C++ vector push_back empty braces - c++

I've seen code like
struct A {
int m;
};
vector<A> vec;
vec.push_back({});
My question is:
What's the difference between vec.push_back({}); and vec.push_back(A{})? Why can we omit A in A{}?

What's the difference between vec.push_back({}); and vec.push_back(A{})?
There isn't any, in this case.
Why can we omit A in A{}?
You are instantiating a vector to hold A elements. Thus its overloaded push_back() methods will accept const A& and A&& input parameters. Modern C++ standards provide initialization rules that let the compiler deduce that {} used in those contexts will construct an A object, which is why you don't need to specify the type in A{} explicitly.
FYI, vector also has emplace_back() methods that you should use instead of pushing an empty {}:
vector<A> vec;
vec.emplace_back();

Related

C++11 constructor initializer with different syntaxes [duplicate]

In C++11, we have that new syntax for initializing classes which gives us a big number of possibilities how to initialize variables.
{ // Example 1
int b(1);
int a{1};
int c = 1;
int d = {1};
}
{ // Example 2
std::complex<double> b(3,4);
std::complex<double> a{3,4};
std::complex<double> c = {3,4};
auto d = std::complex<double>(3,4);
auto e = std::complex<double>{3,4};
}
{ // Example 3
std::string a(3,'x');
std::string b{3,'x'}; // oops
}
{ // Example 4
std::function<int(int,int)> a(std::plus<int>());
std::function<int(int,int)> b{std::plus<int>()};
}
{ // Example 5
std::unique_ptr<int> a(new int(5));
std::unique_ptr<int> b{new int(5)};
}
{ // Example 6
std::locale::global(std::locale("")); // copied from 22.4.8.3
std::locale::global(std::locale{""});
}
{ // Example 7
std::default_random_engine a {}; // Stroustrup's FAQ
std::default_random_engine b;
}
{ // Example 8
duration<long> a = 5; // Stroustrup's FAQ too
duration<long> b(5);
duration<long> c {5};
}
For each variable I declare, I have to think which initializing syntax I should use and this slows my coding speed down. I'm sure that wasn't the intention of introducing the curly brackets.
When it comes to template code, changing the syntax can lead to different meanings, so going the right way is essential.
I wonder whether there is a universal guideline which syntax one should chose.
I think the following could be a good guideline:
If the (single) value you are initializing with is intended to be the exact value of the object, use copy (=) initialization (because then in case of error, you'll never accidentally invoke an explicit constructor, which generally interprets the provided value differently). In places where copy initialization is not available, see if brace initialization has the correct semantics, and if so, use that; otherwise use parenthesis initialization (if that is also not available, you're out of luck anyway).
If the values you are initializing with are a list of values to be stored in the object (like the elements of a vector/array, or real/imaginary part of a complex number), use curly braces initialization if available.
If the values you are initializing with are not values to be stored, but describe the intended value/state of the object, use parentheses. Examples are the size argument of a vector or the file name argument of an fstream.
I am pretty sure there will never be a universal guideline. My approach is to use always curly braces remembering that
Initializer list constructors take precedence over other constructors
All standard library containers and std::basic_string have initializer list constructors.
Curly brace initialization does not allow narrowing conversions.
So round and curly braces are not interchangeable. But knowing where they differ allows me to use curly over round bracket initialization in most cases (some of the cases where I can't are currently compiler bugs).
Outside of generic code (i.e. templates), you can (and I do) use braces everywhere. One advantage is that it works everywhere, for instance even for in-class initialization:
struct foo {
// Ok
std::string a = { "foo" };
// Also ok
std::string b { "bar" };
// Not possible
std::string c("qux");
// For completeness this is possible
std::string d = "baz";
};
or for function arguments:
void foo(std::pair<int, double*>);
foo({ 42, nullptr });
// Not possible with parentheses without spelling out the type:
foo(std::pair<int, double*>(42, nullptr));
For variables I don't pay much attention between the T t = { init }; or T t { init }; styles, I find the difference to be minor and will at worst only result in a helpful compiler message about misusing an explicit constructor.
For types that accept std::initializer_list though obviously sometimes the non-std::initializer_list constructors are needed (the classical example being std::vector<int> twenty_answers(20, 42);). It's fine to not use braces then.
When it comes to generic code (i.e. in templates) that very last paragraph should have raised some warnings. Consider the following:
template<typename T, typename... Args>
std::unique_ptr<T> make_unique(Args&&... args)
{ return std::unique_ptr<T> { new T { std::forward<Args>(args)... } }; }
Then auto p = make_unique<std::vector<T>>(20, T {}); creates a vector of size 2 if T is e.g. int, or a vector of size 20 if T is std::string. A very telltale sign that there is something very wrong going on here is that there's no trait that can save you here (e.g. with SFINAE): std::is_constructible is in terms of direct-initialization, whereas we're using brace-initialization which defers to direct-initialization if and only if there's no constructor taking std::initializer_list interfering. Similarly std::is_convertible is of no help.
I've investigated if it is in fact possible to hand-roll a trait that can fix that but I'm not overly optimistic about that. In any case I don't think we would be missing much, I think that the fact that make_unique<T>(foo, bar) result in a construction equivalent to T(foo, bar) is very much intuitive; especially given that make_unique<T>({ foo, bar }) is quite dissimilar and only makes sense if foo and bar have the same type.
Hence for generic code I only use braces for value initialization (e.g. T t {}; or T t = {};), which is very convenient and I think superior to the C++03 way T t = T();. Otherwise it's either direct initialization syntax (i.e. T t(a0, a1, a2);), or sometimes default construction (T t; stream >> t; being the only case where I use that I think).
That doesn't mean that all braces are bad though, consider the previous example with fixes:
template<typename T, typename... Args>
std::unique_ptr<T> make_unique(Args&&... args)
{ return std::unique_ptr<T> { new T(std::forward<Args>(args)...) }; }
This still uses braces for constructing the std::unique_ptr<T>, even though the actual type depend on template parameter T.

Is there a difference between assigning a value to a variable using the equal operator or using curly braces?

I saw a code where a programmer used curly braces to initialize a variable
int var{ 5 };
instead of using the assignment operator
int var = 5;
I know assigning a value to lhs variable using curly braces is a C++11 syntax. Is there any difference between using the two?
Thank you for replies.
They are different kinds of initialization:
T a{b}; // list initialization
T a = b; // copy initialization
T a(b); // direct initialization
There is no difference for ints but there can definitely be differences for other types. For instance, copy initialization might fail if your constructor is explicit, whereas the other two would succeed. List initialization disallows narrowing conversions, but for the other two those are fine.
As far as I know, there is no difference in the two for integers. The {} syntax was made to(however, not limited to, because it is also used for initializer_list) prevent programmers from triggering http://en.wikipedia.org/wiki/Most_vexing_parse, and so instead of std::vector<int> v() to initialize v you write std::vector<int> v{};.
The {} has different behaviours depending on the usage, it can be a call to constructor, a initializer list and even a list of values to initialize members of user-defined class in order of definition.
Example of the last:
class Q{
public:
int a;
int b;
float f;
};
int main()
{
Q q{2, 5, 3.25f};
}

Emplacement of a vector with initializer list

i have a std::vector<std::vector<double>> and would like to add some elements at the end of it so this was my trial:
std::vector<std::vector<double> > vec;
vec.emplace_back({0,0});
but this does not compile whereas the following will do:
std::vector<double> vector({0,0});
Why can't emplace_back construct the element at this position? Or what am i doing wrong?
Thanks for your help.
The previous answer mentioned you could get the code to compile when you construct the vector in line and emplace that.
That means, however, that you are calling the move-constructor on a temporary vector, which means you are not constructing the vector in-place, while that's the whole reason of using emplace_back rather than push_back.
Instead you should cast the initializer list to an initializer_list, like so:
#include <vector>
#include <initializer_list>
int main()
{
std::vector<std::vector<int>> vec;
vec.emplace_back((std::initializer_list<int>){1,2});
}
Template deduction cannot guess that your brace-enclosed initialization list should be a vector. You need to be explicit:
vec.emplace_back(std::vector<double>{0.,0.});
Note that this constructs a vector, and then moves it into the new element using std::vector's move copy constructor. So in this particular case it has no advantage over push_back(). #TimKuipers 's answer shows a way to get around this issue.
There are really two issues here: the numeric type conversion and template argument deduction.
The std::vector<double> constructor is allowed to use the braced list (even of ints) for its std::vector<double>(std::initializer_list<double>) constructor. (Note, however, that std::initializer_list<int> does not implicitly convert to std::initializer_list<double>)
emplace_back() cannot construct the element from the brace expression because it is a template that uses perfect forwarding. The Standard forbids the compiler to deduce the type of {0,0}, and so std::vector<double>::emplace_back<std::initializer_list<double>>(std::initializer_list<double>) does not get compiled for emplace_back({}).
Other answers point out that emplace_back can be compiled for an argument of type std::initializer_list<vector::value_type>, but will not deduce this type directly from a {} expression.
As an alternative to casting the argument to emplace_back, you could construct the argument first. As pointed out in Meyers' Item 30 (Effective Modern C++), auto is allowed to deduce the type of a brace expression to std::initializer_list<T>, and perfect forwarding is allowed to deduce the type of an object whose type was deduced by auto.
std::vector<std::vector<double> > vec;
auto double_list = {0., 0.}; // int_list is type std::initializer_list<int>
vec.emplace_back(double_list); // instantiates vec.emplace_back<std::initializer_list<double>&>
emplace_back adds an element to vec by calling std::vector<double>(std::forward<std::initializer_list<double>>(double_list)), which triggers the std::vector<double>(std::initializer_list<double>) constructor.
Reference: Section 17.8.2.5 item 5.6 indicates that the this is a non-deduced context for the purposes of template argument deduction under 17.8.2.1 item 1.
Update: an earlier version of this answer erroneously implied that std::initializer_list<int> could be provided in place of std::initializer_list<double>.

Initializing class using { * this }

It was suggested by a team member that using an intializer like this:
return Demo{ *this };
was better than:
return Demo(*this);
Assuming a simple class like this:
class Demo {
public:
int value1;
Demo(){}
Demo(Demo& demo) {
this->value1 = demo.value1;
}
Demo Clone() {
return Demo{ *this };
}
};
I admit to having not seen the { *this } syntax before, and couldn't find a reference that explained it well enough that I understood how the two options differed. Is there a performance benefit, a syntax choice, or something more?
Your colleague is missing a trick with "uniform initialization", there is no need for the type-name when it is known. E.g. when creating a return value. Clone could be defined as:
Demo Clone() {
return {*this};
}
This will call the Demo copy constructor as needed. Whether you think this is better or not, is up to you.
In GOTW 1 Sutter states as a guideline:
Guideline: Prefer to use initialization with { }, such as vector v = { 1, 2, 3, 4 }; or auto v = vector{ 1, 2, 3, 4 };, because it’s more consistent, more correct, and avoids having to know about old-style pitfalls at all. In single-argument cases where you prefer to see only the = sign, such as int i = 42; and auto x = anything; omitting the braces is fine. …
In particular, using braces can avoid confusion with:
Demo d(); //function declaration, but looks like it might construct a Demo
Demo d{}; //constructs a Demo, as you'd expect
The brace syntax will use a constructor that takes an initializer list first, if one exists. Otherwise it will use a normal constructor. It also prevents the chance of the vexing parse listed above.
There is also different behaviour when using copy initialization. With the standard way
Demo d = x;
The compiler has the option to convert x to a Demo if necessary and then move/copy the converted r-value into w. Something similar to Demo d(Demo(x)); meaning that more than one constructor is called.
Demo d = {x};
This is equivalent to Demo d{x} and guarantees that only one constructor will be called. With both assignments above explicit constructors are cannot be used.
As mentioned in the comments, there are some pitfalls. With classes that take an initializer_list and have "normal" constructors can cause confusion.
vector<int> v{5}; // vector containing one element of '5'
vector<int> v(5); // vector containing five elements.
This is just another syntax for calling your copy constructor (actually, for calling a constructor taking what is in the braces as parameters, in this case, your copy constructor).
Personally, I would say it's worse than before simply because it does the same... it just relies on C++ 11. So it adds dependencies without benefits. But your mileage may vary. You will have to ask your colleague.
I must admit that I'd never seen that before.
WikiPedia says this about C++11 initializer lists (search for "Uniform initialization"):
C++03 has a number of problems with initializing types. There are several ways to initialize types, and they do not all produce the same results when interchanged. The traditional constructor syntax, for example, can look like a function declaration, and steps must be taken to ensure that the compiler's most vexing parse rule will not mistake it for such. Only aggregates and POD types can be initialized with aggregate initializers (using SomeType var = {/stuff/};).
Then, later, they have this example,
BasicStruct var1{5, 3.2}; // C type struct, containing only POD
AltStruct var2{2, 4.3}; // C++ class, with constructors, not
// necessarily POD members
with the following explanation:
The initialization of var1 behaves exactly as though it were aggregate-initialization. That is, each data member of an object, in turn, will be copy-initialized with the corresponding value from the initializer-list. Implicit type conversion will be used where necessary. If no conversion exists, or only a narrowing conversion exists, the program is ill-formed. The initialization of var2 invokes the constructor.
They also have further examples for the case where initialiser list constructors were provided.
So based on the above alone: For the plain-old-data struct case, I don't know if there is any advantage. For a C++11 class, using the {} syntax may help avoid those pesky scenarios where the compiler thinks you're declaring a function. Maybe that is the advantage your colleague was referring to?
Sorry for comming late to this discussion but I want to add some points about the different types of initialization not mentioned by others.
Consider:
struct foo {
foo(int) {}
};
foo f() {
// Suppose we have either:
//return 1; // #1
//return {1}; // #2
//return foo(1); // #3
//return foo{1}; // #4
}
Then,
#1, #3 and #4 might call the copy/move constructor (if RVO isn't performed) whereas #2 won't call the copy/move constructor.
Notice that the most popular compilers do perform RVO and thus, in practice, all return statements above are equivalent. However, even when RVO is performed a copy/move constructor must be available (must be accessible to f and defined but not as deleted) for #1, #3 and #4 otherwise the compiler/linker will raise an error.
Suppose now that the constructor is explicit:
struct foo {
explicit foo(int) {}
};
Then,
#1 and #2 don't compile whereas #3 and #4 do compile.
Finally, if the constructor is explicit and no copy/move constructor is available:
struct foo {
explicit foo(int) {}
foo(const foo&) = delete;
};
none of the return statements compile/link.
This is known as list-initialization. The idea is that in C++11, you will have uniform initialization across the board, and avoid ambiguity where the compiler might think you may be making a function declaration (also known as a vexing parse). A small example:
vec3 GetValue()
{
return {x, y, z}; // normally vec(x, y, z)
}
One reason you would want to avoid list-initialization is where your class takes an initializer list constructor that does something different than you would expect.

Uniform initialization in C++0x, when to use () instead of {}?

Is there a rule of thumb to decide when to use the old syntax () instead of the new syntax {}?
To initialize a struct:
struct myclass
{
myclass(int px, int py) : x(px), y(py) {}
private:
int x, y;
};
...
myclass object{0, 0};
Now in the case of a vector for example, it has many constructors. Whenever I do the following:
vector<double> numbers{10};
I get a vector of 1 element instead of one with 10 elements as one of the constructors is:
explicit vector ( size_type n, const T& value= T(), const Allocator& = Allocator() );
My suspicion is that whenever a class defines an initializer list constructor as in the case of a vector, it gets called with the {} syntax.
So, is what I am thinking correct. i.e. Should I revert to the old syntax only whenever a class defines an initializer list constructor to call a different constructor? e.g. to correct the above code:
vector<double> numbers(10); // 10 elements instead of just one element with value=10
I've found the answer in the standard docs(latest draft). Hopefully, I'll try to explain what I understood.
First, if a class defines an initialization list constructor, then it is used whenever suitable:
§ 8.5.4 (page 203)
Initializer-list constructors are
favored over other constructors in
list-initialization (13.3.1.7).
I think this is a great feature to have, eliminating the headache associated with the non-uniform style :)
Anyway, the only gotcha(which my question is about) is that if you design a class without the initializer constructor, then you add it later you may get surprising result.
Basically, imagine std::vector didn't have the initializer list constructor, then the following would create a vector with 10 elements:
std::vector<int> numbers{10};
By adding the initializer list constructor, the compiler would favor it over the other constructor because of the {} syntax. This behavior would happen because the elements of the init-list {10} are accepted using the init-list constructor. If there is no acceptable conversion, any other constructor shall be used e.g.:
std::vector<string> vec{10};
// a vector of 10 elements.
// the usual constructor got used because "{0}"
// is not accepted as an init-list of type string.
Take a look at this:
http://www.informit.com/guides/content.aspx?g=cplusplus&seqNum=453&rll=1
The use of a {}-style initializers on a variable has no direct mapping to the initialization lists on any constructors of the class. Those constructor initialization lists can be added/removed/modified without breaking existing callers.
Basically the different behavior of the container is special, and requires special code in that container, specifically a constructor taking a std::initializer_list. For POD and simple objects, you can use {} and () interchangeably.