F# Splitting a list - list

I am new to F# & tuples and I am trying to split a list into three lists of tuples using recursion and matching.
For example, a list of [1; 2; 3] would return:
l1 = [1]
l2 = [2]
l3 = [3]
or
[1;2;3;4;5;6;7]:
l1 = [1;2;3]
l2 = [4; 5]
l3 = [6; 7]
So far my code starts out as
let rec split x =
match x with
| _ -> [], [], []
I'm not sure where to start when inserting elements into each list.

The most basic approach would be to walk over the list, process the rest of it recursively and then append the current element to one of the three returned lists. You will need to add an extra parameters i to the function to keep track of how far in the list you are (and then use this to determine where should the current elemnt go). The general structure in the most basic form is:
let split l =
let length = List.length l
let rec loop i l =
match l with
| [] ->
// Empty list just becomes a triple of empty lists
[], [], []
| x::xs ->
// Process the rest of the list recursively. This
// gives us three lists containing the values from 'xs'
let l1, l2, l3 = loop (i + 1) xs
// Now comes the tricky bit. Here you need to figure out
// whether 'x' should go into 'l1', 'l2' or 'l3'.
// Then you can append it to one of them using something like:
l1, x::l2, l3
// Walk over the list, starting with index 'i=0'
loop 0 l
What to do about the tricky bit? I do not have a solution that works exactly as you wanted, but the following is close - it simply looks whether i is greater than 1/3 of the length or 2/3 of the length:
let split l =
let length = List.length l
let rec loop i l =
match l with
| [] -> [], [], []
| x::xs ->
let l1, l2, l3 = loop (i + 1) xs
if i >= length / 3 * 2 then l1, l2, x::l3
elif i >= length / 3 then l1, x::l2, l3
else x::l1, l2, l3
loop 0 l
This will always create groups of length / 3 and put remaining elements in the last list:
split [1..3] // [1], [2], [3]
split [1..4] // [1], [2], [3; 4]
split [1..5] // [1], [2], [3; 4; 5]
split [1..6] // [1; 2], [3; 4], [5; 6]
You should be able to adapt this to the behaviour you need - there is some fiddly calculation that you need to do to figure out exactly where the cut-off points are, but that's a matter of getting the +/-1s right!

There is a function for that in the List module.
You can test it easily in F# interactive (fsi).
let input = [1;2;3];;
let output = List.splitInto 3 input;;
output;;
val it : int list list = [[1]; [2]; [3]]
So it returns a list of lists.
If you want to do it by hand, you can still use other list functions (which might be good exercise in itself):
let manualSplitInto count list =
let l = List.length list
let n = l / count
let r = l % count
List.append
[(List.take (n+r) list)]
(List.unfold (fun rest ->
match rest with
| [] -> None
| _ -> let taken = min n (List.length rest)
Some (List.take taken rest, List.skip taken rest))
(List.skip (n+r) list))
Here, List.unfold does the iteration (recursing) part for you.
So, if you really want to train working with recursive functions, you will end up writing your own List.unfold replacement or something more tailored to your concrete use case.
let pedestrianSplitInto count list =
let l = List.length list
let n = l / count
let r = l % count
let rec step rest acc =
match rest with
| [] -> acc
| _ ->
let taken = min n (List.length rest)
step (List.skip taken rest) ((List.take taken rest) :: acc)
List.rev (step (List.skip (n+r) list) [List.take (n+r) list])
Please observe how similar the implementation of function step is to the lambda given to List.unfold in manualSplitInto.
If you also do not want to use functions like List.take or List.skip, you will have to go even lower level and do element wise operations, such as:
let rec splitAtIndex index front rear =
match index with
| 0 -> (List.rev front, rear)
| _ -> splitAtIndex (index - 1) ((List.head rear) :: front) (List.tail rear)
let stillLivingOnTreesSplitInto count list =
let l = List.length list
let n = l / count
let r = l % count
let rec collect result (front,rear) =
match rear with
| [] -> (front :: result)
| _ -> collect (front :: result) (splitAtIndex n [] rear)
let x = splitAtIndex (n+r) [] list
collect [] x |> List.rev

If you know it will always be triplets then this should work.
let xs = [1..7]
let n = List.length xs
let y = List.mapi (fun i x -> (x, 3 * i / n)) xs
List.foldBack (fun (x, i) (a,b,c) -> match i with 0 -> (x::a,b,c) | 1 -> (a,x::b,c) | 2 -> (a,b,x::c)) y (([],[],[]))

Related

How to reshape a list

So consider getting a list of [1; 2; 3; 4; 5; 6; 7; 8; 9] and reshape it into [[1; 2; 3]; [4; 5; 6]; [7; 8; 9]]. How would you do that in OCaml? I want a simple function or something from the standard library.
Turns out, it can be easily done with 3 lines of code, considering that the length of the list is divisible by 3.
let rec re_shape = function
| x :: xs :: xz :: xt -> [x; xs; xz] :: re_shape xt
| _ -> []
How this works is that for each iteration it cons a list of 3 to the rest of the function, till it reaches the end. The last line is added for safety.
As you have shown an effort to solve this, for your consideration, see a strategy below for generalizing this to allow for any length.
The partition function will allow us to get the first n elements from the list and the remainder, raising Invalid_argument if there aren't n elements in the list.
The chunks function applies this recursively to the remainder to build a list of lists.
let partition n lst =
let rec partition' n (first, rest) =
match n, rest with
| 0, _ -> (List.rev first, rest)
| _, [] -> raise (Invalid_argument "List not long enough")
| _, x::xs -> partition' (n-1) (x :: first, xs)
in
partition' n ([], lst)
let rec chunks n lst =
match partition n lst with
| first, [] -> [first]
| first, rest -> first :: chunks n rest
| exception (Invalid_argument _) ->
raise (Invalid_argument (Format.sprintf "List length not evenly divisible by %d" n))
This second function is not tail-recursive, though that can readily be addressed in OCaml 4.14 and later with:
let[#tail_mod_cons] rec chunks n lst =
...

Splicing F# lists

What's the best way to splice one list into the middle of another in F#?
For example, suppose the lists are [1; 2; 3; 4] and [7; 8; 9] respectively, and the splicing point is halfway along the first list, the result should be [1; 2; 7; 8; 9; 3; 4].
By 'best' I mean simplest/most idiomatic, on condition that it takes time no more than linear in the length of the result.
I'd just use the built in List.insertManyAt - no need to invent anything.
If you're already on F# 6, I would indeed follow Jackson's advice and just use the newly introduced List.insertManyAt.
If you're still on an older version and if you're fine with exceptions when the index is out of bounds, you could go with something like:
let insertManyAt index newValues source =
let l1, l2 = List.splitAt index source
l1 # newValues # l2
Or if you want a total function:
let insertManyAt index newValues source =
if List.length source < index
then
None
else
let l1, l2 = List.splitAt index source
Some (l1 # newValues # l2)
An illustration how to solve the problem of inserting one list into another at an arbitrary position as a recursive function:
let insertManyAt index values source =
let rec aux acc n =
if n < index then function // not reached index yet
| xs, y::ys -> aux (y::acc) (n + 1) (xs, ys) // element from source
| _, [] -> List.rev acc // source exhausted, done
else function
| x::xs, ys -> aux (x::acc) n (xs, ys) // element from values
| [], y::ys -> aux (y::acc) n ([], ys) // values empty, take source instead
| [], [] -> List.rev acc // both lists empty, done
aux [] 0 (values, source)
[ 0; 1; 2 ]
|> insertManyAt 1 [ 8; 9 ]
// val it : int list = [0; 8; 9; 1; 2]

F# - splitting list into tuple of odd-even lists (by element, not position)

Example: split [1;3;2;4;7;9];;
Output: ([1;3;7;9], [2;4])
I'm new to F# and I can't figure it out.
Can't use the partition built in function.
This is what I have so far:
let rec split xs =
match xs with
| [] -> [], []
| xs -> xs, []
| xh::xt -> let odds, evens = split xt
if (xh % 2) = 0 then xh::odds, xh::evens
else xh::odds, evens
Fixed code:
let rec split xs =
match xs with
| [] -> [], []
| xh::xt -> let odds, evens = split xt
if (xh % 2) = 0 then odds, xh::evens
else xh::odds, evens
*Thanks to #TheInnerLight for pointing out my errors: unreachable case and unnecessarily modifying odds
You can use the built-in List.partition function
let splitOddEven xs =
xs |> List.partition (fun x -> x % 2 <> 0)
splitOddEven [1;3;2;4;7;9];;
val it : int list * int list = ([1; 3; 7; 9], [2; 4])
If you want a recursive implementation, I'd probably go for a tail recursive implementation like this:
let splitOddEven xs =
let rec splitOddEvenRec oddAcc evenAcc xs =
match xs with
| [] -> oddAcc, evenAcc
| xh::xt ->
if (xh % 2) = 0 then splitOddEvenRec oddAcc (xh :: evenAcc) xt
else splitOddEvenRec (xh :: oddAcc) evenAcc xt
splitOddEvenRec [] [] xs
splitOddEven [1;3;2;4;7;9]
Note that this will give you the two resulting lists in reverse order so you might wish to reverse them yourself.

Splitting a list using an index

I have a list of integers named t that has an even length n = List.length t. I want to get two lists, the partition of t from index 0 to (n / 2 - 1), and the partition of t from index (n / 2) to (n-1). In other words, I want to split the list t in two parts, but I cannot find anything that does that in the List module (there is List.filter, but it does not filter by index, it takes a function instead).
An example of what I want to do:
let t = [8 ; 66 ; 4 ; 1 ; -2 ; 6 ; 4 ; 1] in
(* Split it to get t1 = [ 8 ; 66 ; 4 ; 1] and t2 = [-2 ; 6 ; 4 ; 1] *)
For now,I have something like this
let rec split t1 t2 n =
match t1 with
| hd :: tl when (List.length tl > n) -> split tl (hd :: t2) n;
| hd :: tl when (List.length tl = n) -> (t1,t2);
| _ -> raise (Failure "Unexpected error");;
let a = [1;2;3;4;7;8];;
let b,c = split a [] (List.length a / 2 - 1);;
List.iter (fun x -> print_int x) b;
print_char '|';
List.iter (fun x -> print_int x) c;
Output is:
478|321, the order has been reversed!
Calculating the length of the list requires walking the list, so it takes time that's linear in the length of the list. Your attempt calculates the length of the remaining list at each step, which makes the total running time quadratic. But you actually don't need to do that! First you calculate the total length of the list. After that, the place to cut is halfway from the beginning, which you can locate by incrementing a counter as you go through the list.
As for the reversal, let's look at what happens to the first element of the list. In the first call to split, the accumulator t2 is the empty list, so h gets put at the end of the list. The next element will be placed before that, and so on. You need to put the first element at the head of the list, so prepend it to the list built by the recursive call.
let rec split_at1 n l =
if n = 0 then ([], l) else
match l with
| [] -> ([], []) (*or raise an exception, as you wish*)
| h :: t -> let (l1, l2) = split_at1 (n-1) t in (h :: l1, l2);;
let split_half1 l = split_at1 (List.length l / 2) l;;
This operates in linear time. A potential downside of this implementation is that the recursive call it makes is not a tail call, so it will consume a large amount of stack on large lists. You can fix this by building the first half as an accumulator that's passed to the function. As we saw above, this creates a list in reverse order. So reverse it at the end. This is a common idiom when working with lists.
let rec split_at2 n acc l =
if n = 0 then (List.rev acc, l) else
match l with
| [] -> (List.rev acc, [])
| h :: t -> split_at2 (n-1) (h :: acc) t;;
let split_half2 l = split_at2 (List.length l / 2) [] l;;

Split list into two

I would like to implement a function that takes as input a size n and a list. This function will cut the list into two lists, one of size n and the rest in another list. I am new to this language and have a hard time learning the syntax.
The main problem I have is that is finding a way to express a size of the list without using any loops or mutable variables.
Can anyone give a me some pointers?
Let's start with the function's type signature. Since it gets n and a list as arguments and returns a pair of lists, you have a function split:
val split : int -> 'a list -> 'a list * 'a list
Here is one approach to implement this function:
let split n xs =
let rec splitUtil n xs acc =
match xs with
| [] -> List.rev acc, []
| _ when n = 0 -> List.rev acc, xs
| x::xs' -> splitUtil (n-1) xs' (x::acc)
splitUtil n xs []
The idea is using an accumulator acc to hold elements you have traversed and decreasing n a long the way. Because elements are prepended to acc, in the end you have to reverse it to get the correct order.
The function has two base cases to terminate:
There's no element left to traverse (xs = [] at that point).
You have gone through the first n elements of the list (n decreases to 0 at that time).
Here is a short illustration of how split computes the result:
split 2 [1; 2; 3] // call the auxiliary function splitUtil
~> splitUtil 2 [1; 2; 3] [] // match the 3rd case of x::xs'
~> splitUtil 1 [2; 3] [1] // match the 3rd case of x::xs'
~> splitUtil 0 [3] [2; 1] // match the 2nd case of n = 0 (base case)
~> List.rev [2; 1], [3] // call List.rev on acc
~> [1; 2], [3]
let split n list =
let rec not_a_loop xs = function
| (0, ys) | (_, ([] as ys)) -> (List.rev xs), ys
| (n, x::ys) -> not_a_loop (x::xs) (n-1, ys)
not_a_loop [] (n, list)
New solution - splitAt is now built into List and Array. See commit around 2014 on github. I noticed this today while using F# in VS.2015
Now you can simply do this...
let splitList n list =
List.splitAt n list
And as you might expect the signature is...
n: int -> list: 'a list -> 'a list * 'a list
Example usage:
let (firstThree, remainder) = [1;2;3;4;5] |> (splitList 3)
printfn "firstThree %A" firstThree
printfn "remainder %A" remainder
Output:
firstThree [1; 2; 3]
remainder [4; 5]
Github for those interested: https://github.com/dsyme/visualfsharp/commit/1fc647986f79d20f58978b3980e2da5a1e9b8a7d
One more way, using fold:
let biApply f (a, b) = (f a, f b)
let splitAt n list =
let splitter ((xs, ys), n') c =
if n' < n then
((c :: xs, ys), n' + 1)
else
((xs, c :: ys), n' + 1)
List.fold splitter (([], []), 0) list
|> fst
|> biApply List.rev
Here is a great series on folds than you can follow to learn more on the topic.