call _foo
mov eax, 0
leave
retn
foo:
push ebp
mov ebp, esp
sub esp, 20h
mov eax, [ebp+12]
mov [ebp-28], eax
mov eax, [ebp+16]
mov [ebp-24], eax
mov dword ptr [ebp-20], 5
mov dword ptr [ebp-16], 6
mov dword ptr [ebp-12], 7
mov dword ptr [ebp-8], 9
mov byte ptr [ebp-4], 0Ah
mov eax, [ebp+8]
mov edx, [ebp-28]
mov [eax], edx
mov edx, [ebp-24]
mov [eax+4], edx
mov edx, [ebp-20]
mov [eax+8], edx
mov edx, [ebp-16]
mov [eax+0Ch], edx
mov edx, [ebp-12]
mov [eax+10h], edx
mov edx, [ebp-8]
mov [eax+14h], edx
mov edx, [ebp-4]
mov [eax+18h], edx
mov eax, [ebp+8]
leave
retn
now let's go through what just happened, so when calling foo the paramaters were passed in the following way, 9 was at highest address, then 5 then the address the myA in main begins
lea eax, [esp+20] ; placing the addr of myA in eax
mov dword ptr [esp+8], 9 ; param passing
mov dword ptr [esp+4], 5 ; param passing
mov [esp], eax ; passing myA addr as a param
within foo there is some local myA which is stored on the stack frame, since the stack is going downwards, the lowest address of myA begins in [ebp - 28], the -28 offset could be caused by struct alignments so I'm guessing the size of the struct should be 28 bytes here and not 25 as expected. and as we can see in foo after the local myA of foo was created and filled with parameters and immediate values, it is copied and re-written to the address of myA passed from main ( this is the actual meaning of return by value )
mov eax, [ebp+8]
mov edx, [ebp-28]
[ebp + 8] is where the address of main::myA was stored ( memory address go upwards hence ebp + old ebp ( 4 bytes ) + return address ( 4 bytes )) at overall ebp + 8 to get to the first byte of main::myA, as said earlier foo::myA is stored within [ebp-28] as stack goes downwards
mov [eax], edx
place foo::myA.b in the address of the first data member of main::myA which is main::myA.b
mov edx, [ebp-24]
mov [eax+4], edx
place the value that resides in the address of foo::myA.c in edx, and place that value within the address of main::myA.b + 4 bytes which is main::myA.c
as you can see this process repeats itself through out the function
mov edx, [ebp-20]
mov [eax+8], edx
mov edx, [ebp-16]
mov [eax+0Ch], edx
mov edx, [ebp-12]
mov [eax+10h], edx
mov edx, [ebp-8]
mov [eax+14h], edx
mov edx, [ebp-4]
mov [eax+18h], edx
mov eax, [ebp+8]
which basically proves that when returning a struct by val, that could not be placed in as a param, what happens is that the address of where the return value should reside in is passed as a param to the function and within the function being called the values of the returned struct are copied into the address passed as a parameter...
hope this exampled helped you visualize what happens under the hood a little bit better :)
EDIT
I hope that you've noticed that my example was using 32 bit assembler and I KNOW you've asked regarding x86-64, but I'm currently unable to disassemble code on a 64 bit machine so I hope you take my word on it that the concept is exactly the same both for 64 bit and 32 bit, and that the calling convention is nearly the same
That is exactly correct. The caller passes an extra argument which is the address of the return value. Normally it will be on the caller's stack frame but there are no guarantees.
The precise mechanics are specified by the platform ABI, but this mechanism is very common.
Various commentators have left useful links with documentation for calling conventions, so I'll hoist some of them into this answer:
Wikipedia article on x86 calling conventions
Agner Fog's collection of optimization resources, including a summary of calling conventions (Direct link to 57-page PDF document.)
Microsoft Developer Network (MSDN) documentation on calling conventions.
StackOverflow x86 tag wiki has lots of useful links.

MSVC Assembly function arguments C++ vs _asm

I have a function which takes 3 arguments, dest, src0, src1, each a pointer to data of size 12. I made two versions. One is written in C and optimized by the compiler, the other one is fully written in _asm. So yeah. 3 arguments? I naturally do something like:
mov ecx, [src0]
mov edx, [src1]
mov eax, [dest]
I am a bit confused by the compiler, as it saw fit to add the following:
_src0$ = -8 ; size = 4
_dest$ = -4 ; size = 4
_src1$ = 8 ; size = 4
?vm_vec_add_scalar_asm##YAXPAUvec3d##PBU1#1#Z PROC ; vm_vec_add_scalar_asm
; _dest$ = ecx
; _src0$ = edx
; 20 : {
sub esp, 8
mov DWORD PTR _src0$[esp+8], edx
mov DWORD PTR _dest$[esp+8], ecx
; 21 : _asm
; 22 : {
; 23 : mov ecx, [src0]
mov ecx, DWORD PTR _src0$[esp+8]
; 24 : mov edx, [src1]
mov edx, DWORD PTR _src1$[esp+4]
; 25 : mov eax, [dest]
mov eax, DWORD PTR _dest$[esp+8]
Function body etc.
add esp, 8
ret 0
What does the _src0$[esp+8] etc. even means? Why does it do all this stuff before my code? Why does it try to [apparently]stack anything so badly?
In comparison, the C++ version has only the following before its body, which is pretty similar:
_src1$ = 8 ; size = 4
?vm_vec_add##YAXPAUvec3d##PBU1#1#Z PROC ; vm_vec_add
; _dest$ = ecx
; _src0$ = edx
mov eax, DWORD PTR _src1$[esp-4]
Why is this little sufficient?
The answer of Mats Petersson explained __fastcall. But I guess that is not exactly what you're asking ...
Actually _src0$[esp+8] just means [_src0$ + esp + 8], and _src0$ is defined above:
_src0$ = -8 ; size = 4
So, the whole expression _src0$[esp+8] is nothing but [esp] ...
To see why it does all these stuff, you should probably first understand what Mats Petersson said in his post, the __fastcall, or more generally, what is a calling convention. See the link in his post for detailed informations.
Assuming that you have understood __fastcall, now let's see what happens to your codes. The compiler is using __fastcall. Your callee function is f(dst, src0, src1), which requires 3 parameters, so according to the calling convention, when a caller calls f, it does the following:
Move dst to ecx and src0 to edx
Push src1 onto the stack
Push the 4 bytes return address onto the stack
Go to the starting address of the function f
And the callee f, when its code begins, then knows where the parameters are: dst and src0 are in the registers ecx and edx, respectively; esp is pointing to the 4 bytes return address, but the 4 bytes below it (i.e. DWORD PTR[esp+4]) is exactly src1.
So, in your "C++ version", the function f just does what it should do:
mov eax, DWORD PTR _src1$[esp-4]
Here _src1$ = 8, so _src1$[esp-4] is exactly [esp+4]. See, it just retrieves the parameter src1 and stores it in eax.
There is however a tricky point here. In the code of f, if you want to use the parameter src1 multiple times, you can certainly do that, because it's always stored in the stack, right below the return address; but what if you want to use dst and src0 multiple times? They are in the registers, and can be destroyed at any time.
So in that case, the compiler should do the following: right after entering the function f, it should remember the current values of ecx and edx (by pushing them onto the stack). These 8 bytes are the so-called "shadow space". It is not done in your "C++ version", probably because the compiler knows for sure that these two parameters will not be used multiple times, or that it can handle it properly some other way.
Now, what happens to your _asm version? The problem here is that you are using inline assembly. The compiler then loses its control to the registers, and it cannot assume that the registers ecx and edx are safe in your _asm block (they are actually not, since you used them in the _asm block). Thus it is forced to save them at the beginning of the function.
The saving goes as follows: it first raises esp by 8 bytes (sub esp, 8), then move edx and ecx to [esp] and [esp+4] respectively.
And then it can enter safely your _asm block. Now in its mind (if it has one), the picture is that [esp] is src0, [esp+4] is dst, [esp+8] is the 4 byte return address, and [esp+12] is src1. It no longer thinks about ecx and edx.
Thus your first instruction in the _asm block, mov ecx, [src0], should be interpreted as mov ecx, [esp], which is the same as
mov ecx, DWORD PTR _src0$[esp+8]
and the same for the other two instructions.
At this point, you might say, aha it's doing stupid things, I don't want it to waste time and space on that, is there a way?
Well there is a way - do not use inline assembly... it's convenient, but there is a compromise.
You can write the assembly function f in a .asm source file and public it. In the C/C++ code, declare it as extern 'C' f(...). Then, when you begin your assembly function f, you can play directly with your ecx and edx.
The compiler has decided to use a calling convention that uses "pass arguments in registers" aka __fastcall. This allows the compiler to pass some of the arguments in registers, instead of pushing onto stack, and this can reduce the overhead in the call, because moving from a variable to a register is faster than pushing onto the stack, and it's now already in a register when we get to the callee function, so no need to read it from the stack.
There is a lot more information about how calling conventions work on the web. The wikipedia article on x86 calling conventions is a good starting point.

Passing parameters one by one, or by wrapping them in an array, struct or tuple

When passing arguments to a function I always assumed that passing arguments one by one is not different from passing them wrapped in an array or a struct or a tuple. However, a simple experiment showed that I was wrong.
The following program when compiled with GCC:
int test(int a, int b, int c, int d) {
return a + b + c + d;
}
int test(std::array<int, 4> arr) {
return arr[0] + arr[1] + arr[2] + arr[3];
}
struct abcd {
int a; int b; int c; int d;
};
int test(abcd s) {
return s.a + s.b + s.c + s.d;
}
int test(std::tuple<int, int, int, int> tup) {
return std::get<0>(tup) + std::get<1>(tup) + std::get<2>(tup) + std::get<3>(tup);
}
...produces a variety of assembly outputs:
impl_test(int, int, int, int):
lea eax, [rdi+rsi]
add eax, edx
add eax, ecx
ret
impl_test(std::array<int, 4ul>):
mov rax, rdi
sar rax, 32
add eax, edi
add eax, esi
sar rsi, 32
add eax, esi
ret
impl_test(abcd):
mov rax, rdi
sar rax, 32
add eax, edi
add eax, esi
sar rsi, 32
add eax, esi
ret
impl_test(std::tuple<int, int, int, int>):
mov eax, DWORD PTR [rdi+8]
add eax, DWORD PTR [rdi+12]
add eax, DWORD PTR [rdi+4]
add eax, DWORD PTR [rdi]
ret
main:
push rbp
push rbx
mov ecx, 4
mov edx, 3
movabs rbp, 8589934592
mov esi, 2
sub rsp, 24
mov edi, 1
movabs rbx, 17179869184
call int test<int, int, int, int>(int, int, int, int)
mov rdi, rbp
mov rsi, rbx
or rbx, 3
or rdi, 1
or rsi, 3
call int test<std::array<int, 4ul> >(std::array<int, 4ul>)
mov rdi, rbp
mov rsi, rbx
or rdi, 1
call int test<abcd>(abcd)
mov rdi, rsp
mov DWORD PTR [rsp], 4
mov DWORD PTR [rsp+4], 3
mov DWORD PTR [rsp+8], 2
mov DWORD PTR [rsp+12], 1
call int test<std::tuple<int, int, int, int> >(std::tuple<int, int, int, int>)
add rsp, 24
xor eax, eax
pop rbx
pop rbp
ret
Why is there a difference?
When a function is called (that is, not inlined, constexpr evaluated or eliminated), the way arguments are passed depends on many factors including:
Whether the argument is an integer or floating-point if the argument is of a primitive type.
The type of the argument.
Whether its address is taken in some non-eliminated code in the callee.
The default or specified calling convention.
Whether Whole Program Optimization (WPO) is being used.
Whether the callee is in a shared library, static library or object file, or in the same translation unit.
The specified floating-point behavior.
The target platform.
The position of the parameter in the parameter list.
Let's get back to the example you provided. You compiled the code with -02 so dead code won't be eliminated and function inlining is disabled. So all functions have to be called. The target platform is x64.
The first function has four 4-byte integer parameters. Therefore, all of them are passed through registers.
The second function has one fixed-size array of four 4-byte integers. The compiler decided to use two registers (rdi and rsi) to pass the four integers where rdi = 0x200000001 and rsi = 0x400000003. Notice how the four integers (1, 2, 3, 4) are compactly passed using these two registers.
Passing the integers as a structure rather then one by one made the compiler use different techniques to pass them. But there is a trade off here between the size of code, speed and number of registers required.
The same thing goes for the third function.
The last function, however, contains calls to std::get which require the address of the passed tuple. So the address is stored in rdi to be used by the std::get function. Since you're compiling with C++14, std::get is marked with constexpr. The compiler was able to evaluate the function and therefore the memory access has been emitted in test function rather than emitting a call to the std::get function. Notice that this is different from inlining.