Counting inversion after swapping two elements of array - c++

You are given a permutation p1,p2,...,pn of numbers from 1 to n.
A permutation is a sequence of integers from 1 to n of length n containing each number exactly once.
You are given q queries where each query consists of two integers a and b, In response to each query you need to return a number of inversions of permutation after swapping elements at index a and b, Here every query is independent i.e. after each query the permutation is restored to its initial state.
An inversion in a permutation p is a pair of indices (i, j) such that i > j and pi < pj. For example, a permutation [4, 1, 3, 2] contains 4 inversions: (2, 1), (3, 1), (4, 1), (4, 3).
Input: The first line contains n,q.
The second line contains the space-separated permutation p1,p2,...,pn.
Each line of the next q lines contains two integers a,b.
Output: For each query Print an integer denoting the number of Inversion on a new line.
Sample input:
5 5
1 2 3 4 5
1 2
1 3
2 5
2 4
3 3
Output:
1
3
5
3
0
Constraints:
2<=n<=1000
1<=q<=200000
My approach: I am counting no of inversions using BIT (https://www.geeksforgeeks.org/count-inversions-array-set-3-using-bit/) for each query after swapping elements at position a and b..and then again swapping it so that my array remains unchanged. But this solution gives TLE for large test cases. Is there any better approach for this problem?

You are getting TLE probably because number of computations in this approach is q * (n * log(n)) = 2 * 10^5 * 10^3 * log(1000) = ~10^9, which is more than generally accepted computations ~10^8.
I can think of the following solution. Please note that I have not coded / verified it:
Denoting ri == number of indices j, such that i > j && pi < pj. Eg: [2, 3, 1, 4], r3 = 2. Basically, it means the number of inversions with the farther index as i. (Please note that I am using 1-based index as per the question. Also,a < b as per the question)
Thus we have: Sum of ri == #invs (number of inversions)
We can calculate initial total #invs in O(n^2)
When a and b are swapped, we can observe that:
a) ri remains constant, where i < a .
b) ri remains constant, where i > b.
Only ri changes where a <= i <=b, and that too on these following conditions. I am considering the case when pa < pb. Exact opposite case will need to considered when pa > pb.
a) Since pa < pb, thus this swap causes #invs = #invs + 1
b) If (pi < pa && pi < pb) || (pi > pa && pi > pb), this swap does not change ri. Eg: [2,....10,....5]. Here Swapping 2 and 5 does not change the r value for 10.
c) If pa < pi < pb, it will increment ri by 1, and new rb by 1. Eg: [2,....3,.....4], when 2 and 4 are swapped, we have [4,....3,....2], the rvalue 3 increases by 1 (because of 4); and also the r value of 2 increase by 1 (because of 3). Please note that increment because of what about 4 > 2? was already calculated in step (a), and needs to be done once only.
d) We need to find all such indicies i where pa < pi < pb as we started with above. Let us call it f(a, b). Then the total change in #invs delta = (2 * f(a, b)) + 1, and answer will be #original_invs + delta.
As I mentioned, all the exact opposite steps need to be done for the case pa > pb. The delta will be negative in that case.
Now, the only thing remained is to solve: Given a, b, find f(a, b) efficiently. For this, we can pre-process and store it for all pairs of indices. This will take O(N^2) space, and O(N^2 * log(N)) time, using a balanced binary-search-tree (BST). Again showing steps for pre-processing for case pa < pb only. Another set of pre-processing steps needs to be done for the other case:
We will use self-balancing BST, in which each node also contains the following fields:
a) field_1: This denotes the size of the left sub-tree. This value will be updated on every insert operation, if size of left-sub-tree changes.
b) field_2: This denotes the number of elements < node.value that this tree has. This value is initialized once when the node is inserted and does not change thereafter. I have added a small explanation of how it will be achieved in Addendum-A. This field is basically our pre-processing, which will determine f(a, b).
With all of this now, for each index i, where 0 <= i < n, do the following: Create new tree. Insert pj values into the tree one by one, where (i < j < n ) && (pa < pj) . (Please note we are not inserting values where pa > pj). The method given in Addendum-A will make sure we find f(i, j) while inserting.
There will be n such pre-processed trees, one for every index. For finding f(a, b): We need to look into ath tree, and search node.value = pb. This node's field_2 = f(a, b).
The complexity of insertion is O(logN). So, the total pre-processing computation = O(N * N(logN)). Search is O(logN), so the query complexity is O(q * logN). Total complexity = O(N^2) + O(N * N (logN)) + O(q * logN) which will turn out ~10^7
==============================================================================
Addendum A: How to populate field_2 while inserting node:
i) Insert the node, and balance the tree. Update field_1 as required.
i) Initailze ans = 0. Traverse the BST from root searching for your node.
iii) do {
If node.value < search_key_b, ans += node.left_subtree_size + 1
} while(!node.found)
iv) ans -= 1

We can solve this in O(n log n) space and O(n log n + Q * log^2(n)) time with a merge-sort tree. The merge-sort tree allows us to find the number of elements inside a subarray that are greater than or lower than an input number in O(log^2(n)) time and O(n log n) space.
First we record the total number of inversions in O(n log n) time, for which there are known methods. To query the effect of a swap bound by left and right, consider the subarray between:
subtract the number of elements greater
than right in the subarray (those will
no longer be inversions)
subtract the number of elements smaller
than left in the subarray (those will
no longer be inversions)
add the number of elements greater
than left in the subarray (those will
be new inversions)
add the number of elements smaller
than right in the subarray (those will
be new inversions)
if right > left, add 1
if left > right, subtract 1

Related

[Competitive Programming]:How do I optimise this brute force method? [duplicate]

If n numbers are given, how would I find the total number of possible triangles? Is there any method that does this in less than O(n^3) time?
I am considering a+b>c, b+c>a and a+c>b conditions for being a triangle.
Assume there is no equal numbers in given n and it's allowed to use one number more than once. For example, we given a numbers {1,2,3}, so we can create 7 triangles:
1 1 1
1 2 2
1 3 3
2 2 2
2 2 3
2 3 3
3 3 3
If any of those assumptions isn't true, it's easy to modify algorithm.
Here I present algorithm which takes O(n^2) time in worst case:
Sort numbers (ascending order).
We will take triples ai <= aj <= ak, such that i <= j <= k.
For each i, j you need to find largest k that satisfy ak <= ai + aj. Then all triples (ai,aj,al) j <= l <= k is triangle (because ak >= aj >= ai we can only violate ak < a i+ aj).
Consider two pairs (i, j1) and (i, j2) j1 <= j2. It's easy to see that k2 (found on step 2 for (i, j2)) >= k1 (found one step 2 for (i, j1)). It means that if you iterate for j, and you only need to check numbers starting from previous k. So it gives you O(n) time complexity for each particular i, which implies O(n^2) for whole algorithm.
C++ source code:
int Solve(int* a, int n)
{
int answer = 0;
std::sort(a, a + n);
for (int i = 0; i < n; ++i)
{
int k = i;
for (int j = i; j < n; ++j)
{
while (n > k && a[i] + a[j] > a[k])
++k;
answer += k - j;
}
}
return answer;
}
Update for downvoters:
This definitely is O(n^2)! Please read carefully "An Introduction of Algorithms" by Thomas H. Cormen chapter about Amortized Analysis (17.2 in second edition).
Finding complexity by counting nested loops is completely wrong sometimes.
Here I try to explain it as simple as I could. Let's fix i variable. Then for that i we must iterate j from i to n (it means O(n) operation) and internal while loop iterate k from i to n (it also means O(n) operation). Note: I don't start while loop from the beginning for each j. We also need to do it for each i from 0 to n. So it gives us n * (O(n) + O(n)) = O(n^2).
There is a simple algorithm in O(n^2*logn).
Assume you want all triangles as triples (a, b, c) where a <= b <= c.
There are 3 triangle inequalities but only a + b > c suffices (others then hold trivially).
And now:
Sort the sequence in O(n * logn), e.g. by merge-sort.
For each pair (a, b), a <= b the remaining value c needs to be at least b and less than a + b.
So you need to count the number of items in the interval [b, a+b).
This can be simply done by binary-searching a+b (O(logn)) and counting the number of items in [b,a+b) for every possibility which is b-a.
All together O(n * logn + n^2 * logn) which is O(n^2 * logn). Hope this helps.
If you use a binary sort, that's O(n-log(n)), right? Keep your binary tree handy, and for each pair (a,b) where a b and c < (a+b).
Let a, b and c be three sides. The below condition must hold for a triangle (Sum of two sides is greater than the third side)
i) a + b > c
ii) b + c > a
iii) a + c > b
Following are steps to count triangle.
Sort the array in non-decreasing order.
Initialize two pointers ‘i’ and ‘j’ to first and second elements respectively, and initialize count of triangles as 0.
Fix ‘i’ and ‘j’ and find the rightmost index ‘k’ (or largest ‘arr[k]‘) such that ‘arr[i] + arr[j] > arr[k]‘. The number of triangles that can be formed with ‘arr[i]‘ and ‘arr[j]‘ as two sides is ‘k – j’. Add ‘k – j’ to count of triangles.
Let us consider ‘arr[i]‘ as ‘a’, ‘arr[j]‘ as b and all elements between ‘arr[j+1]‘ and ‘arr[k]‘ as ‘c’. The above mentioned conditions (ii) and (iii) are satisfied because ‘arr[i] < arr[j] < arr[k]'. And we check for condition (i) when we pick 'k'
4.Increment ‘j’ to fix the second element again.
Note that in step 3, we can use the previous value of ‘k’. The reason is simple, if we know that the value of ‘arr[i] + arr[j-1]‘ is greater than ‘arr[k]‘, then we can say ‘arr[i] + arr[j]‘ will also be greater than ‘arr[k]‘, because the array is sorted in increasing order.
5.If ‘j’ has reached end, then increment ‘i’. Initialize ‘j’ as ‘i + 1′, ‘k’ as ‘i+2′ and repeat the steps 3 and 4.
Time Complexity: O(n^2).
The time complexity looks more because of 3 nested loops. If we take a closer look at the algorithm, we observe that k is initialized only once in the outermost loop. The innermost loop executes at most O(n) time for every iteration of outer most loop, because k starts from i+2 and goes upto n for all values of j. Therefore, the time complexity is O(n^2).
I have worked out an algorithm that runs in O(n^2 lgn) time. I think its correct...
The code is wtitten in C++...
int Search_Closest(A,p,q,n) /*Returns the index of the element closest to n in array
A[p..q]*/
{
if(p<q)
{
int r = (p+q)/2;
if(n==A[r])
return r;
if(p==r)
return r;
if(n<A[r])
Search_Closest(A,p,r,n);
else
Search_Closest(A,r,q,n);
}
else
return p;
}
int no_of_triangles(A,p,q) /*Returns the no of triangles possible in A[p..q]*/
{
int sum = 0;
Quicksort(A,p,q); //Sorts the array A[p..q] in O(nlgn) expected case time
for(int i=p;i<=q;i++)
for(int j =i+1;j<=q;j++)
{
int c = A[i]+A[j];
int k = Search_Closest(A,j,q,c);
/* no of triangles formed with A[i] and A[j] as two sides is (k+1)-2 if A[k] is small or equal to c else its (k+1)-3. As index starts from zero we need to add 1 to the value*/
if(A[k]>c)
sum+=k-2;
else
sum+=k-1;
}
return sum;
}
Hope it helps........
possible answer
Although we can use binary search to find the value of 'k' hence improve time complexity!
N0,N1,N2,...Nn-1
sort
X0,X1,X2,...Xn-1 as X0>=X1>=X2>=...>=Xn-1
choice X0(to Xn-3) and choice form rest two item x1...
choice case of (X0,X1,X2)
check(X0<X1+X2)
OK is find and continue
NG is skip choice rest
It seems there is no algorithm better than O(n^3). In the worst case, the result set itself has O(n^3) elements.
For Example, if n equal numbers are given, the algorithm has to return n*(n-1)*(n-2) results.

Algorithm to find isomorphic set of permutations

I have an array of set of permutations, and I want to remove isomorphic permutations.
We have S sets of permutations, where each set contain K permutations, and each permutation is represented as and array of N elements. I'm currently saving it as an array int pset[S][K][N], where S, K and N are fixed, and N is larger than K.
Two sets of permutations, A and B, are isomorphic, if there exists a permutation P, that converts elements from A to B (for example, if a is an element of set A, then P(a) is an element of set B). In this case we can say that P makes A and B isomorphic.
My current algorithm is:
We choose all pairs s1 = pset[i] and s2 = pset[j], such that i < j
Each element from choosen sets (s1 and s2) are numered from 1 to K. That means that each element can be represented as s1[i] or s2[i], where 0 < i < K+1
For every permutation T of K elements, we do the following:
Find the permutation R, such that R(s1[1]) = s2[1]
Check if R is a permutation that make s1 and T(s2) isomorphic, where T(s2) is a rearrangement of the elements (permutations) of the set s2, so basically we just check if R(s1[i]) = s2[T[i]], where 0 < i < K+1
If not, then we go to the next permutation T.
This algorithms works really slow: O(S^2) for the first step, O(K!) to loop through each permutation T, O(N^2) to find the R, and O(K*N) to check if the R is the permutation that makes s1 and s2 isomorphic - so it is O(S^2 * K! * N^2).
Question: Can we make it faster?
You can sort and compare:
// 1 - sort each set of permutation
for i = 0 to S-1
sort(pset[i])
// 2 - sort the array of permutations itself
sort(pset)
// 3 - compare
for i = 1 to S-1 {
if(areEqual(pset[i], pset[i-1]))
// pset[i] and pset[i-1] are isomorphic
}
A concrete example:
0: [[1,2,3],[3,2,1]]
1: [[2,3,1],[1,3,2]]
2: [[1,2,3],[2,3,1]]
3: [[3,2,1],[1,2,3]]
After 1:
0: [[1,2,3],[3,2,1]]
1: [[1,3,2],[2,3,1]] // order changed
2: [[1,2,3],[2,3,1]]
3: [[1,2,3],[3,2,1]] // order changed
After 2:
2: [[1,2,3],[2,3,1]]
0: [[1,2,3],[3,2,1]]
3: [[1,2,3],[3,2,1]]
1: [[1,3,2],[2,3,1]]
After 3:
(2, 0) not isomorphic
(0, 3) isomorphic
(3, 1) not isomorphic
What about the complexity?
1 is O(S * (K * N) * log(K * N))
2 is O(S * K * N * log(S * K * N))
3 is O(S * K * N)
So the overall complexity is O(S * K * N log(S * K * N))
There is a very simple solution for this: transposition.
If two sets are isomorphic, it means a one-to-one mapping exists, where the set of all the numbers at index i in set S1 equals the set of all the numbers at some index k in set S2. My conjecture is that no two non-isomorphic sets have this property.
(1) Jean Logeart's example:
0: [[1,2,3],[3,2,1]]
1: [[2,3,1],[1,3,2]]
2: [[1,2,3],[2,3,1]]
3: [[3,2,1],[1,2,3]]
Perform ONE pass:
Transpose, O(n):
0: [[1,3],[2,2],[3,1]]
Sort both in and between groups, O(something log something):
0: [[1,3],[1,3],[2,2]]
Hash:
"131322" -> 0
...
"121233" -> 1
"121323" -> 2
"131322" -> already hashed.
0 and 3 are isomorphic.
(2) vsoftco's counter-example in his comment to Jean Logeart's answer:
A = [ [0, 1, 2], [2, 0, 1] ]
B = [ [1, 0, 2], [0, 2, 1] ]
"010212" -> A
"010212" -> already hashed.
A and B are isomorphic.
You can turn each set into a transposed-sorted string or hash or whatever compressed object for linear-time comparison. Note that this algorithm considers all three sets A, B and C as isomorphic even if one p converts A to B and another p converts A to C. Clearly, in this case, there are ps to convert any one of these three sets to the other, since all we are doing is moving each i in one set to a specific k in the other. If, as you stated, your goal is to "remove isomorphic permutations," you will still get a list of sets to remove.
Explanation:
Assume that along with our sorted hash, we kept a record of which permutation each i came from. vsoftco's counter-example:
010212 // hash for A and B
100110 // origin permutation, set A
100110 // origin permutation, set B
In order to confirm isomorphism, we need to show that the i's grouped in each index from the first set moved to some index in the second set, which index does not matter. Sorting the groups of i's does not invalidate the solution, rather it serves to confirm movement/permutation between sets.
Now by definition, each number in a hash and each number in each group in the hash is represented in an origin permutation exactly one time for each set. However we choose to arrange the numbers in each group of i's in the hash, we are guaranteed that each number in that group is representing a different permutation in the set; and the moment we theoretically assign that number, we are guaranteed it is "reserved" for that permutation and index only. For a given number, say 2, in the two hashes, we are guaranteed that it comes from one index and permutation in set A, and in the second hash corresponds to one index and permutation in set B. That is all we really need to show - that the number in one index for each permutation in one set (a group of distinct i's) went to one index only in the other set (a group of distinct k's). Which permutation and index the number belongs to is irrelevant.
Remember that any set S2, isomorphic to set S1, can be derived from S1 using one permutation function or various combinations of different permutation functions applied to S1's members. What the sorting, or reordering, of our numbers and groups actually represents is the permutation we are choosing to assign as the solution to the isomorphism rather than an actual assignment of which number came from which index and permutation. Here is vsoftco's counter-example again, this time we will add the origin indexes of our hashes:
110022 // origin index set A
001122 // origin index set B
Therefore our permutation, a solution to the isomorphism, is:
Or, in order:
(Notice that in Jean Logeart's example there is more than one solution to the isomorphism.)
Suppose that two elements of s1, s2 \in S are isomorphic. Then if p1 and p2 are permutations, then s1 is isomorphic to s2 iff p1(s1) is isomorphic to p2(s2) where pi(si) is the set of permutations obtained by applying pi to every element in si.
For each i in 1...s and j in 1...k, choose the j-th member of si, and find the permutation that changes it to unity. Apply it to all the elements of si. Hash each of the k permutations to a number, obtaining k numbers, for any choice of i and j, at cost nk.
Comparing the hashed sets for two different values of i and j is k^2 < nk. Thus, you can find the set of candidate matches at cost s^2 k^3 n. If the actual number of matches is low, the overall complexity is far beneath what you specified in your question.
Take a0 in A. Then find it's inverse (fast, O(N)), call it a0inv. Then choose some i in B and define P_i = b_i * ainv and check that P_i * a generates B, when varying a over A. Do this for every i in B. If you don't find any i for which the relation holds, then the sets are not isomorphic. If you find such an i, then the sets are isomorphic. The runtime is O(K^2) for each pair of sets it checks, and you'd need to check O(S^2) sets, so you end up with O(S^2 * K^2 * N).
PS: I assumed here that by "maps A to B" you mean mapping under permutation composition, so P(a) is actually the permutation P composed with the permutation a, and I've used the fact that if P is a permutation, then there must exist an i for which Pa = b_i for some a.
EDIT I decided to undelete my answer as I am not convinced the previous one (#Jean Logeart) based on searching is correct. If yes, I'll gladly delete mine, as it performs worse, but I think I have a counterexample, see the comments below Jean's answer.
To check if two sets S₁ and S₂ are isomorphic you can do a much shorter search.
If they are isomorphic then there is a permutation t that maps each element of S₁ to an element of S₂; to find t you can just pick any fixed element p of S₁ and consider the permutations
t₁ = (1/p) q₁
t₂ = (1/p) q₂
t₃ = (1/p) q₃
...
for all elements q of S₂. For, if a valid t exists then it must map the element p to an element of S₂, so only permutations mapping p to an element of S₂ are possible candidates.
Moreover given a candidate t to check if two sets of permutations S₁t and S₂ are equal you could use an hash computed as the x-or of an hash code for each element, doing the full check of all the permutations only if the hash matches.

spoj dp lsort approach

http://www.spoj.com/problems/LSORT/ It is a problem on spoj
It states that
You are given a permutation of n numbers that are between 1 to n and having no duplicates.
Task is to sort that permutation in ascending order.There is another array Q in which we are inserting elements from given permutation P.
You have to implement N steps to sort P. In the i-th step, P has N-i+1 remaining elements, Q has i-1 elements and you have to choose some x-th element (from the N-i+1 available elements) of P and put it to the left or to the right of Q. The cost of this step is equal to x * i. The total cost is the sum of costs of individual steps. After N steps, Q must be an ascending sequence. Your task is to minimize the total cost.
Input
The first line of the input file is T (T ≤ 10), the number of test cases. Then descriptions of T test cases follow. The description of each test case consists of two lines. The first line contains a single integer N (1 ≤ N ≤ 1000). The second line contains N distinct integers from the set {1, 2, .., N}, the N-element permutation P.
Output
For each test case your program should write one line, containing a single integer - the minimum total cost of sorting.
Now i have figured out the dp
My recurrence relation states that for getting most optimal values from elements having value i to j i will have to insert either $i$ at front or $j$ at back.
Cost of inserting i at front = dp[i+1][j]+cost of adding element i at front
Cost of inserting j at back = dp[i][j-1] +cost of adding element j at back
and i have to take minimum of these.answer would be dp[1][n]
for(l=1;l<=n;l++) //length of current permutation Q
{
for(i=1;i<=n-l+1;i++) //starting value of permutation Q
{
j=i+l-1; //ending value of permutation Q
dp[i][j]=min(dp[i+1][j]+l*xi,dp[i][j-1]+l*xj);//chosing wether to insert i at start or j at end
}
}
here xi=index of element i from start of permutation P.
and yi=index of element j from start of permutation P.
ans would be dp[1][n]
But am unable to figure out xi and xj
Please help
You can try re-thinking your DP state.
For me, I would use the dp[startQ][endQ] where dp[startQ][endQ] means the cost I have incurred to far to 'sort' values startQ to endQ in the array Q.
If you know what is in the array Q (integers startQ to endQ inclusive), one can easily re-construct the array of P by just removing/ignoring all the integers within startQ and endQ.
For each state, dp[startQ][endQ], since one can only add to the front or the back of Q,
dp[startQ][endQ] can only be:
dp[startQ][endQ-1] + cost of adding endQ
dp[startQ-1][endQ] + cost of adding startQ
with the base cases being
dp[i][i] = 0;
These states can be computed and the answer can be found at dp[1]][n]; (assuming it is one indexed).
However I haven't thought of a efficient way to compute x if it were to be coded in a top down manner, where as the whole computation can be performed in O(N^2 log N) using bottom-up DP with a data structure to compute x at every state.
I will leave the final details for you to code out :) but I can help more if required.

Indices of objects in a list of non-redundant pairs

I am implementing a collision detection algorithm stores the distance between all the objects in a single octree node. For instance if there are 4 objects in the node, there is a distance between objects 1&2, 1&3, 1&4, 2&3, 2&4 and 3&4. The formula for the total number of pairs is t = n * (n-1) / 2, where t is the total number of pairs and n is the number of objects in a node.
My question is, how do I convert from a position in the list to a pair of objects. For instance, using the above list of pairs, 3 would return the pair 2&3.
To save space in memory, the list is just a list of floats for the distance instead of containing distance and pointers to 2 objects.
I am unsure how to mathematically convert the single list index to a pair of numbers. Any help would be great. I am hoping to be able to break this down to 2 functions, the first returns the first object in the pair and the second returns the second, both the functions taking 2 variables, one being the index and the other being the total objects in the node. If possible I would like to make a function without any looping or having a recursive function because this will be run in real time for my collision detection algorithm.
Better ordering
I suggest using colexicographical order, as in that case you won't have to supply the total number of objects. Order your pairs like this:
0: 1: 2: 3: 4: 5: 6: 7: 8: 9: 10: 11: 12: 13: …
0&1, 0&2, 1&2, 0&3, 1&3, 2&3, 0&4, 1&4, 2&4, 3&4, 0&5, 1&5, 2&5, 3&5, …
You'll ve able to extend this list to infinite length, so you can know the index of any pair without knowing the number of items. This has the benefit that when you add new items to your data structure, you'll only have to append to your arrays, not relocate existing entries. I've adjusted the indices to zero-based, as you tagged your question C++ so I assume you'll be using zero-based indexing. All my answer below assumes this ordering.
You can also visualize the colex ordering like this:
a: 0 1 2 3 4 5 …
b:
1 0
2 1 2 index of
3 3 4 5 a&b
4 6 7 8 9
5 10 11 12 13 14
6 15 16 17 18 19 20
⋮ ⋮ ⋱
Pair to single index
Let us first turn a pair into a single index. The trick is that for every pair, you look at the second position and imagine all the pairs that had a lesser number in that position. So for example for the pair 2&4 you first count all the pairs where the second number is less than 4. This is the number of possible ways to choose two items from a set of 4 (i.e. the numbers 0 through 3), so you could express this as a binomial coefficient 4C2. If you evaluate it, you end up with 4(4−1)/2=6. To that you add the first number, as this is the number of pairs with lower index but with the same number in the second place. For 2&4 this is 2, so the overall index of 2&4 is 4(4−1)/2+2=8.
In general, for a pair a&b the index will be b(b−1)/2+a.
int index_from_pair(int a, int b) {
return b*(b - 1)/2 + a;
}
Single index to pair
One way to turn the single index i back into a pair of numbers would be increasing b until b(b+1)/2 > i, i.e. the situation where the next value of b would result in indices larger than i. Then you can find a as the difference a = i−b(b−1)/2. This approach by incrementing b one at a time involves using a loop.
pair<int, int> pair_from_index(int i) {
int a, b;
for (b = 0; b*(b + 1)/2 <= i; ++b)
/* empty loop body */;
a = i - b*(b - 1)/2;
return make_pair(a, b);
}
You could also interpret b(b−1)/2 = i as a quadratic equation, which you can solve using a square root. The real b you need is the floor of the floating point b you'd get as the positive solution to this quadratic equation. As you might encounter problems due to rounding errors in this approach, you might want to check whether b(b+1)/2 > i. If that is not the case, increment b as you would do in the loop approach. Once you have b, the computation of a remains the same.
pair<int, int> pair_from_index(int i) {
int b = (int)floor((sqrt(8*i + 1) + 1)*0.5);
if (b*(b + 1)/2 <= i) ++b; // handle possible rounding error
int a = i - b*(b - 1)/2;
return make_pair(a, b);
}
Sequential access
Note that you only need to turn indices back to pairs for random access to your list. When iterating over all pairs, a set of nested loops is easier. So instead of
for (int = 0; i < n*(n - 1)/2; ++i) {
pair<int, int> ab = pair_from_index(i);
int a = ab.first, b = ab.second;
// do stuff
}
you'd better write
for (int i = 0, b = 1; b != n; ++b) {
for (int a = 0; a != b; ++a) {
// do stuff
++i;
}
}
Based on my understanding of the question, one way to get a pair a&b (1-based, 2&3 in your example) from the index (0-based, 3 in your example) and the number of objects n (4 in your example) is:
t = n * (n - 1) / 2;
a = n - floor((1 + sqrt(1 + 8 * (t - index - 1))) / 2);
b = index + (n - a) * (n - a + 1) / 2 - t + a + 1;
Some credits to http://oeis.org/A002024
Generalized algorithms (for tuples rather than pairs) can be found at Calculate Combination based on position and http://saliu.com/bbs/messages/348.html, but they seem to involve calculating combinations in a loop.
Edit: a nicer formula for a (from the same source):
a = n - floor(0.5 + sqrt(2 * (t - index)));

To find the min and max after addition and subtraction from a range of numbers

I am having a Algorithm question, in which numbers are been given from 1 to N and a number of operations are to be performed and then min/max has to be found among them.
Two operations - Addition and subtraction
and operations are in the form a b c d , where a is the operation to be performed,b is the starting number and c is the ending number and d is the number to be added/subtracted
for example
suppose numbers are 1 to N
and
N =5
1 2 3 4 5
We perform operations as
1 2 4 5
2 1 3 4
1 4 5 6
By these operations we will have numbers from 1 to N as
1 7 8 9 5
-3 3 4 9 5
-3 3 4 15 11
So the maximum is 15 and min is -3
My Approach:
I have taken the lower limit and upper limit of the numbers in this case it is 1 and 5 only stored in an array and applied the operations, and then had found the minimum and maximum.
Could there be any better approach?
I will assume that all update (addition/subtraction) operations happen before finding max/min. I don't have a good solution for update and min/max operations mixing together.
You can use a plain array, where the value at index i of the array is the difference between the index i and index (i - 1) of the original array. This makes the sum from index 0 to index i of our array to be the value at index i of the original array.
Subtraction is addition with the negated number, so they can be treated similarly. When we need to add k to the original array from index i to index j, we will add k to index i of our array, and subtract k to index (j + 1) of our array. This takes O(1) time per update.
You can find the min/max of the original array by accumulating summing the values and record the max/min values. This takes O(n) time per operation. I assume this is done once for the whole array.
Pseudocode:
a[N] // Original array
d[N] // Difference array
// Initialization
d[0] = a[0]
for (i = 1 to N-1)
d[i] = a[i] - a[i - 1]
// Addition (subtraction is similar)
add(from_idx, to_idx, amount) {
d[from_idx] += amount
d[to_idx + 1] -= amount
}
// Find max/min for the WHOLE array after add/subtract
current = max = min = d[0];
for (i = 1 to N - 1) {
current += d[i]; // Sum from d[0] to d[i] is a[i]
max = MAX(max, current);
min = MIN(min, current);
}
Generally there is no "best way" to find the min/max in the performance point of view because it depends on how this application will be used.
-Finding the max and min in a list needs O(n) Time, so if you want to run many (many in the context of the input) operations, your approach to find the min/max after all the operations took place is fine.
-But if the list will hold many elements and you don’t want to run that many operations, you better check each result of the op if its a new max/min and update if necessary.