Finding duplicate values of std::map at compile time - c++

I have a template class (BiMap) which is used as a bidirectional map for lookup purposes e.g. an enum value mapped to a std::string equivalent and vice versa.
To achieve this the std::string values must also be unique to prevent duplicate std::string values returning the first found enum key during a search by value lookup.
template<typename Key, typename Value>
class BiMap {
public:
explicit BiMap(std::initializer_list<std::pair<Key, Value>> &&items) : bimap_{items.begin(), items.end()} {
assert(!HasDuplicates(bimap_));
}
Key GetKeyFromValue(const Value &value) const {
auto it = std::find_if(bimap_.begin(), bimap_.end(), [&value](const std::pair<Key, Value> &kvp) {
return kvp.second == value;
});
return (it != bimap_.end() ? it->first : Key());
}
Value GetValueFromKey(const Key &key) const {
auto it = bimap_.find(key);
return (it != bimap_.end() ? it->second : Value());
}
private:
const std::map<Key, Value> bimap_;
};
I use a function called HasDuplicates to check for any duplicate values:
template<typename Key, typename Value>
bool HasDuplicates(const std::map<Key, Value> &bimap) {
// Create a map to use the values as keys
std::map<Value, Key> value_key_map;
for (auto &kvp : bimap) value_key_map.emplace(kvp.second, kvp.first);
// If there are no duplicate values then the sizes should be the same
std::cout << "HasDuplicates: " << std::boolalpha << (value_key_map.size() != bimap.size()) << std::endl;
return (value_key_map.size() != bimap.size());
}
And I can run the following example code which will indicate at runtime whether there is any duplicate values:
// Test 1: No duplicates
std::cout << "**No duplicates test:**" << std::endl;
const BiMap<std::string, int> bi_map_no_dups({{"foo", 1}, {"bar", 2}, {"foobar", 3}});
std::cout << "foo: " << bi_map_no_dups.GetValueFromKey("foo") << std::endl;
std::cout << "bar: " << bi_map_no_dups.GetValueFromKey("bar") << std::endl;
std::cout << "foobar: " << bi_map_no_dups.GetValueFromKey("foobar") << std::endl;
// Test 2: Duplicates
std::cout << "**Duplicates test:**" << std::endl;
const BiMap<std::string, int> bi_map_dups({{"foo", 1}, {"bar", 2}, {"foobar", 1}});
std::cout << "foo: " << bi_map_dups.GetValueFromKey("foo") << std::endl;
std::cout << "bar: " << bi_map_dups.GetValueFromKey("bar") << std::endl;
std::cout << "foobar: " << bi_map_dups.GetValueFromKey("foobar") << std::endl;
The output of this would be:
**No duplicates test:**
HasDuplicates: false
foo: 1
bar: 2
foobar: 3
**Duplicates test:**
HasDuplicates: true
main.cpp:22: BiMap<Key, Value>::BiMap(std::initializer_list<std::pair<_T1, _T2> >&&) [with Key = std::basic_string<char>; Value = int]: Assertion `!HasDuplicates(bimap_)' failed.
A working example of the above code can be found here.
The Question:
How can I evaluate whether the std::map has duplicate values at compile time?
What I've tried:
I've already tried to implement the constexpr template function like here:
template <typename K, typename V> constexpr bool has_duplicates(const std::map<K,V> *map)
{
std::map<V,K> value_key_map;
for(auto &kvp : map) value_key_map.emplace(map->second,map->first);
return map->size() == value_key_map.size();
}
int main() {
// Cannot get this part to work
constexpr std::map<std::string, int> bimap({{"foo", 1}, {"bar", 2}, {"foobar", 1}});
static_assert(!has_duplicates(&bimap));
return 0;
}
Note: I'm using C++11 where I cannot yet declare local variables and loops inside the constexpr function and should thus revert to recursion as seen here. But, for this example I'm happy if I can find a suitable solution with C++14's constexpr features and I'll get a recursive version later on (if possible).

How can I evaluate whether the std::map has duplicate values at compile time?
You can't. std::map() isn't usable at compile time.
You could instead use https://github.com/serge-sans-paille/frozen or https://github.com/mapbox/eternal to make that check (or some other constexpr structure).
The other way (if you want to stay at the C++11 level) is to build a template metaprogramming based map, like in this answer.

With the help of the comment section, I was able to formulate a suitable solution to my problem.
Important: std::map is not constexpr and can't be used to evaluate its contents at compile time.
However, you can use std::array<std::pair<const K, V>, N> to assist in evaluating the contents at compile time from C++14 as follows:
template<typename K, typename T, size_t N>
constexpr bool has_duplicates(const std::array<std::pair<K, T>, N> *arr) {
for (int i = 0; i < N - 1; i++) {
for (int j = i + 1; j < N; j++) {
if (compare_equal((*arr)[i].second,(*arr)[j].second) ||
compare_equal((*arr)[i].first, (*arr)[j].first)) return true;
}
}
return false;
}
with usage:
constexpr std::array<std::pair<int, const char *>, 3> arrd{{ {1, "foobar"},
{2, "bar"},
{3, "foobar"}}};
static_assert(!has_duplicates(&arrd), "Duplicates Found!");
and you need the following additional comparison functions:
template<typename A, typename B>
constexpr bool compare_equal(A a, B b) {
return a == b;
}
template <>
constexpr bool compare_equal(const char * a, const char * b) {
return *a == *b && (*a == '\0' || compare_equal(a + 1, b + 1));
}
For C++11 support you need to change the has_duplicates function to a recursive implementation. Here is a fully working example of both versions.
You can thus use this in your class to check for duplicate values at compile time.

Related

Finding the top K frequent Elements

I am trying to solve a question on leetcode which is finding the top k frequent elements. I think my code is correct but the output for a test case is failing.
Input: [ 4,1,-1,2,-1,2,3]
K=2
My answer comes out to be {1,-1} but the expected is {-1,2}. I am not sure where am i getting wrong.
struct myComp{
constexpr bool operator()(pair<int,int> & a,pair<int,int> &b)
const noexcept
{
if(a.second==b.second)
{
return a.first<b.first;
}
return a.second<b.second;
}
};
class Solution {
public:
vector<int> topKFrequent(vector<int>& nums, int k) {
unordered_map<int,int> mp;
for(int i=0;i<nums.size();i++)
{
mp[nums[i]]++;
}
priority_queue<pair<int,int>,vector<pair<int,int>>,myComp> minheap;
for(auto x:mp)
{
minheap.push(make_pair(x.second,x.first));
if(minheap.size()>k)
{
minheap.pop();
}
}
vector<int> x;
while(minheap.size()>0)
{
x.push_back(minheap.top().second);
minheap.pop();
}
return x;
link: https://leetcode.com/problems/top-k-frequent-elements
In the minheap, pairs of <frequency, element> are being pushed. Since we want to sort these pairs on basis of frequency, we need to compare on the basis of frequency only.
Let's say there are two pairs a and b. Then for normal sorting, the comparison would be :
a.first < b.first;
And for reverse sorting, the comparison would be :
a.first > b.first;
In case of min-heap, we need reverse sorting. Hence, the following comparator makes your code pass all the test cases :
struct myComp
{
constexpr bool operator()(pair<int,int> & a,pair<int,int> &b)
const noexcept
{
return a.first > b.first;
}
};
There are several issues with your code.
Obviously there is somewhere using namespace std; in your code. This should be avoided. You will find many posts here on SO explaining, why it this should not be done.
Then we need to qualify all elements from the std library with std::, which makes the scope very clear.
Next: You do not need your own sorting function. Since you insert the elements from the pair in swapped order into the std::priority_queue, the sorting criteria is valid for the counter part, not for the key value. So, your sorting function was anyway wrong, because it was sorting accodring to "second" and not to "first". But if we have a standard sorting, we do not need a special sorting algorithm. A std::pair has a less-than operator. So, the definition can be simply:
std::priority_queue<std::pair<int, int>> minheap;
Then, your if statement
if(minheap.size()>k)
{
minheap.pop();
}
is wrong. You will allow only k values to be inserted. And this are not necessarily the biggest ones. So, you need to insert all values from the std::unordered map. And then they are sorted.
With some cosmetic changes the code will look like the below:
#include <iostream>
#include <utility>
#include <unordered_map>
#include <vector>
#include <queue>
std::vector<int> topKFrequent(std::vector<int>& nums, size_t k) {
std::unordered_map<int, int> mp;
for (size_t i = 0; i < nums.size(); i++)
{
mp[nums[i]]++;
}
std::priority_queue<std::pair<int, int>> minheap;
for (auto x : mp)
{
minheap.push(std::make_pair(x.second, x.first));
}
std::vector<int> x;
for (size_t i{}; i< k; ++i)
{
x.push_back(minheap.top().second);
minheap.pop();
}
return x;
}
int main() {
std::vector data{ 4,1,-1,2,-1,2,3 };
std::vector result = topKFrequent(data, 2);
for (const int i : result) std::cout << i << ' '; std::cout << '\n';
return 0;
}
An additional solution
#include <iostream>
#include <vector>
#include <algorithm>
#include <unordered_map>
#include <utility>
auto topKFrequent(std::vector<int>& nums, size_t k) {
// Count occurences
std::unordered_map<int, size_t> counter{};
for (const int& i : nums) counter[i]++;
// For storing the top k
std::vector<std::pair<int, size_t>> top(k);
// Get top k
std::partial_sort_copy(counter.begin(), counter.end(), top.begin(), top.end(),
[](const std::pair<int, size_t >& p1, const std::pair<int, size_t>& p2) { return p1.second > p2.second; });
return top;
}
// Test code
int main() {
std::vector data{ 4,1,-1,2,-1,2,3 };
for (const auto& p : topKFrequent(data, 2))
std::cout << "Value: " << p.first << " \t Count: " << p.second << '\n';
return 0;
}
And of course, we do have also the universal solution for any kind of iterable container. Including the definition for type traits using SFINAE and checking for the correct template parameter.
#include <iostream>
#include <utility>
#include <unordered_map>
#include <algorithm>
#include <vector>
#include <iterator>
#include <type_traits>
// Helper for type trait We want to identify an iterable container ----------------------------------------------------
template <typename Container>
auto isIterableHelper(int) -> decltype (
std::begin(std::declval<Container&>()) != std::end(std::declval<Container&>()), // begin/end and operator !=
++std::declval<decltype(std::begin(std::declval<Container&>()))&>(), // operator ++
void(*std::begin(std::declval<Container&>())), // operator*
void(), // Handle potential operator ,
std::true_type{});
template <typename T>
std::false_type isIterableHelper(...);
// The type trait -----------------------------------------------------------------------------------------------------
template <typename Container>
using is_iterable = decltype(isIterableHelper<Container>(0));
// Some Alias names for later easier reading --------------------------------------------------------------------------
template <typename Container>
using ValueType = std::decay_t<decltype(*std::begin(std::declval<Container&>()))>;
template <typename Container>
using Pair = std::pair<ValueType<Container>, size_t>;
template <typename Container>
using Counter = std::unordered_map<ValueType<Container>, size_t>;
// Function to get the k most frequent elements used in any Container ------------------------------------------------
template <class Container>
auto topKFrequent(const Container& data, size_t k) {
if constexpr (is_iterable<Container>::value) {
// Count all occurences of data
Counter<Container> counter{};
for (const auto& d : data) counter[d]++;
// For storing the top k
std::vector<Pair<Container>> top(k);
// Get top k
std::partial_sort_copy(counter.begin(), counter.end(), top.begin(), top.end(),
[](const std::pair<int, size_t >& p1, const std::pair<int, size_t>& p2) { return p1.second > p2.second; });
return top;
}
else
return data;
}
int main() {
std::vector testVector{ 1,2,2,3,3,3,4,4,4,4,5,5,5,5,6,6,6,6,6,7 };
for (const auto& p : topKFrequent(testVector, 2)) std::cout << "Value: " << p.first << " \t Count: " << p.second << '\n';
std::cout << '\n';
double cStyleArray[] = { 1.1, 2.2, 2.2, 3.3, 3.3, 3.3 };
for (const auto& p : topKFrequent(cStyleArray, 2)) std::cout << "Value: " << p.first << " \t Count: " << p.second << '\n';
std::cout << '\n';
std::string s{"abbcccddddeeeeeffffffggggggg"};
for (const auto& p : topKFrequent(s, 2)) std::cout << "Value: " << p.first << " \t Count: " << p.second << '\n';
std::cout << '\n';
double value = 12.34;
std::cout << topKFrequent(value,2) << "\n";
return 0;
}
Developed and tested with Microsoft Visual Studio Community 2019, Version 16.8.2.
Additionally compiled and tested with clang11.0 and gcc10.2
Language: C++17

Generating floating point limits at compile time via template arguments and constexpr semantics:

I'm working on a set of classes. My Function class will take a Functor class which stores a function pointer to some defined function which has an operator that will invoke the function call from the function pointer. It uses a Limit class that currently takes <int,int> for its upper and lower bounds. It has nothing but static constexpr functions to return the bounds and to calculate the number of elements between those bounds. If the lower bounds = 1 and upper bounds = 5 it will generate 5 for the number of elements to be evaluated for that function...
Here is what I'm doing with these classes:
First I declare a function such as f(x) = x, f(x) = x^2, or f(x) = cos(x), etc.
Then I instantiate a Functor object based on the above function(s) parameter types both for the return and for its parameter-argument types...
Next, I assign the function to my Functor class's member variable.
Then I instantiate a Function object giving it the data-type and the Lower & Upper limits for the range of the function.
The Function class upon construction automatically generates the data points of that function from [lower,upper] and stores the generated values in its internal array.
The Function class also contains an operator that will allow the user to get any value from any given input.
Pseudo Example:
f(x) = x^2;
Functor<T,T> functor;
functor.member = &f(x);
Function<T,Lower,Upper,T> function(functor);
// If T=int, Lower = -4, and Upper = 4 then the internal data set will be
// (-4,16) (-3,9), (-2,4), (-1,1), (0,0), (1,1), (2,4), (3,9), (4,16)
// The user can also use it's operator to call function(9) and it will return 81
Here is my working program that is generating datasets of values from my classes using various functions:
main.cpp
#include <cmath>
#include <exception>
#include <iostream>
#include "Function.h"
int main() {
try {
pipes::Functor<int, int> functor1;
functor1.FuncPtr = &square;
pipes::Function<int, -10, 10, int> func1( functor1 );
auto data1{ func1.data() };
for (auto& p : data1)
std::cout << '(' << p.first << ',' << p.second << ")\n";
std::cout << '\n';
std::cout << "f(25) = " << func1(25) << "\n\n";
pipes::Functor<int, int> functor2;
functor2.FuncPtr = &linear;
pipes::Function<int, -10, 10, int> func2(functor2);
auto data2{ func2.data() };
for (auto& p : data2)
std::cout << '(' << p.first << ',' << p.second << ")\n";
std::cout << '\n';
std::cout << "f(25) = " << func2(25) << "\n\n";
pipes::Functor<double, double> functor3;
functor3.FuncPtr = &cosine;
pipes::Function<double, -7, 7, double> func3(functor3);
auto data3{ func3.data() };
for (auto& p : data3)
std::cout << '(' << p.first << ',' << p.second << ")\n";
std::cout << '\n';
std::cout << "f(25) = " << func3(25) << "\n\n";
}
catch (const std::exception& e) {
std::cerr << e.what() << "\n\n";
return EXIT_FAILURE;
}
return EXIT_SUCCESS;
}
Function.h
#pragma once
#include <array>
namespace pipes {
template<typename Ret, typename... Args>
struct Functor {
Ret(*FuncPtr)(Args...);
Ret operator()(Args... args) { return FuncPtr(args...); }
};
template<int Lower, int Upper>
class Limits {
public:
static constexpr unsigned lower_bound() { return Lower; }
static constexpr unsigned upper_bound() { return Upper; }
static constexpr unsigned element_count() { return (Upper - Lower + 1); }
};
template<typename T, int Lower, int Upper, typename... Args>
class Function {
std::array<std::pair<T, T>, Limits<Lower,Upper>::element_count()> data_points_;
Functor<T,Args...> functor_;
public:
Function(Functor<T,Args...> func) {
functor_ = func;
for (unsigned i = 0; i < Limits<Lower,Upper>::element_count(); i++) {
data_points_[i].first = ((T)i + (T)Lower);
data_points_[i].second = functor_(data_points_[i].first);
}
}
T operator()(Args... args) const {
return functor_.FuncPtr(args...);
}
constexpr auto lower() const { return Lower; }
constexpr auto upper() const { return Upper; }
constexpr auto count() const { return Limits<Lower,Upper>::element_count(); }
constexpr auto data() const { return data_points_; }
};
} // namespace pipes
When I run the program it is generating this output which appears to be correct:
Output
(-10,100)
(-9,81)
(-8,64)
(-7,49)
(-6,36)
(-5,25)
(-4,16)
(-3,9)
(-2,4)
(-1,1)
(0,0)
(1,1)
(2,4)
(3,9)
(4,16)
(5,25)
(6,36)
(7,49)
(8,64)
(9,81)
(10,100)
f(25) = 625
(-10,-10)
(-9,-9)
(-8,-8)
(-7,-7)
(-6,-6)
(-5,-5)
(-4,-4)
(-3,-3)
(-2,-2)
(-1,-1)
(0,0)
(1,1)
(2,2)
(3,3)
(4,4)
(5,5)
(6,6)
(7,7)
(8,8)
(9,9)
(10,10)
f(25) = 25
(-7,0.753902)
(-6,0.96017)
(-5,0.283662)
(-4,-0.653644)
(-3,-0.989992)
(-2,-0.416147)
(-1,0.540302)
(0,1)
(1,0.540302)
(2,-0.416147)
(3,-0.989992)
(4,-0.653644)
(5,0.283662)
(6,0.96017)
(7,0.753902)
f(25) = 0.991203
And now for my question where this becomes the tricky part...
With my code currently the way it is, everything is fine as long as my bounds [-a,b] are of an integral type...
Let's suppose on my last example such as with cos, what if I want to have my bounds from [-2pi,2pi] where the lower and upper limits are of floating-point types...
The Issue:
Currently in C++ this is non-standard and in most cases won't compile:
template<float val> // or template<double>
struct foo() {
constexpr float operator()() {
return val;
}
};
And the above prevents me from doing something like this:
constexpr double PI{ 6.28318531 };
pipes::Functor<double, double> functor3;
functor3.FuncPtr = &cosine;
pipes::Function<double, -PI, PI, double> func3(functor3);
auto data3{ func3.data() };
for (auto& p : data3)
std::cout << '(' << p.first << ',' << p.second << ")\n";
std::cout << '\n';
std::cout << "f(25) = " << func3(25) << "\n\n";
So if I want to be able to support floating-point types for my intervals of my Limits or Range class... What kind of alternative would there be if such a thing is currently possible in c++? Or would I just have to simply restructure the way my class templates are designed?
If the above is possible in some way during compile time via templates and constexpr semantics, then there is another issue that arises that will have to be taken into consideration and that would be the stepping interval for use with floating-point types to know how many data points there will be within the dataset... (basically calculating dx based on some stepping value which would be defined by the user, for example: (0.1, 0.001, etc...) and the number of data points would be calculated by the number of these divisions between [lower, upper]... However, if the stepping value is known at compile-time, then calculating the divisions should be simple enough... that's not a major concern. The bigger concern is being able to express floating-point constants at compile time for template evaluation...
Currently, with the way my code is with its design, I have hit a limit on its functionality... I'm not sure how to provide a similar interface to support a floating-point range that can be calculated and generated at compile time! Any bit of help or suggestions is welcomed!
I think the closest you can get to a construct like yours is:
#include <iostream>
#include <array>
constexpr const double PI_2{ 6.28318531 };
template<double const &lower, double const &upper>
void foo() {
static_assert(lower<upper, "invalid lower and upper value");
constexpr size_t size = (upper-lower);
std::array<int, size> test;
std::cout << lower << " " << upper << " " << test.size() << std::endl;
}
template<double const &V>
struct neg {
static constexpr double value = -V;
};
int main()
{
foo<neg<PI_2>::value, PI_2>();
return 0;
}
If you can always specify the type as first template argument you could have something like this:
template<typename T, T const &lower, T const &upper>
void foo() {
std::cout << lower << " " << upper << std::endl;
}
I didn't fully think it through, how to get the floating-point part and the other together, but I think it should be possible.
In modern C++ and how templates are currently designed, I had to slightly restructure my code. It's forcing me to have to use std::vector instead of std::array, because we can't use floating-point types as constant template arguments... So I ended up having to change two of my classes... I had to change my Limits class, and my Function class.
My Limits class now accepts a Type instead of constant-integral-type and it stores 3 member variables. It also has a default constructor and a user constructor. The functions are now just constexpr instead of being static.
My Function class now stores a Limits class object and data_points_ is no longer an std::array as it is now std::vector. It's constructor now also takes in a Limits object.
I had also taken into account for the step size for floating-point ranges.
Here is what my modified code looks like with its given output:
main.cpp
#include <cmath>
#include <iostream>
#include <exception>
#include "Function.h"
constexpr int square(int x) {
return x * x;
}
constexpr int linear(int x) {
return x;
}
double cosine(double x) {
return cos(x);
}
//template<float val>
struct foo {
float operator()(float val) { return val; }
};
int main() {
try {
pipes::Functor<int, int> functor1;
pipes::Limits<int> limit1(-10, 10, 1);
functor1.FuncPtr = &square;
pipes::Function<int, int, int> func1( limit1, functor1 );
auto data1{ func1.data() };
for (auto& p : data1)
std::cout << '(' << p.first << ',' << p.second << ")\n";
std::cout << '\n';
std::cout << "f(25) = " << func1(25) << "\n\n";
pipes::Functor<int,int> functor2;
pipes::Limits<int> limit2(-10, 10, 1);
functor2.FuncPtr = &linear;
pipes::Function<int, int, int> func2(limit2, functor2);
auto data2{ func2.data() };
for (auto& p : data2)
std::cout << '(' << p.first << ',' << p.second << ")\n";
std::cout << '\n';
std::cout << "f(25) = " << func2(25) << "\n\n";
constexpr double PI{ 6.28318531 };
pipes::Functor<double, double> functor3;
pipes::Limits<double> limits3( (-PI), PI, 0.1);
functor3.FuncPtr = &cosine;
pipes::Function<double, double, double> func3(limits3, functor3);
auto data3{ func3.data() };
for (auto& p : data3)
std::cout << '(' << p.first << ',' << p.second << ")\n";
std::cout << '\n';
std::cout << "f(25) = " << func3(25) << "\n\n";
}
catch (const std::exception& e) {
std::cerr << e.what() << "\n\n";
return EXIT_FAILURE;
}
return EXIT_SUCCESS;
}
Function.h
#pragma once
#include <vector>
namespace pipes {
template<typename Ret, typename... Args>
struct Functor {
Ret(*FuncPtr)(Args...);
Ret operator()(Args... args) { return FuncPtr(args...); }
};
template<typename Ty>
class Limits {
private:
Ty Lower;
Ty Upper;
Ty Step;
public:
Limits() {}
Limits(Ty lower, Ty upper, Ty step) : Lower{ lower }, Upper{ upper }, Step{ step } {}
constexpr Ty lower_bound() { return Lower; }
constexpr Ty upper_bound() { return Upper; }
constexpr Ty step_size() { return Step; }
constexpr unsigned element_count() { return (unsigned)((Upper - Lower + 1)/Step); }
};
template<typename LimT, typename FuncT, typename... Args>
class Function {
Limits<LimT> limits_;
Functor<FuncT, Args...> functor_;
std::vector<std::pair<FuncT, FuncT>> data_points_;
public:
Function(Limits<LimT> limits, Functor<FuncT,Args...> func) {
limits_ = limits;
functor_ = func;
data_points_.resize( limits_.element_count() );
for (unsigned i = 0; i < limits_.element_count(); i++) {
auto x = limits_.lower_bound() + (i * limits_.step_size());
data_points_[i].first = (x);
data_points_[i].second = functor_(x);
}
}
FuncT operator()(Args... args) const {
return functor_.FuncPtr(args...);
}
constexpr auto lower() const { return limits_.lower_bound(); }
constexpr auto upper() const { return limits_.upper_bound(); }
constexpr auto count() const { return limits_.element_count(); }
constexpr auto step() const { return limits_.step_size(); }
constexpr auto data() const { return data_points_; }
};
} // namespace pipes
Output
(-10,100)
(-9,81)
(-8,64)
(-7,49)
(-6,36)
(-5,25)
(-4,16)
(-3,9)
(-2,4)
(-1,1)
(0,0)
(1,1)
(2,4)
(3,9)
(4,16)
(5,25)
(6,36)
(7,49)
(8,64)
(9,81)
(10,100)
f(25) = 625
(-10,-10)
(-9,-9)
(-8,-8)
(-7,-7)
(-6,-6)
(-5,-5)
(-4,-4)
(-3,-3)
(-2,-2)
(-1,-1)
(0,0)
(1,1)
(2,2)
(3,3)
(4,4)
(5,5)
(6,6)
(7,7)
(8,8)
(9,9)
(10,10)
f(25) = 25
(-6.28319,1)
(-6.18319,0.995004)
(-6.08319,0.980067)
(-5.98319,0.955336)
(-5.88319,0.921061)
(-5.78319,0.877583)
(-5.68319,0.825336)
(-5.58319,0.764842)
(-5.48319,0.696707)
(-5.38319,0.62161)
(-5.28319,0.540302)
(-5.18319,0.453596)
(-5.08319,0.362358)
(-4.98319,0.267499)
(-4.88319,0.169967)
(-4.78319,0.0707372)
(-4.68319,-0.0291995)
(-4.58319,-0.128844)
(-4.48319,-0.227202)
(-4.38319,-0.32329)
(-4.28319,-0.416147)
(-4.18319,-0.504846)
(-4.08319,-0.588501)
(-3.98319,-0.666276)
(-3.88319,-0.737394)
(-3.78319,-0.801144)
(-3.68319,-0.856889)
(-3.58319,-0.904072)
(-3.48319,-0.942222)
(-3.38319,-0.970958)
(-3.28319,-0.989992)
(-3.18319,-0.999135)
(-3.08319,-0.998295)
(-2.98319,-0.98748)
(-2.88319,-0.966798)
(-2.78319,-0.936457)
(-2.68319,-0.896758)
(-2.58319,-0.8481)
(-2.48319,-0.790968)
(-2.38319,-0.725932)
(-2.28319,-0.653644)
(-2.18319,-0.574824)
(-2.08319,-0.490261)
(-1.98319,-0.400799)
(-1.88319,-0.307333)
(-1.78319,-0.210796)
(-1.68319,-0.112153)
(-1.58319,-0.0123887)
(-1.48319,0.087499)
(-1.38319,0.186512)
(-1.28319,0.283662)
(-1.18319,0.377978)
(-1.08319,0.468517)
(-0.983185,0.554374)
(-0.883185,0.634693)
(-0.783185,0.70867)
(-0.683185,0.775566)
(-0.583185,0.834713)
(-0.483185,0.88552)
(-0.383185,0.927478)
(-0.283185,0.96017)
(-0.183185,0.983268)
(-0.0831853,0.996542)
(0.0168147,0.999859)
(0.116815,0.993185)
(0.216815,0.976588)
(0.316815,0.950233)
(0.416815,0.914383)
(0.516815,0.869397)
(0.616815,0.815725)
(0.716815,0.753902)
(0.816815,0.684547)
(0.916815,0.608351)
(1.01681,0.526078)
(1.11681,0.438547)
(1.21681,0.346635)
(1.31681,0.25126)
(1.41681,0.153374)
(1.51681,0.0539554)
(1.61681,-0.0460021)
(1.71681,-0.1455)
(1.81681,-0.243544)
(1.91681,-0.339155)
(2.01681,-0.431377)
(2.11681,-0.519289)
(2.21681,-0.602012)
(2.31681,-0.67872)
(2.41681,-0.748647)
(2.51681,-0.811093)
(2.61681,-0.865435)
(2.71681,-0.91113)
(2.81681,-0.947722)
(2.91681,-0.974844)
(3.01681,-0.992225)
(3.11681,-0.999693)
(3.21681,-0.997172)
(3.31681,-0.984688)
(3.41681,-0.962365)
(3.51681,-0.930426)
(3.61681,-0.889191)
(3.71681,-0.839072)
(3.81681,-0.780568)
(3.91681,-0.714266)
(4.01681,-0.640826)
(4.11681,-0.560984)
(4.21681,-0.475537)
(4.31681,-0.385338)
(4.41681,-0.291289)
(4.51681,-0.19433)
(4.61681,-0.0954289)
(4.71681,0.0044257)
(4.81681,0.104236)
(4.91681,0.203005)
(5.01681,0.299745)
(5.11681,0.393491)
(5.21681,0.483305)
(5.31681,0.56829)
(5.41681,0.647596)
(5.51681,0.720432)
(5.61681,0.78607)
(5.71681,0.843854)
(5.81681,0.893206)
(5.91681,0.933634)
(6.01681,0.964733)
(6.11681,0.986192)
(6.21681,0.997798)
(6.31681,0.999435)
(6.41681,0.991085)
(6.51681,0.972833)
(6.61681,0.94486)
(6.71681,0.907447)
(6.81681,0.860967)
(6.91681,0.805884)
(7.01681,0.742749)
(7.11681,0.672193)
f(25) = 0.991203
This is giving me the behavior that I want, however, I was trying to do the same thing using array... I'm guessing until C++ supports floating-point-constants as template arguments I'm going to have to settle with std::vector using heap allocations, instead of std::array and stack-cache friendly containers...

Sort two different vectors (that each have "active" bool) with one function

I create the base class which has the ACTIVE BOOL
class BaseTest{
public:
bool active = false;
BaseTest(){
// make most true
if ( getRand(0, 5) != 2){
active = true;
}
}
};
create two different child classes
class ChildTest_1: public BaseTest{
string child1 = "Is child 1";
public:
ChildTest_1(){
}
};
class ChildTest_2: public BaseTest{
string child2 = "Is NOT child 1";
public:
ChildTest_2(){
}
};
I want to be able to pass either child (or any vector with "ACTIVE") to this function and it will return the first inactive. I have a program that runs a lot of vectors of many objects and usually have a class that manages each object vector. It is becoming a pain and waste of repeated code to write this loop in every mgmt class. I want one that I can pass any vector that has objects with an active var.
I don't need sorting right now, but that was the closest term to what I need.
What I need is a function I can pass a vector to and it will return the first inactive object;
It would be even better if they did not need to share a base class as long
as each object in the vector has its own ACTIVE bool, but I can also make a simple base class that all would derive from.
int firstInactive(vector<BaseTest> & test ){
for ( int cnt = 0 ; cnt < test.size() ; cnt++ ){
if (!test[cnt].active){
cout << cnt << " Is inactive " <<endl;
// add actual sorting here if I need;
return cnt;
}
}
}
int main(int, char const**){
vector< ChildTest_1 > allTest1;
vector< ChildTest_2 > allTest2;
allTest1.resize(10);
allTest2.resize(10);
cout << "First inactive in alltest1 is " << firstInactive(allTest1) <<endl;
cout << "First inactive in alltest2 is " << firstInactive(allTest2) <<endl;
// as expected it says no known matching function call.
return 0 ;
}
I've searched and experimented for a few days now. I've read everything I could on polymorphism and templates, but cannot find an example that helps me.
You may use template (No base class required):
template <typename T>
auto firstInactive(const std::vector<T>& v)
// -> typename std::vector<T>::const_iterator // for c++11
{
return std::find_if(v.begin(), v.end(), [](const T& e) { return !e.active; });
}
and call it:
std::vector<ChildTest_1> allTest1(10);
std::vector<ChildTest_2> allTest2(10);
auto it1 = firstInactive(allTest1);
auto it2 = firstInactive(allTest2);
if (it1 != allTest1.end()) {
std::cout << "First inactive in alltest1 is "
<< std::distance(allTest1.cbegin(), it1) << std::endl;
}
if (it2 != allTest2.end()) {
std::cout << "First inactive in alltest2 is "
<< std::distance(allTest2.cbegin(), it2) << std::endl;
}
Demo
You can use a template:
#include <iostream>
#include <vector>
template <typename T>
T getFirstInactive(const std::vector<T>& v){
for (const auto& i : v){
if (!i.active) return i;
}
return T();
}
struct Foo{
bool active;
int x;
Foo() : active(true),x(0) {};
};
int main(){
auto v = std::vector<Foo>(10);
v[4].active = false;
v[4].x = 3;
std::cout << getFirstActive(v).x << std::endl;
}
output:
3
However, you probably dont want a copy, but a reference to the element. In that case it might be better to make the template return an iterator. (Also the template has to return something in case there is no inactive element, which is much nicer with iterators).
I experimented and came up with this solution based on both of your answers:
template <typename T>
int getFirstInactive(const std::vector<T> & obj){
int itr = 0;
for (const auto& i : obj){
if (!i.active){
return itr;
}
itr++;
}
return itr;
}
this returns the index number of the first inactive object, then all I need is to see if that index number is the same as the size, in which cash I push_back a new object. problem solved, thanks!

How to pass fields from a class to function in c++?

In some words: how can I pass various fields from a custom class to a single function?
Now in details:
I have a std::vector containing a class, for example CustomClass from which I have to extract a result from a field from this class by some criteria which are fields in this class and to combine somehow this data.
My first approach to this problem was to use a function which accepts as a parameter the std::vector of the class in order to extract the data and return a std:map. The key in this map is the type of the criteria by which the data should be combined and the value is an int with the combined data from all members of this vector.
The problem is that the criteria is not only one - more than one field from this class may be used as criteria (let for easiness all of the criteria are std::string, if they are not - I could make the function templated).
The easiest way for me now is to make dozens of functions with almost identical code and each of them to extract a simple concrete field from this class. However changes might require similar changes to all of the dozens of functions which would be a maintenance headache. But in this stage I cannot think how to pass to a single function a field from this class...
Here's an example code from this class:
// this is the class with data and criteria
class CustomClass
{
public:
std::string criteria1;
std::string criteria2;
std::string criteria3;
//... and others criteria
int dataToBeCombined;
// other code
};
// this is one of these functions
std::map<std::string, int> getDataByCriteria1(std::vector<CustomClass> aVector)
{
std::map<std::string, int> result;
foreach(CustomClass anObject in aVector)
{
if(result.find(anObject.criteria1)==result.end()) // if such of key doesn't exists
{
result.insert(std::make_pair(anObject.criteria1, anObject.dataToBeCombined));
}
else
{
// do some other stuff in order to combine data
}
}
return result;
}
and by similar way I should make the other functions which should work with CustomClass::criteria2, CustomClass::criteria3, etc.
I thought to make these criteria in a single array and to pass to this function only the number of the criteria but the class will be used by others for other purposes and the fields must be easy to read, so this will not be an option (i.e. the real names are not criteria1, criteria2, etc. but are descriptive).
Anyone with ideas?
EDIT: Someone referred my question to "C++ same function parameters with different return type" which obviously is very different - the function in my case return the same type every time, just the parameters it takes must be various fields from a class.
You can use pointer to member. Declare an argument std::string CustomClass::*pField in your function, pass it with &CustomClass::criteriaN, access it with anObject.*pField.
See more on the topic: Pointers to data members.
If all "criteria" are of the same type, I don't see an elegant solution but you can "enumerate" they in some way and use their number.
By example, you can declare a templated getVal() method in CustomClass in this way
template <int I>
const std::string & getVal () const;
and implement they, number by number, criteria by criteria, in this way (outside the body of the class)
template <>
const std::string & CustomClass::getVal<1> () const
{ return criteria1; }
template <>
const std::string & CustomClass::getVal<2> () const
{ return criteria2; }
template <>
const std::string & CustomClass::getVal<3> () const
{ return criteria3; }
Now, you can transform getDataByCriteria1() in a templated function getDataByCriteria() in this way
template <int I>
std::map<std::string, int> getDataByCriteria (std::vector<CustomClass> aVector)
{
std::map<std::string, int> result;
for (const auto & cc : aVector)
{
if ( result.find(cc.getVal<I>()) == result.end()) // if such of key doesn't exists
{
result.insert(std::make_pair(cc.getVal<I>(), cc.dataToBeCombined));
}
else
{
// do some other stuff in order to combine data
}
}
return result;
}
and call it in this way
auto map1 = getDataByCriteria<1>(ccVec);
auto map2 = getDataByCriteria<2>(ccVec);
auto map3 = getDataByCriteria<3>(ccVec);
--- EDIT: added solution (C++14 only) for different types criteria ---
A little different if the "criteria" are of different types.
The solution work but in C++14, thanks to auto and decltype().
By example, if
std::string criteria1;
int criteria2;
long criteria3;
You can declare getVal() with auto
template <int I>
const auto & getVal () const;
and define (with auto) all versions of getVal()
template <>
const auto & CustomClass::getVal<1> () const
{ return criteria1; }
template <>
const auto & CustomClass::getVal<2> () const
{ return criteria2; }
template <>
const auto & CustomClass::getVal<3> () const
{ return criteria3; }
and combining auto with decltype(), you can modify getDataByCriteria() in this way
template <int I>
auto getDataByCriteria (std::vector<CustomClass> aVector)
{
std::map<decltype(aVector[0].getVal<I>()), int> result;
for (const auto & cc : aVector)
{
if ( result.find(cc.getVal<I>()) == result.end()) // if such of key doesn't exists
{
result.insert(std::make_pair(cc.getVal<I>(), cc.dataToBeCombined));
}
else
{
// do some other stuff in order to combine data
}
}
return result;
}
The use of the function remain the same (thanks to auto again)
auto map1 = getDataByCriteria<1>(ccVec);
auto map2 = getDataByCriteria<2>(ccVec);
auto map3 = getDataByCriteria<3>(ccVec);
p.s.: caution: code not tested
p.s.2 : sorry for my bad English
You can use a function to extract a filed such as
std::string extractFiled(const CustomClass &object, int which) {
switch (which) {
case 1:
return object.criteria1;
case 2:
return object.criteria2;
case 3:
return object.criteria3;
default:
return object.criteria1;
}
}
and getDataByCriteria add an arg to indicate which filed to use.
Or you can just use macro to implement getDataByCriteria.
You tagged it C++11, so use variadic templates.
class VariadicTest
{
public:
VariadicTest()
{
std::map<std::string, int> test1 = getDataByCriteria(testValues, criteria1);
std::map<std::string, int> test2 = getDataByCriteria(testValues, criteria2);
std::map<std::string, int> test3 = getDataByCriteria(testValues, criteria1, criteria2);
std::map<std::string, int> test4 = getDataByCriteria(testValues, criteria1, criteria3);
}
private:
std::string criteria1 = { "Hello" };
std::string criteria2 = { "world" };
std::string criteria3 = { "." };
std::vector<CustomClass> testValues = { {"Hello",1}, {"world",2},{ "!",3 } };
template<typename T> std::map<std::string, int> getDataByCriteria(std::vector<CustomClass> values, T criteria)
{
std::map<std::string, int> result;
//do whatever is needed here to filter values
for (auto v : values)
{
if (v.identifier == criteria)
{
result[values[0].identifier] = values[0].value;
}
}
return result;
}
template<typename T, typename... Args> std::map<std::string, int> getDataByCriteria(std::vector<CustomClass> values, T firstCriteria, Args... args)
{
std::map<std::string, int> result = getDataByCriteria(values, firstCriteria);
std::map<std::string, int> trailer = getDataByCriteria(values, args...);
result.insert(trailer.begin(), trailer.end());
return result;
}
};
You do not specify the actual operations to be done under the various conditions of the criteria being met so it is hard to say how much they actually can be combined.
Here is a possible solution using the std::accumulate() of the STL along with some additional functionality. This example was compiled with Visual Studio 2015.
This approach would make sense if most of the functionality can be combined into a reasonably small accumulation function because most of the criteria are handled in the same way. Or you could have the accumulate_op() function call other functions for specific cases while handling the general case itself.
You might take this as a beginning and make the appropriate modifications.
One such modification may be to get rid of the use of std::map to maintain state. Since using this approach you would iterate through the std::vector doing the accumulation based on the criteria, I am not sure you would even need to use std::map to remember anything if you are accumulating as you go.
// map_fold.cpp : Defines the entry point for the console application.
//
#include "stdafx.h"
#include <iostream>
#include <vector>
#include <map>
#include <string>
#include <numeric>
// this is the class with data and criteria
class CustomClass
{
public:
CustomClass() : dataToBeCombined(0) {}
std::string criteria1;
std::string criteria2;
std::string criteria3;
//... and others criteria
int dataToBeCombined;
// other code
};
// This is the class that will contain the results as we accumulate across the
// vector of CustomClass items.
class Criteria_Result {
public:
Criteria_Result() : dataToBeCombined(0) {}
CustomClass myCriteria;
std::map<std::string, int> result1;
std::map<std::string, int> result2;
std::map<std::string, int> result3;
int dataToBeCombined;
};
// This is the accumulation function we provide to std::accumulate().
// This function will build our results.
class accumulate_op {
public:
Criteria_Result * operator ()(Criteria_Result * x, CustomClass &item);
};
Criteria_Result * accumulate_op::operator ()(Criteria_Result *result, CustomClass &item)
{
if (!result->myCriteria.criteria1.empty() && !item.criteria1.empty()) {
std::map<std::string, int>::iterator it1 = result->result1.find(item.criteria1);
if (it1 == result->result1.end()) // if such of key doesn't exists
{
result->result1.insert(std::make_pair(item.criteria1, item.dataToBeCombined));
}
else
{
// do some other stuff in order to combine data
it1->second += item.dataToBeCombined;
}
result->dataToBeCombined += item.dataToBeCombined;
}
if (!result->myCriteria.criteria2.empty() && !item.criteria2.empty()) {
std::map<std::string, int>::iterator it2 = result->result2.find(item.criteria2);
if (it2 == result->result2.end()) // if such of key doesn't exists
{
result->result2.insert(std::make_pair(item.criteria2, item.dataToBeCombined));
}
else
{
// do some other stuff in order to combine data
it2->second += item.dataToBeCombined;
}
result->dataToBeCombined += item.dataToBeCombined;
}
if (!result->myCriteria.criteria3.empty() && !item.criteria3.empty()) {
std::map<std::string, int>::iterator it3 = result->result3.find(item.criteria3);
if (it3 == result->result3.end()) // if such of key doesn't exists
{
result->result3.insert(std::make_pair(item.criteria3, item.dataToBeCombined));
}
else
{
// do some other stuff in order to combine data
it3->second += item.dataToBeCombined;
}
result->dataToBeCombined += item.dataToBeCombined;
}
return result;
}
int main()
{
Criteria_Result result;
std::vector<CustomClass> aVector;
// set up the criteria for the search
result.myCriteria.criteria1 = "string1";
result.myCriteria.criteria2 = "string2";
for (int i = 0; i < 10; i++) {
CustomClass xx;
xx.dataToBeCombined = i;
if (i % 2) {
xx.criteria1 = "string";
}
else {
xx.criteria1 = "string1";
}
if (i % 3) {
xx.criteria2 = "string";
}
else {
xx.criteria2 = "string2";
}
aVector.push_back (xx);
}
// fold the vector into our results.
std::accumulate (aVector.begin(), aVector.end(), &result, accumulate_op());
std::cout << "Total Data to be combined " << result.dataToBeCombined << std::endl;
std::cout << " result1 list " << std::endl;
for (auto jj : result.result1) {
std::cout << " " << jj.first << " " << jj.second << std::endl;
}
std::cout << " result2 list " << std::endl;
for (auto jj : result.result2) {
std::cout << " " << jj.first << " " << jj.second << std::endl;
}
std::cout << " result3 list " << std::endl;
for (auto jj : result.result3) {
std::cout << " " << jj.first << " " << jj.second << std::endl;
}
std::cout << " Trial two \n\n" << std::endl;
result.myCriteria.criteria2 = "";
result.result1.clear();
result.result2.clear();
result.result3.clear();
result.dataToBeCombined = 0;
// fold the vector into our results.
std::accumulate(aVector.begin(), aVector.end(), &result, accumulate_op());
std::cout << "Total Data to be combined " << result.dataToBeCombined << std::endl;
std::cout << " result1 list " << std::endl;
for (auto jj : result.result1) {
std::cout << " " << jj.first << " " << jj.second << std::endl;
}
std::cout << " result2 list " << std::endl;
for (auto jj : result.result2) {
std::cout << " " << jj.first << " " << jj.second << std::endl;
}
std::cout << " result3 list " << std::endl;
for (auto jj : result.result3) {
std::cout << " " << jj.first << " " << jj.second << std::endl;
}
return 0;
}
This produces the output as follows:
Total Data to be combined 90
result1 list
string 25
string1 20
result2 list
string 27
string2 18
result3 list
Trial two
Total Data to be combined 45
result1 list
string 25
string1 20
result2 list
result3 list

Shorthand for checking for equality to multiple possibilities [duplicate]

This question already has answers here:
Closed 10 years ago.
Possible Duplicate:
C++ comparing bunch of values with a given one
I'm needing to check for equality in a for loop in C++, however the loop needs to work for x equaling multiple possibilities.
For example, right now I have something similar to:
if(x==a || x==b || x==c || x==d || x==e || x==f || x==g || x==h)
{
//loop body
}
But with the number I have, it looks messy and I was wondering if there was a shorthand way of saying "if (x == (any of these))" or if writing them all out was the only option.
Thanks!
Thank you for your question, now as I found a solution (and an elegant one I dare say), I'll use it myself.
Unlike solutions with std::find : Will a ) be unrolled to N comparisons in compile time b) work with any types which X can be compared to
struct TagAnyOf {};
template <typename... Args>
std::tuple <TagAnyOf, Args...> AnyOf (Args&&... args)
{
return std::tuple <TagAnyOf, Args...> (TagAnyOf(), std::forward<Args>(args)...);
}
template <class X, class Tuple, size_t Index, size_t ReverseIndex>
struct CompareToTuple
{
static bool compare (const X& x, const Tuple& tuple)
{
return x == std::get<Index> (tuple) || CompareToTuple<X, Tuple, Index+1, ReverseIndex-1>::compare (x, tuple);
}
};
template <class X, class Tuple, size_t Index>
struct CompareToTuple <X, Tuple, Index, 0>
{
static bool compare (const X& x, const Tuple& tuple)
{
return false;
}
};
template <typename X, typename... Args>
bool operator == (const X& x, const std::tuple<TagAnyOf, Args...>& any)
{
typedef std::tuple <TagAnyOf, Args...> any_of_type;
return CompareToTuple <X, any_of_type, 1, std::tuple_size<any_of_type>::value-1>::compare (x, any);
}
Usage
int main()
{
int x = 1;
if (x == AnyOf (1, 2, 3, 4))
{
std::cout << "Yes!" << std::endl;
}
else
{
std::cout << "No!" << std::endl;
}
if (x == AnyOf (4, 3, 2, 1))
{
std::cout << "Yes!" << std::endl;
}
else
{
std::cout << "No!" << std::endl;
}
if (x == AnyOf (2, 3, 4, 5))
{
std::cout << "Yes!" << std::endl;
}
else
{
std::cout << "No!" << std::endl;
}
return 0;
}
Consider using a function that takes an initializer_list (this is a c++11 feature).
the first parameter would be the left hand value(x in your case), and the rest of the parameters will be right hand values.
Here is an example that accomplishes the task using templates.
#include <iostream>
#include <cstdlib>
#include <algorithm>
template<class T>
bool Test(T const& test, std::initializer_list<T> const& values){
return std::find(std::begin(values), std::end(values), test) != std::end(values);
}
int main(){
char var1 = 'a';
char var2 = 'a';
char var3 = 'b';
char var4 = 'c';
char var5 = 'd';
if (Test<char>(var1,{var2,var3,var4,'o',var5})){
std::cout << "true. at least one is equivelent" << std::endl;
}else{
std::cout << "false. none are equivelent" << std::endl;
}
if (Test<char>(var1,{var3,var4,var5})){
std::cout << "true. at least one is equivelent" << std::endl;
}else{
std::cout << "false. none are equivelent" << std::endl;
}
return EXIT_SUCCESS;
}
If you are doing this with classes, make sure you overload the '!=' operator.
edit: mistake fixed. pointed out by GManNickG
I was wondering if there was a shorthand way of saying "if (x == (any
of these))"
Yes, the standard gives you std::find and std::find_if to answer exactly this question:
int a=3,b=5,c=6,d=7;
std::array<int,4> vals{{a,b,c,d}}; // or std::vector
int x=5;
bool foundit= (end(vals) != std::find_if(begin(vals), end(vals),x );
You will need
#include <array>
#include <algorithm>
You can also use std::initializer_list<int> booleans{a,b,c,d}; instead of vector or array
If your conditions where more complicated, you could use find_if:
bool foundit= (end(vals) !=
std::find_if(begin(vals), end(vals),
[&x](const int &v){return v*(v+x)<x;}));