C++ finding the extreme points of an algorithm - c++

The question:
Let A be an array of n elements (that is, the elements of A are A[0], ..., A[n−1]). An element A[i] is extreme if the following conditions hold regarding A[i]:
A[i] is not the first nor the last element of A. That is, 0 < i < n–1 and either A[i−1] < A[i] > A[i+1] or A[i−1] > A[i] < A[i+1]. For example, the extreme points of an array [0, 5, 3, 6, 8, 7, 15, 9] are 5, 3, 8, 7, 15.
Write an algorithm that prints the extreme points of the given array. If there are no extreme points, the algorithm prints “SORTED”. Do you agree that an array has no extreme points if and only if it is sorted? Explain your answer.
What I have managed to do:
#include <iostream>
using namespace std;
bool extremePoint(int arr[], int n, int num, int leftNeighbour, int rightNeighbour);
int main()
{
int array[] = { 0, 5, 3, 6, 8, 7, 15, 9 };
int size = sizeof(array) / sizeof(array[0]);
for (int i = 1; i < size - 1; i++) {
// If the current element is a peak
if (extremePoint(array, size, array[i], array[i - 1], array[i + 1]))
{
cout << array[i] << " ";
}
}
return 0;
}
bool extremePoint(int arr[], int size, int num, int leftNeighbour, int rightNeighbour)
{
if (num > leftNeighbour && num > rightNeighbour)
{
return true;
}
if (num < leftNeighbour && num < rightNeighbour)
{
return true;
}
else
{
return false;
}
}
The problem:
I have managed to write the algorithm that prints the extreme points of the given array.
Can anyone please help me with this part:
If there are no extreme points, the algorithm prints “SORTED”. Do you agree that an array has no extreme points if and only if it is sorted? Explain your answer.

For starters this function
bool extremePoint(int arr[], int size, int num, int leftNeighbour, int rightNeighbour)
{
if (num > leftNeighbour && num > rightNeighbour)
{
return true;
}
if (num < leftNeighbour && num < rightNeighbour)
{
return true;
}
else
{
return false;
}
}
does not use its parameters arr and size.
The function can be written like
bool extremePoint( int num, int eftNeighbour, int rightNeighbour )
{
return leftNeighbour < num && rightNeighbour < num ||
num < leftNeighbour && num < rightNeighbour;
}
If a sequence does not contain an extreme point it does not mean that the sequence is sorted.
For example, consider the sequence
1, 2, 2, 1
On the other hand, it is obvious that a sorted sequence indeed does not have an extreme point.
Pay attention tp that this phrase
Write an algorithm that prints the extreme points of the given array.
can be interpreted as a requirement to write a separate function (algorithm).
I would write such an algorithm the following way as it is shown in the demonstrative program below
#include <iostream>
#include <iterator>
template <typename InputIterator, typename OutputIterator>
OutputIterator extreme_points( InputIterator first,
InputIterator last,
OutputIterator out )
{
if ( first != last )
{
for ( auto prev_value = *first++; first != last; )
{
auto current_value = *first;
if ( ++first != last )
{
if ( prev_value < current_value && *first < current_value ||
current_value < prev_value && current_value < *first )
{
*out++ = current_value;
}
prev_value = current_value;
}
}
}
return out;
}
int main()
{
int a[] = { 0, 5, 3, 6, 8, 7, 15, 9 };
extreme_points( std::begin( a ),
std::end( a ),
std::ostream_iterator<int>( std::cout, ", " ) );
std::cout << '\n';
return 0;
}
The program output is
5, 3, 8, 7, 15,

Related

Check if two arrays are equal or not

I am trying to know if the two given arrays are equal or not, irrespective of permutation of elements but contains the same elements and frequency of all the elements must be same.
int SameArray(int arr1[], int arr2[], int N, int M)
{
unordered_map<int, int> ump;
if(N == M)
{
for(int i = 0; i < N; i++)
{
ump[arr1[i]]++;
}
for(int i = 0; i< M; i++)
{
if(ump.find(arr2[i]) != ump.end())
ump[arr2[i]]--;
}
if(ump.empty())
return 1;
}
return 0;
}
it's not showing any errors but output is always 0.
You're looking for std::is_permutation:
bool SameArray(const std::vector<int>& arr1, const std::vector<int>& arr2) {
return std::is_permutation(arr1.begin(), arr1.end(), arr2.begin(), arr2.end());
}
I took the liberty of changing your function return to bool and taking std::vectors as function parameters since this is C++ and not C.
If you're curious about how std::permutation's comparasion works, look at its example implementation.
The condition in the if statement
if(ump.empty())
is not correct. The map can not be empty provided that the passed arrays do not have zero sizes.
Instead of the condition you could use the standard algorithm std::all_of. Also there is no sense to pass the two sizes of the arrays because if they are not equal to each other then it is evident that the arrays are not equal each other.
Also the array parameters shall be specified with the qualifier const because they are not changed in the function.
Here is a demonstrative program that shows how the function can be defined.
#include <iostream>
#include <iomanip>
#include <unordered_map>
#include <iterator>
#include <algorithm>
bool SameArray( const int a1[], const int a2[], size_t n )
{
sstd::unordered_map<int, int> m;
for ( const int *p = a1; p != a1 + n; ++p ) ++m[*p];
for ( const int *p = a2; p != a2 + n; ++p ) --m[*p];
return std::all_of( std::begin( m ), std::end( m ),
[]( const auto &p) { return p.second == 0; } );
}
int main()
{
const size_t N = 20;
int a1[N] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0 };
int a2[N] = { 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 };
std::cout << std::boolalpha << SameArray( a1, a2, N ) << '\n';
return 0;
}
Its output is
true
You need to check if every key in the map has a value of zero. Instead of ump.empty() you can do the below code.
for (auto& it: ump) {
if(it.second != 0) {
return 0;
}
return 1;
ump[arr2[i]]--; is not going to delete the key. You have to check whether the value of each entry is zero or not. I have added below statement before return 1 -
for (auto it = ump.begin(); it != ump.end(); ++it ) if(it->second != 0) return 0;
int SameArray(int arr1[], int arr2[], int N, int M)
{
unordered_map<int, int> ump;
if(N == M)
{
for(int i = 0; i < N; i++)
{
ump[arr1[i]]++;
}
for(int i = 0; i< M; i++)
{
if(ump.find(arr2[i]) != ump.end())
ump[arr2[i]]--;
}
for (auto it = ump.begin(); it != ump.end(); ++it ) if(it->second != 0) return 0;
return 1;
}
return 0;
}

I have written a quick sort code and logic seem pretty correct but there is no output on the console

I have written a quick sort code and logic seem pretty correct but there is no output on the console.
when only index function runs the output is correct and also the output loop is correct but when quicSort function is added then there is no output.
#include <iostream>
using namespace std;
int index(int* a, int s, int e) {
int i, j, start, piv, temp;
start = s;
piv = a[e];
for (i = start; i <= e; i++) {
if (a[i] <= piv) {
temp = a[i];
a[i] = a[start];
a[start] = temp;
start++;
}
}
return start;
}
void quickSort(int* a, int s, int e) {
int pivot;
if (s < e) {
pivot = index(a, s, e);
quickSort(a, s, pivot - 1);
quickSort(a, pivot + 1, e);
}
}
int main() {
int A[] = {2, 5, 8, 3, 6, 9, 1, 4};
quickSort(A, 0, 7);
for (int i = 0; i < 8; i++) {
cout << A[i];
}
return 0;
}
the output should be sorted array
Code needs two fixes. Changes noted in comments:
#include <iostream>
using namespace std;
int index(int* a, int s, int e) {
int i, start, piv; // j, temp not used
start = s;
piv = a[e];
for (i = start; i <= e; i++) {
if (a[i] < piv) { // fix (not <=)
swap(a[i], a[start]); // simplify
start++;
}
}
swap(a[start], a[e]); // fix (swap pivot into place)
return start;
}
void quickSort(int* a, int s, int e) {
int pivot;
if (s < e) {
pivot = index(a, s, e);
quickSort(a, s, pivot - 1);
quickSort(a, pivot + 1, e);
}
}
int main() {
int A[] = {2, 5, 8, 3, 6, 9, 1, 4};
quickSort(A, 0, 7);
for (int i = 0; i < 8; i++) {
cout << A[i] << " "; // put space beteen numbers
}
cout << endl;
return 0;
}
I think you get confused by bubblesort when creating your quicksort program.
The quicksort ideia is to break the vector in smaller vectors one with the numbers bigger than the pivot e another with the numbers smaller than the pivot.
You should round up your code in C++ data structures like vectors.
One example is, with c++11:
#include <stdio.h>
#include <stdlib.h>
#include <iostream>
#include <numeric>
#include <vector>
using namespace std;
vector<int> quicksort(vector<int> data) {
if (data.size() == 1) return data;
vector<int> small_numbers;
vector<int> big_numbers;
vector<int> ret;
float pivot = accumulate(data.begin(), data.end(), 0.0) / data.size();
for (int value : data) {
if (value < pivot) {
small_numbers.push_back(value);
} else {
big_numbers.push_back(value);
}
}
if (small_numbers.empty()) return big_numbers;
small_numbers = quicksort(small_numbers);
big_numbers = quicksort(big_numbers);
ret.insert(ret.end(), small_numbers.begin(), small_numbers.end());
ret.insert(ret.end(), big_numbers.begin(), big_numbers.end());
return ret;
}
int main() {
vector<int> A({2, 5, 8, 3, 6, 9, 1, 4});
A = quicksort(A);
for (int value : A) cout << value << endl;
return 0;
}
This example break the the vector into two vectors, the pivot is the mean value of the values of vector. It calls the function recursively until it calls a vector with the size of 1 element.
Hope it push you to a less complicated way of see quicksort.

Deleting an even number in an array and shift the elements

I'm trying to write a code where there is a research of even numbers and then it deletes the even numbers and then shifts all the other elements.
i is for offset and are the actual position of the elements in the array.
k is the position of the even number in the array.
int k;
for(i=0; i < N; i++)
{
if(Array[i] % 2 == 0)
{
for(k=i+1; k < N; k++)
{
Array[k-1] = Array[k];
}
N--;
}
}
Array=[2,10,3,5,8,7,3,3,7,10] the even numbers should be removed, but a 10
stays in the Array=[10,3,5,7,3,3,7].
Now is more than 3 hours that I'm trying to figure out what's wrong in my code.
This appears to be some sort of homework or school assignment. So what's the actual problem with the posted code?
It is that when you remove an even number at index i, you put the number that used to be at index i + 1 down into index i. Then you continue the outer loop iteration, which will check index i + 1, which is the number that was at the original i + 2 position in the array. So the number that started out at Array[i + 1], and is now in Array[i], is never checked.
A simple way to fix this is to decrement i when you decrement N.
Though already answered, I fail to see the reason people are driving this through a double for-loop, repetitively moving data over and over, with each reduction.
I completely concur with all the advice about using containers. Further, the algorithms solution doesn't require a container (you can use it on a native array), but containers still make it easier and cleaner. That said...
I described this algorithm in general-comment above. you don't need nested loops fr this. You need a read pointer and a write pointer. that's it.
#include <iostream>
size_t remove_even(int *arr, size_t n)
{
int *rptr = arr, *wptr = arr;
while (n-- > 0)
{
if (*rptr % 2 != 0)
*wptr++ = *rptr;
++rptr;
}
return (wptr - arr);
}
int main()
{
int arr[] = { 2,10,3,5,8,7,3,3,7,10 };
size_t n = remove_even(arr, sizeof arr / sizeof *arr);
for (size_t i=0; i<n; ++i)
std::cout << arr[i] << ' ';
std::cout << '\n';
}
Output
3 5 7 3 3 7
If you think it doesn't make a difference, I invite you to fill an array with a million random integers, then try both solutions (the nested-for-loop approach vs. what you see above).
Using std::remove_if on a native array.
Provided only for clarity, the code above basically does what the standard algorithm std::remove_if does. All we need do is provide iterators (the array offsets and size will work nicely), and know how to interpret the results.
#include <iostream>
#include <algorithm>
int main()
{
int arr[] = { 2,10,3,5,8,7,3,3,7,10 };
auto it = std::remove_if(std::begin(arr), std::end(arr),
[](int x){ return x%2 == 0; });
for (size_t i=0; i<(it - arr); ++i)
std::cout << arr[i] << ' ';
std::cout << '\n';
}
Same results.
The idiomatic solution in C++ would be to use a STL algorithm.
This example use a C-style array.
int Array[100] = {2,10,3,5,8,7,3,3,7,10};
int N = 10;
// our remove_if predicate
auto removeEvenExceptFirst10 = [first10 = true](int const& num) mutable {
if (num == 10 && first10) {
first10 = false;
return false;
}
return num % 2 == 0;
};
auto newN = std::remove_if(
std::begin(Array), std::begin(Array) + N,
removeEvenExceptFirst10
);
N = std::distance(std::begin(Array), newN);
Live demo
You could use a std::vector and the standard function std::erase_if + the vectors erase function to do this:
#include <iostream>
#include <vector>
#include <algorithm>
int main() {
std::vector<int> Array = {2, 10, 3, 5, 8, 7, 3, 3, 7, 10};
auto it = std::remove_if(
Array.begin(),
Array.end(),
[](int x) { return (x & 1) == 0 && x != 10; }
);
Array.erase(it, Array.end());
for(int x : Array) {
std::cout << x << "\n";
}
}
Output:
10
3
5
7
3
3
7
10
Edit: Doing it the hard way:
#include <iostream>
int main() {
int Array[] = {2, 10, 3, 5, 8, 7, 3, 3, 7, 10};
size_t N = sizeof(Array) / sizeof(int);
for(size_t i = 0; i < N;) {
if((Array[i] & 1) == 0 && Array[i] != 10) {
for(size_t k = i + 1; k < N; ++k) {
Array[k - 1] = Array[k];
}
--N;
} else
++i; // only step i if you didn't shift the other values down
}
for(size_t i = 0; i < N; ++i) {
std::cout << Array[i] << "\n";
}
}
Or simpler:
#include <iostream>
int main() {
int Array[] = {2, 10, 3, 5, 8, 7, 3, 3, 7, 10};
size_t N = sizeof(Array) / sizeof(int);
size_t k = 0;
for(size_t i = 0; i < N; ++i) {
if((Array[i] & 1) || Array[i] == 10) {
// step k after having saved this value
Array[k++] = Array[i];
}
}
N = k;
for(size_t i = 0; i < N; ++i) {
std::cout << Array[i] << "\n";
}
}

reduce the complexity of the program

Here is the program to find the pairs that sums up to 3.
For example:
INPUT : 0,3,5,1,2,4
OUTPUT: 0,3,1,2.
That means it should return all the pairs whose sum is equal to 3.
But I want to reduce the time complexity of this program. Right now I am using two nested for loops.
Can anyone suggest a better method to reduce the time complexity.
#include<iostream>
#include <vector>
using namespace std;
void main()
{
vector<int> v;
vector<int> r;
int x;
cout << "Enter the elements";
for(int i = 0; i < 6; i++)
{
cin >> x;
v.push_back(x);
}
for(int i = 0 ; i < v.size() - 1; i++)
{
for(int j = i + 1; j < v.size(); j++)
{
if(v[i] + v[j] == 3)
{
r.push_back(v[i]);
r.push_back(v[j]);
}
}
}
cout << "\noutput\n";
for(int i = 0 ; i < r.size(); i++)
{
cout<<r[i]<<"\n";
}
}
I'd do two preparation steps; First, eliminate all numbers > 3, as they will not be part of any valid pair. This reduces the complexity of the second step. Second, sort the remaining numbers such that a single walk through can then find all the results.
The walk through approaches the pairs from both ends of the sorted array; if a pair is found, both bounds can be narrowed down; if the current endings do sum up to a value > 3, only one boundary is narrowed.
Runtime complexity is O(N logN), where N is the count of elements <= 3; O(N logN) basically comes from sorting; the two single walk throughs will not count for large Ns.
int main(int argc, char* argv[]) {
const int N = 3;
std::vector<int> input{ 0,3,5,1,2,4};
std::vector<int>v(input.size());
int t=0;
for (auto i : input) {
if (i <= N) {
v[t++]=i;
}
}
std::sort (v.begin(), v.end());
long minIdx = 0;
long maxIdx = v.size()-1;
while (minIdx < maxIdx) {
int minv = v[minIdx];
int maxv = v[maxIdx];
if (minv+maxv == 3) {
cout << minv << '+' << maxv << endl;
minIdx++;maxIdx--;
}
else
minIdx++;
}
return 0;
}
You are searching for all the combinations between two numbers in n elements, more specifically, those that sum up to specific value. Which is a variation of the subset sum problem.
To make this happen you could generate all combinations without repetitions of the indexes of the vector holding the values. Here is an example of how to do this recursively and here is an example of how to do it iteratively, just to get an idea and possibly use it as a benchmark in your case.
Another approaches are dynamic programming and backtracking.
Late answer but works for negative integers too... For first, find the smallest number in the std::vector<int>, then like this answer says, remove all elements (or copy the opposite), which are higher than 3 + minimum. After sorting this std::vector<int> iterate through it from both ends with condition shown bellow:
#include <iostream>
#include <vector>
#include <algorithm>
#include <climits>
std::vector<int> findPairs(const std::vector<int>& input, const int sum) {
int minElem = INT_MAX;
for(auto lhs = input.begin(), rhs = input.end() - 1; lhs < rhs;
++lhs, --rhs) {
const int elem = (*lhs < *rhs ? *lhs : *rhs);
if(elem < minElem)
minElem = elem;
}
std::vector<int> temp(input.size());
const auto tempBegin = temp.begin();
const auto tempEnd = std::remove_copy_if(input.begin(), input.end(),
temp.begin(), [minElem, sum](int elem) {
return (elem + minElem) > sum;
});
std::sort(tempBegin, tempEnd);
std::vector<int> result;
auto leftIter = tempBegin;
auto rightIter = tempEnd - 1;
while(leftIter < rightIter) {
if(*leftIter + *rightIter == sum) {
result.push_back(*leftIter++);
result.push_back(*rightIter--);
}
else {
if(sum - *leftIter < *rightIter) rightIter--;
else leftIter++;
}
}
return result;
}
int main() {
auto pairs = findPairs({ 0, 3, 5, 1, 2, 4, 7, 0, 3, 2, -2, -4, -3 }, 3);
std::cout << "Pairs: { ";
for(auto it = pairs.begin(); it != pairs.end(); ++it)
std::cout << (it == pairs.begin() ? "" : ", ") << *it;
std::cout << " }" << std::endl;
}
The code above will results the following:
Pairs: { -4, 7, -2, 5, 0, 3, 0, 3, 1, 2 }
I think you can solve this in O(n) with a map.
public void printPairs(int[] a, int v)
{
map<int, int> counts = new map<int, int>();
for(int i = 0; i < a.length; i++)
{
if(map.count(a[i]) == 0)
{
map[a[i]] = 1;
}
else
{
map[a[i]] = map[a[i]] + 1;
}
}
map<int, int>::iterator it = map.begin();
while(it != map.end())
{
int v1 = it->second;
if (map.count(v - v1) > 0)
{
// Found pair v, v1
//will be found twice (once for v and once for v1)
}
}
}

Generating combinations in C++

I have been searching for a source code for generating combinations using C++. I found some advanced codes for this but that is good for only specific number predefined data. Can anyone give me some hints, or perhaps, some ideas to generate a combination?
As an example, suppose the set S = { 1, 2, 3, ...., n} and we pick r= 2 out of it. The input would be n and r. In this case, the program will generate arrays of length two. So input of 5 2 would output 1 2, 1 3.
I had difficulty in constructing the algorithm. It took me a month to think about this.
A simple way using std::next_permutation:
#include <iostream>
#include <algorithm>
#include <vector>
int main() {
int n, r;
std::cin >> n;
std::cin >> r;
std::vector<bool> v(n);
std::fill(v.end() - r, v.end(), true);
do {
for (int i = 0; i < n; ++i) {
if (v[i]) {
std::cout << (i + 1) << " ";
}
}
std::cout << "\n";
} while (std::next_permutation(v.begin(), v.end()));
return 0;
}
or a slight variation that outputs the results in an easier to follow order:
#include <iostream>
#include <algorithm>
#include <vector>
int main() {
int n, r;
std::cin >> n;
std::cin >> r;
std::vector<bool> v(n);
std::fill(v.begin(), v.begin() + r, true);
do {
for (int i = 0; i < n; ++i) {
if (v[i]) {
std::cout << (i + 1) << " ";
}
}
std::cout << "\n";
} while (std::prev_permutation(v.begin(), v.end()));
return 0;
}
A bit of explanation:
It works by creating a "selection array" (v), where we place r selectors, then we create all permutations of these selectors, and print the corresponding set member if it is selected in in the current permutation of v.
You can implement it if you note that for each level r you select a number from 1 to n.
In C++, we need to 'manually' keep the state between calls that produces results (a combination): so, we build a class that on construction initialize the state, and has a member that on each call returns the combination while there are solutions: for instance
#include <iostream>
#include <iterator>
#include <vector>
#include <cstdlib>
using namespace std;
struct combinations
{
typedef vector<int> combination_t;
// initialize status
combinations(int N, int R) :
completed(N < 1 || R > N),
generated(0),
N(N), R(R)
{
for (int c = 1; c <= R; ++c)
curr.push_back(c);
}
// true while there are more solutions
bool completed;
// count how many generated
int generated;
// get current and compute next combination
combination_t next()
{
combination_t ret = curr;
// find what to increment
completed = true;
for (int i = R - 1; i >= 0; --i)
if (curr[i] < N - R + i + 1)
{
int j = curr[i] + 1;
while (i <= R-1)
curr[i++] = j++;
completed = false;
++generated;
break;
}
return ret;
}
private:
int N, R;
combination_t curr;
};
int main(int argc, char **argv)
{
int N = argc >= 2 ? atoi(argv[1]) : 5;
int R = argc >= 3 ? atoi(argv[2]) : 2;
combinations cs(N, R);
while (!cs.completed)
{
combinations::combination_t c = cs.next();
copy(c.begin(), c.end(), ostream_iterator<int>(cout, ","));
cout << endl;
}
return cs.generated;
}
test output:
1,2,
1,3,
1,4,
1,5,
2,3,
2,4,
2,5,
3,4,
3,5,
4,5,
my simple and efficient solution based on algorithms from Prof. Nathan Wodarz:
// n choose r combination
#include <vector>
#include <iostream>
#include <algorithm>
struct c_unique {
int current;
c_unique() {current=0;}
int operator()() {return ++current;}
} UniqueNumber;
void myfunction (int i) {
std::cout << i << ' ';
}
int main()
{
int n=5;
int r=3;
std::vector<int> myints(r);
std::vector<int>::iterator first = myints.begin(), last = myints.end();
std::generate(first, last, UniqueNumber);
std::for_each(first, last, myfunction);
std::cout << std::endl;
while((*first) != n-r+1){
std::vector<int>::iterator mt = last;
while (*(--mt) == n-(last-mt)+1);
(*mt)++;
while (++mt != last) *mt = *(mt-1)+1;
std::for_each(first, last, myfunction);
std::cout << std::endl;
}
}
then output is:
1 2 3
1 2 4
1 2 5
1 3 4
1 3 5
1 4 5
2 3 4
2 3 5
2 4 5
3 4 5
#include<iostream>
using namespace std;
for(int i=1;i<=5;i++)
for (int j=2;j<=5;j++)
if (i!=j)
cout<<i<<","<<j<<","<<endl;
//or instead of cout... you can put them in a matrix n x 2 and use the solution
Code is similar to generating binary digits. Keep an extra data structure, an array perm[], whose value at index i will tell if ith array element is included or not. And also keep a count variable. Whenever count == length of combination, print elements based on perm[].
#include<stdio.h>
// a[] : given array of chars
// perm[] : perm[i] is 1 if a[i] is considered, else 0
// index : subscript of perm which is to be 0ed and 1ed
// n : length of the given input array
// k : length of the permuted string
void combinate(char a[], int perm[],int index, int n, int k)
{
static int count = 0;
if( count == k )
{
for(int i=0; i<n; i++)
if( perm[i]==1)
printf("%c",a[i]);
printf("\n");
} else if( (n-index)>= (k-count) ){
perm[index]=1;
count++;
combinate(a,perm,index+1,n,k);
perm[index]=0;
count--;
combinate(a,perm,index+1,n,k);
}
}
int main()
{
char a[] ={'a','b','c','d'};
int perm[4] = {0};
combinate(a,perm,0,4,3);
return 0;
}
this is a recursive method, which you can use on any type. you can iterate on an instance of Combinations class (e.g. or get() vector with all combinations, each combination is a vector of objects. This is written in C++11.
//combinations.hpp
#include <vector>
template<typename T> class Combinations {
// Combinations(std::vector<T> s, int m) iterate all Combinations without repetition
// from set s of size m s = {0,1,2,3,4,5} all permuations are: {0, 1, 2}, {0, 1,3},
// {0, 1, 4}, {0, 1, 5}, {0, 2, 3}, {0, 2, 4}, {0, 2, 5}, {0, 3, 4}, {0, 3, 5},
// {0, 4, 5}, {1, 2, 3}, {1, 2, 4}, {1, 2, 5}, {1, 3, 4}, {1, 3, 5}, {1, 4, 5},
// {2, 3, 4}, {2, 3, 5}, {2, 4, 5}, {3, 4, 5}
public:
Combinations(std::vector<T> s, int m) : M(m), set(s), partial(std::vector<T>(M))
{
N = s.size(); // unsigned long can't be casted to int in initialization
out = std::vector<std::vector<T>>(comb(N,M), std::vector<T>(M)); // allocate space
generate(0, N-1, M-1);
};
typedef typename std::vector<std::vector<T>>::const_iterator const_iterator;
typedef typename std::vector<std::vector<T>>::iterator iterator;
iterator begin() { return out.begin(); }
iterator end() { return out.end(); }
std::vector<std::vector<T>> get() { return out; }
private:
void generate(int i, int j, int m);
unsigned long long comb(unsigned long long n, unsigned long long k); // C(n, k) = n! / (n-k)!
int N;
int M;
std::vector<T> set;
std::vector<T> partial;
std::vector<std::vector<T>> out;
int count (0);
};
template<typename T>
void Combinations<T>::generate(int i, int j, int m) {
// combination of size m (number of slots) out of set[i..j]
if (m > 0) {
for (int z=i; z<j-m+1; z++) {
partial[M-m-1]=set[z]; // add element to permutation
generate(z+1, j, m-1);
}
} else {
// last position
for (int z=i; z<j-m+1; z++) {
partial[M-m-1] = set[z];
out[count++] = std::vector<T>(partial); // add to output vector
}
}
}
template<typename T>
unsigned long long
Combinations<T>::comb(unsigned long long n, unsigned long long k) {
// this is from Knuth vol 3
if (k > n) {
return 0;
}
unsigned long long r = 1;
for (unsigned long long d = 1; d <= k; ++d) {
r *= n--;
r /= d;
}
return r;
}
Test file:
// test.cpp
// compile with: gcc -O3 -Wall -std=c++11 -lstdc++ -o test test.cpp
#include <iostream>
#include "combinations.hpp"
struct Bla{
float x, y, z;
};
int main() {
std::vector<int> s{0,1,2,3,4,5};
std::vector<Bla> ss{{1, .4, 5.0},{2, .7, 5.0},{3, .1, 2.0},{4, .66, 99.0}};
Combinations<int> c(s,3);
// iterate over all combinations
for (auto x : c) { for (auto ii : x) std::cout << ii << ", "; std::cout << "\n"; }
// or get a vector back
std::vector<std::vector<int>> z = c.get();
std::cout << "\n\n";
Combinations<Bla> cc(ss, 2);
// combinations of arbitrary objects
for (auto x : cc) { for (auto b : x) std::cout << "(" << b.x << ", " << b.y << ", " << b.z << "), "; std::cout << "\n"; }
}
output is :
0, 1, 2,
0, 1, 3,
0, 1, 4,
0, 1, 5,
0, 2, 3,
0, 2, 4,
0, 2, 5,
0, 3, 4,
0, 3, 5,
0, 4, 5,
1, 2, 3,
1, 2, 4,
1, 2, 5,
1, 3, 4,
1, 3, 5,
1, 4, 5,
2, 3, 4,
2, 3, 5,
2, 4, 5,
3, 4, 5,
(1, 0.4, 5), (2, 0.7, 5),
(1, 0.4, 5), (3, 0.1, 2),
(1, 0.4, 5), (4, 0.66, 99),
(2, 0.7, 5), (3, 0.1, 2),
(2, 0.7, 5), (4, 0.66, 99),
(3, 0.1, 2), (4, 0.66, 99),
Below is an iterative algorithm in C++ that does not use the STL nor recursion nor conditional nested loops. It is faster that way, it does not perform any element swaps and it does not burden the stack with recursion and it can also be easily ported to ANSI C by substituting mallloc(), free() and printf() for new, delete and std::cout, respectively.
If you want the displayed elements to start from 1 then change the OutputArray() function. Namely: cout << ka[i]+1... instead of cout << ka[i]....
Note that I use K instead of r.
void OutputArray(unsigned int* ka, size_t n) {
for (int i = 0; i < n; i++)
std::cout << ka[i] << ",";
std::cout << endl;
}
void GenCombinations(const unsigned int N, const unsigned int K) {
unsigned int *ka = new unsigned int [K]; //dynamically allocate an array of UINTs
unsigned int ki = K-1; //Point ki to the last elemet of the array
ka[ki] = N-1; //Prime the last elemet of the array.
while (true) {
unsigned int tmp = ka[ki]; //Optimization to prevent reading ka[ki] repeatedly
while (ki) //Fill to the left with consecutive descending values (blue squares)
ka[--ki] = --tmp;
OutputArray(ka, K);
while (--ka[ki] == ki) { //Decrement and check if the resulting value equals the index (bright green squares)
OutputArray(ka, K);
if (++ki == K) { //Exit condition (all of the values in the array are flush to the left)
delete[] ka;
return;
}
}
}
}
int main(int argc, char *argv[])
{
GenCombinations(7, 4);
return 0;
}
Combinations: Out of "7 Choose 4".
I'd suggest figuring out how you would do it on paper yourself and infer pseudocode from that. After that, you only need to decide the way to encode and store the manipulated data.
For ex:
For each result item in result array // 0, 1, ... r
For each item possible // 0, 1, 2, ... n
if current item does not exist in the result array
place item in result array
exit the inner for
end if
end for
end for
You can use recursion whereby to pick N+1 combinations you pick N combinations then add 1 to it. The 1 you add must always be after the last one of your N, so if your N includes the last element there are no N+1 combinations associated with it.
Perhaps not the most efficient solution but it should work.
Base case would be picking 0 or 1. You could pick 0 and get an empty set. From an empty set you can assume that iterators work between the elements and not at them.
Here are my attempt:
Function (ready for copy/paste) without any dependency
template<class _Tnumber, class _Titerator >
bool next_combination
(
_Titerator const& _First
, _Titerator const& _Last
, _Tnumber const& _Max //!< Upper bound. Not reachable
)
{
_Titerator _Current = _First;
if( _Current == _Last )
{
return false;
}
*_Current += 1;
if( *_Current < _Max )
{
return true;
}
_Titerator _Next = _Current + 1;
if( _Next == _Last )
{
return false;
}
if( false == next_combination( _Next, _Last, _Max - 1 ) )
{
return false;
}
*_Current = *_Next + 1;
return *_Current < _Max;
}
Test:
vector<int> vec({3,2,1}); // In descending order and different
do
{
copy( vec.begin(), vec.end(), ostream_iterator<int>(cout, ", " ) ); cout << endl;
}while( ::math::algorithm::next_combination( vec.begin(), vec.end(), 6 ) );
And output:
3, 2, 1,
4, 2, 1,
5, 2, 1,
4, 3, 1,
5, 3, 1,
5, 4, 1,
4, 3, 2,
5, 3, 2,
5, 4, 2,
5, 4, 3,
void print(int *a, int* s, int ls)
{
for(int i = 0; i < ls; i++)
{
cout << a[s[i]] << " ";
}
cout << endl;
}
void PrintCombinations(int *a, int l, int k, int *s, int ls, int sp)
{
if(k == 0)
{
print(a,s,ls);
return;
}
for(int i = sp; i < l; i++)
{
s[k-1] = i;
PrintCombinations(a,l,k-1,s,ls,i+1);
s[k-1] = -1;
}
}
int main()
{
int e[] = {1,2,3,4,5,6,7,8,9};
int s[] = {-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1};
PrintCombinations(e,9,6,s,6,0);
}
For the special case of (n choose r), where r is a fixed constant, we can write r nested loops to arrive at the situation. Sometimes when r is not fixed, we may have another special case (n choose n-r), where r is again a fixed constant. The idea is that every such combination is the inverse of the combinations of (n choose r). So we can again use r nested loops, but invert the solution:
// example 1: choose each 2 from given vector and apply 'doSomething'
void doOnCombinationsOfTwo(const std::vector<T> vector) {
for (int i1 = 0; i1 < vector.size() - 1; i1++) {
for (int i2 = i1 + 1; i2 < vector.size(); i2++) {
doSomething( { vector[i1], vector[i2] });
}
}
}
// example 2: choose each n-2 from given vector and apply 'doSomethingElse'
void doOnCombinationsOfNMinusTwo(const std::vector<T> vector) {
std::vector<T> combination(vector.size() - 2); // let's reuse our combination vector
for (int i1 = 0; i1 < vector.size() - 1; i1++) {
for (int i2 = i1 + 1; i2 < vector.size(); i2++) {
auto combinationEntry = combination.begin(); // use iterator to fill combination
for (int i = 0; i < vector.size(); i++) {
if (i != i1 && i != i2) {
*combinationEntry++ = i;
}
}
doSomethingElse(combinationVector);
}
}
}
This seems readable and also it works for std::vector, std::list, std::deque or even static declared int intArray[]
#include <iostream>
#include <vector>
#include <algorithm>
#include <numeric>
#include <list>
#include <set>
#include <iterator>
template<typename InputIt, typename T>
bool nextCombination(InputIt begin,
InputIt end,
T toElement) {
/*
Given sequence: 1 2 3 4 5
Final sequence: 6 7 8 9 10
-- Formally --
Given sequence: 1 2 ... k-1 k
Final sequence: (n-k+1) (n-k+2) ... (n-1) n
lengthOfSubsequence = positionOf(5) - positionOf(1) = 5
We look for an element that satisfies:
seqeunce[pos] < n - k + pos
*/
const auto lengthOfSubsequence = std::distance(begin, end);
auto viewed_element_it = std::make_reverse_iterator(end);
auto reversed_begin = std::make_reverse_iterator(begin);
/*Looking for this element here*/
while ((viewed_element_it != reversed_begin) &&
(*viewed_element_it >= toElement -
lengthOfSubsequence +
std::distance(viewed_element_it, reversed_begin))) {
//std::distance shows position of element in subsequence here
viewed_element_it++;
}
if (viewed_element_it == reversed_begin)
return false;
auto it = std::prev(viewed_element_it.base());
/*
Increment the found element.
The rest following elements we set as seqeunce[pos] = seqeunce[pos-1] + 1
*/
std::iota(it, end, *it + 1);
return true;
}
int main()
{
std::list<int> vec = { 1, 2, 3 };
do {
std::copy(vec.begin(), vec.end(), std::ostream_iterator<int>(std::cout, " "));
std::cout << std::endl;
} while (nextCombination(vec.begin(), vec.end(), 10));
}
One can directly compute all combinations indices in lexicographical order, like I did in following code.
These indices can be used for direct output or as pointers to any combined items as "abcde" string in second example of main() function, see output example after code.
Try it online!
#include <vector>
#include <iostream>
template <typename F>
void Combinations(size_t n, size_t k, F && out) {
if (k > n)
return;
std::vector<size_t> a(k);
for (size_t i = 0; i < k; ++i)
a[i] = i;
while (true) {
out(a);
int i = int(k) - 1;
while (i >= 0 && a[i] >= n - 1 - (k - 1 - i))
--i;
if (i < 0)
break;
for (size_t j = a[i] + 1; i < k; ++j, ++i)
a[i] = j;
}
}
int main() {
Combinations(5, 3, [](auto const & a){
for (auto i: a)
std::cout << i << " ";
std::cout << std::endl;
});
std::string s = "abcde";
Combinations(5, 3, [&](auto const & a){
for (auto i: a)
std::cout << s[i] << " ";
std::cout << std::endl;
});
}
Output:
0 1 2
0 1 3
0 1 4
0 2 3
0 2 4
0 3 4
1 2 3
1 2 4
1 3 4
2 3 4
a b c
a b d
a b e
a c d
a c e
a d e
b c d
b c e
b d e
c d e
vector<list<int>> generate(int N, int K, int& count) {
vector<list<int>> output;
if(K == 1) {
count = N;
for(int i = 1; i <= N; i++) {
list<int> l = {i};
output.push_back(l);
}
} else {
count = 0;
int n;
vector<list<int>> l = generate(N, K - 1, n);
for(auto iter = l.begin(); iter != l.end(); iter++) {
int last = iter->back();
for (int i = last + 1; i <= N; ++i) {
list<int> value = *iter;
value.push_back(i);
output.push_back(value);
count++;
}
}
}
return output;
}
You can just use for loops if r is small, here r = 2, so two for loops:
unsigned int i, j, max=0;
for(i=1; i<=n; i++){
for(j=i+1; j<=n; j++){
int ans = (i & j);
cout << i << " " << j << endl;
}
}