Shared queue and 2 threads - c++

I am using a queue shared between 2 threads in my program. One thread keeps pushing data to the queue, and second thread keeps popping data from the queue and writing to a vector.
My question is do I need condition variable along with mutex lock for this scenario when doing enqueue or dequeue operation? How to handle race condition ?
My code is as follows:
void push_data_to_queue(){
mtx.lock();
std::lock_guard<std::mutex> lockGuard(mtx);
for( int i=0; i < 10; i++ ) {
queue.push(i);
}
}
void get_data_from_queue(){
std::vector<int> v;
mtx.lock();
std::lock_guard<std::mutex> lockGuard(mtx);
for(int i=0;i<5;i++) {
v.push_back(queue.front()));
queue.pop();
}
}
int main(){
std::mutex mtx;
std::thread(push_data_to_queue,std::ref(mtx));
std::thread(get_data_from_queue,std::ref(mtx));
return 0;
}

first point is you dont need to call mutex.lock() when you are using std::lock_guard.
second point is this senario there is only one writer thread and one reader thread there is no need for locking mechanism you can implement it with wait free approach or something like busy loop. but you can use just mutex but beware there is no guarantee that if reader or writer thread release mutex it will let other side acquire mutex in another word there is no guarantee ordering of acquisition because of that you need something like condition variable's(but beware condition variable also use for put thread in waiting state and prevent from wasting resources).
as i said you need some method of syncronazation.
imagine this senario:
writer thread write A to queue.
reader thread call back() and get item and start to process.
then writer thread write B to queue.
after that reader thread call pop_back() then it will remove item B from queue without processing.
so because of that you need mutex(no guarantee ordering of acquisition) , or condition variable(which is using mutex inside itself), busy loop(may consume so much resource), spinklock, ...
for better performance you can use atomic variable's.

Related

And odd use of conditional variable with local mutex

Poring through legacy code of old and large project, I had found that there was used some odd method of creating thread-safe queue, something like this:
template < typename _Msg>
class WaitQue: public QWaitCondition
{
public:
typedef _Msg DataType;
void wakeOne(const DataType& msg)
{
QMutexLocker lock_(&mx);
que.push(msg);
QWaitCondition::wakeOne();
}
void wait(DataType& msg)
{
/// wait if empty.
{
QMutex wx; // WHAT?
QMutexLocker cvlock_(&wx);
if (que.empty())
QWaitCondition::wait(&wx);
}
{
QMutexLocker _wlock(&mx);
msg = que.front();
que.pop();
}
}
unsigned long size() {
QMutexLocker lock_(&mx);
return que.size();
}
private:
std::queue<DataType> que;
QMutex mx;
};
wakeOne is used from threads as kind of "posting" function" and wait is called from other threads and waits indefinitely until a message appears in queue. In some cases roles between threads reverse at different stages and using separate queues.
Is this even legal way to use a QMutex by creating local one? I kind of understand why someone could do that to dodge deadlock while reading size of que but how it even works? Is there a simpler and more idiomatic way to achieve this behavior?
Its legal to have a local condition variable. But it normally makes no sense.
As you've worked out in this case is wrong. You should be using the member:
void wait(DataType& msg)
{
QMutexLocker cvlock_(&mx);
while (que.empty())
QWaitCondition::wait(&mx);
msg = que.front();
que.pop();
}
Notice also that you must have while instead of if around the call to QWaitCondition::wait. This is for complex reasons about (possible) spurious wake up - the Qt docs aren't clear here. But more importantly the fact that the wake and the subsequent reacquire of the mutex is not an atomic operation means you must recheck the variable queue for emptiness. It could be this last case where you previously were getting deadlocks/UB.
Consider the scenario of an empty queue and a caller (thread 1) to wait into QWaitCondition::wait. This thread blocks. Then thread 2 comes along and adds an item to the queue and calls wakeOne. Thread 1 gets woken up and tries to reacquire the mutex. However, thread 3 comes along in your implementation of wait, takes the mutex before thread 1, sees the queue isn't empty, processes the single item and moves on, releasing the mutex. Then thread 1 which has been woken up finally acquires the mutex, returns from QWaitCondition::wait and tries to process... an empty queue. Yikes.

C++: condition variable [duplicate]

Suppose I have two threads and one shared c++ 11 condition variable.
What whould happen if thread1 call notify and after that thread2 call wait?
Will thread2 block forever or it will continue it's work due to call of notify by thread1?
Edit:
enum bcLockOperation
{
bcLockOperation_Light = -1,
bcLockOperation_Medium = 50,
bcLockOperation_Heavy = 1
}
class BC_COREDLL_EXP bcCustomMutex
{
private:
bcCustomMutex(const bcCustomMutex&);
bcCustomMutex& operator=(const bcCustomMutex&);
protected:
bcAtomic<int> mFlag;
bcMutex mMutex;
bcConditionVariable mCond;
public:
bcCustomMutex() { bcAtomicOperation::bcAtomicInit(mFlag, 0); };
~bcCustomMutex() {};
void lock(bcLockOperation pLockOperation = bcLockOperation_Medium)
{
bcINT32 lNewLoopCount = static_cast<bcINT32>(pLockOperation);
bcINT32 lLoopCounter = 0;
bcINT32 lExpected = 0;
bcINT32 lLoopCount = bcAtomicOperation::bcAtomicLoad(mFlag, bcMemoryOrder_Relaxed);
while (true)
{
while(bcAtomicOperation::bcAtomicLoad(mFlag, bcMemoryOrder_Relaxed) != 0 && lLoopCounter != lLoopCount)
++lLoopCounter;
bcAtomicOperation::bcAtomicCompareExchangeStrong(
mFlag,
&lExpected,
lNewLoopCount,
bcMemoryOrder_Acquire,
bcMemoryOrder_Relaxed);
if(lExpected == 0)
{
return;
}
else if(lLoopCounter == lLoopCount)
{
bcLockGuard<bcMutex> lGuard(mMutex);
mCond.wait(mMutex);
}
else
{
continue;
}
}
void UnLock()
{
bcAtomicOperation::bcAtomicStore(mFlag, 0, bcMemoryOrder_Relaxed);
bcUniqueLock<bcMutex> lGuard(mMutex);
mCond.notifyOne();
}
bcBOOL TryLock()
{
};
};
I want to write a custom mutex such that each thread can provide an argument that represents the complexity of operations that the current thread wants to execute.
If the complexity of the operation is low other threads will be in a loop like a spin lock but if the complexity of the operation is medium each thread will iterate 50 times and then will sleep by condition variable and if operation is very complex other threads will go to sleep directly.
now assume thread1 locks this mutex and thread2 goes for waiting due to its loopCounter reaching its end and right before locking the condition variable's mutex, thread1 calls notify on the condition variable. Now thread2 will sleep until another thread locks the custom mutex and then calls unlock on it.
I am new to multithreading and I want to learn. I know that my class may contain errors or may be completely wrong, but is there any way to correct this problem or a good algorithm to write such a mutex.
Thread2 will block until someone calls notify. Calls to notify release threads that are waiting at the time of the call. If there are no threads waiting, they do nothing. They aren't saved.
Usually both the code that decides to wait and the code that decides to notify share the same mutex. So thread2 will never "miss" the notify from thread1.
Here's the classic lock-based concurrent queue example:
void push(int x)
{
lock_guard<mutex> guard{queue_mutex};
thequeue.push(x);
not_empty_condition.notify_one();
}
int pop()
{
unique_lock<mutex> guard{queue_mutex};
not_empty_condition.wait(guard, []{ return !thequeue.empty(); } );
int x = thequeue.front();
thequeue.pop();
return x;
}
Assume thread1 and thread2 are running push() and pop() respectively. Only one of them will be in the critical section at a time.
If thread2 has the lock, either it never waits because the queue is not empty (so "losing" a notify is harmless), or it sits there waiting for a notify (which won't be lost).
If thread1 got the lock, it will put an element in the queue; if thread2 was waiting, it will get notified properly; if thread2 was still waiting for the mutex, it will never wait, as there is at least one element on the queue, so losing a notify is harmless.
In this manner, a notify is only lost if it was not needed in the first place.
Now, if you have a different usage for condition variables in mind, where "losing" a notification has any consequence, I believe you either have a race condition, or are using the wrong tool altogether.

(C++ Threads): Creating worker threads that will be listening to jobs and executing them concurrently when wanted

Suppose we have two workers. Each worker has an id of 0 and 1. Also suppose that we have jobs arriving all the time, each job has also an identifier 0 or 1 which specifies which worker will have to do this job.
I would like to create 2 threads that are initially locked, and then when two jobs arrive, unlock them, each of them does their job and then lock them again until other jobs arrive.
I have the following code:
#include <iostream>
#include <thread>
#include <mutex>
using namespace std;
struct job{
thread jobThread;
mutex jobMutex;
};
job jobs[2];
void executeJob(int worker){
while(true){
jobs[worker].jobMutex.lock();
//do some job
}
}
void initialize(){
int i;
for(i=0;i<2;i++){
jobs[i].jobThread = thread(executeJob, i);
}
}
int main(void){
//initialization
initialize();
int buffer[2];
int bufferSize = 0;
while(true){
//jobs arrive here constantly,
//once the buffer becomes full,
//we unlock the threads(workers) and they start working
bufferSize = 2;
if(bufferSize == 2){
for(int i = 0; i<2; i++){
jobs[i].jobMutex.unlock();
}
}
break;
}
}
I started using std::thread a few days ago and I'm not sure why but Visual Studio gives me an error saying abort() has been called. I believe there's something missing however due to my ignorance I can't figure out what.
I would expect this piece of code to actually
Initialize the two threads and then lock them
Inside the main function unlock the two threads, the two threads will do their job(in this case nothing) and then they will become locked again.
But it gives me an error instead. What am I doing wrong?
Thank you in advance!
For this purpose you can use boost's threadpool class.
It's efficient and well tested. opensource library instead of you writing newly and stabilizing it.
http://threadpool.sourceforge.net/
main()
{
pool tp(2); //number of worker threads-currently its 2.
// Add some tasks to the pool.
tp.schedule(&first_task);
tp.schedule(&second_task);
}
void first_task()
{
...
}
void second_task()
{
...
}
Note:
Suggestion for your example:
You don't need to have individual mutex object for each thread. Single mutex object lock itself will does the synchronization between all the threads. You are locking mutex of one thread in executejob function and without unlocking another thread is calling lock with different mutex object leading to deadlock or undefined behaviour.
Also since you are calling mutex.lock() inside whileloop without unlocking , same thread is trying to lock itself with same mutex object infinately leading to undefined behaviour.
If you donot need to execute threads parallel you can have one global mutex object can be used inside executejob function to lock and unlock.
mutex m;
void executeJob(int worker)
{
m.lock();
//do some job
m.unlock();
}
If you want to execute job parallel use boost threadpool as I suggested earlier.
In general you can write an algorithm similar to the following. It works with pthreads. I'm sure it would work with c++ threads as well.
create threads and make them wait on a condition variable, e.g. work_exists.
When work arrives you notify all threads that are waiting on that condition variable. Then in the main thread you start waiting on another condition variable work_done
Upon receiving work_exists notification, worker threads wake up, and grab their assigned work from jobs[worker], they execute it, they send a notification on work_done variable, and then go back to waiting on the work_exists condition variable
When main thread receives work_done notification it checks if all threads are done. If not, it keeps waiting till the notification from last-finishing thread arrives.
From cppreference's page on std::mutex::unlock:
The mutex must be unlocked by all threads that have successfully locked it before being destroyed. Otherwise, the behavior is undefined.
Your approach of having one thread unlock a mutex on behalf of another thread is incorrect.
The behavior you're attempting would normally be done using std::condition_variable. There are examples if you look at the links to the member functions.

C++ multithreading, simple consumer / producer threads, LIFO, notification, counter

I am new to multi-thread programming, I want to implement the following functionality.
There are 2 threads, producer and consumer.
Consumer only processes the latest value, i.e., last in first out (LIFO).
Producer sometimes generates new value at a faster rate than consumer can
process. For example, producer may generate 2 new value in 1
milli-second, but it approximately takes consumer 5 milli-seconds to process.
If consumer receives a new value in the middle of processing an old
value, there is no need to interrupt. In other words, consumer will finish current
execution first, then start an execution on the latest value.
Here is my design process, please correct me if I am wrong.
There is no need for a queue, since only the latest value is
processed by consumer.
Is notification sent from producer being queued automatically???
I will use a counter instead.
ConsumerThread() check the counter at the end, to make sure producer
doesn't generate new value.
But what happen if producer generates a new value just before consumer
goes to sleep(), but after check the counter???
Here is some pseudo code.
boost::mutex mutex;
double x;
void ProducerThread()
{
{
boost::scoped_lock lock(mutex);
x = rand();
counter++;
}
notify(); // wake up consumer thread
}
void ConsumerThread()
{
counter = 0; // reset counter, only process the latest value
... do something which takes 5 milli-seconds ...
if (counter > 0)
{
... execute this function again, not too sure how to implement this ...
}
else
{
... what happen if producer generates a new value here??? ...
sleep();
}
}
Thanks.
If I understood your question correctly, for your particular application, the consumer only needs to process the latest available value provided by the producer. In other words, it's acceptable for values to get dropped because the consumer cannot keep up with the producer.
If that's the case, then I agree that you can get away without a queue and use a counter. However, the shared counter and value variables will be need to be accessed atomically.
You can use boost::condition_variable to signal notifications to the consumer that a new value is ready. Here is a complete example; I'll let the comments do the explaining.
#include <boost/thread/thread.hpp>
#include <boost/thread/mutex.hpp>
#include <boost/thread/condition_variable.hpp>
#include <boost/thread/locks.hpp>
#include <boost/date_time/posix_time/posix_time_types.hpp>
boost::mutex mutex;
boost::condition_variable condvar;
typedef boost::unique_lock<boost::mutex> LockType;
// Variables that are shared between producer and consumer.
double value = 0;
int count = 0;
void producer()
{
while (true)
{
{
// value and counter must both be updated atomically
// using a mutex lock
LockType lock(mutex);
value = std::rand();
++count;
// Notify the consumer that a new value is ready.
condvar.notify_one();
}
// Simulate exaggerated 2ms delay
boost::this_thread::sleep(boost::posix_time::milliseconds(200));
}
}
void consumer()
{
// Local copies of 'count' and 'value' variables. We want to do the
// work using local copies so that they don't get clobbered by
// the producer when it updates.
int currentCount = 0;
double currentValue = 0;
while (true)
{
{
// Acquire the mutex before accessing 'count' and 'value' variables.
LockType lock(mutex); // mutex is locked while in this scope
while (count == currentCount)
{
// Wait for producer to signal that there is a new value.
// While we are waiting, Boost releases the mutex so that
// other threads may acquire it.
condvar.wait(lock);
}
// `lock` is automatically re-acquired when we come out of
// condvar.wait(lock). So it's safe to access the 'value'
// variable at this point.
currentValue = value; // Grab a copy of the latest value
// while we hold the lock.
}
// Now that we are out of the mutex lock scope, we work with our
// local copy of `value`. The producer can keep on clobbering the
// 'value' variable all it wants, but it won't affect us here
// because we are now using `currentValue`.
std::cout << "value = " << currentValue << "\n";
// Simulate exaggerated 5ms delay
boost::this_thread::sleep(boost::posix_time::milliseconds(500));
}
}
int main()
{
boost::thread c(&consumer);
boost::thread p(&producer);
c.join();
p.join();
}
ADDENDUM
I was thinking about this question recently, and realized that this solution, while it may work, is not optimal. Your producer is using all that CPU just to throw away half of the computed values.
I suggest that you reconsider your design and go with a bounded blocking queue between the producer and consumer. Such a queue should have the following characteristics:
Thread-safe
The queue has a fixed size (bounded)
If the consumer wants to pop the next item, but the queue is empty, the operation will be blocked until notified by the producer that an item is available.
The producer can check if there's room to push another item and block until the space becomes available.
With this type of queue, you can effectively throttle down the producer so that it doesn't outpace the consumer. It also ensures that the producer doesn't waste CPU resources computing values that will be thrown away.
Libraries such as TBB and PPL provide implementations of concurrent queues. If you want to attempt to roll your own using std::queue (or boost::circular_buffer) and boost::condition_variable, check out this blogger's example.
The short answer is that you're almost certainly wrong.
With a producer/consumer, you pretty much need a queue between the two threads. There are basically two alternatives: either your code won't will simply lose tasks (which usually equals not working at all) or else your producer thread will need to block for the consumer thread to be idle before it can produce an item -- which effectively translates to single threading.
For the moment, I'm going to assume that the value you get back from rand is supposed to represent the task to be executed (i.e., is the value produced by the producer and consumed by the consumer). In that case, I'd write the code something like this:
void producer() {
for (int i=0; i<100; i++)
queue.insert(random()); // queue.insert blocks if queue is full
queue.insert(-1.0); // Tell consumer to exit
}
void consumer() {
double value;
while ((value = queue.get()) != -1) // queue.get blocks if queue is empty
process(value);
}
This, relegates nearly all the interlocking to the queue. The rest of the code for both threads pretty much ignores threading issues entirely.
Implementing a pipeline is actually quite tricky if you are doing it ground-up. For example, you'd have to use condition variable to avoid the kind of race condition you described in your question, avoid busy waiting when implementing the mechanism for "waking up" the consumer etc... Even using a "queue" of just 1 element won't save you from some of these complexities.
It's usually much better to use specialized libraries that were developed and extensively tested specifically for this purpose. If you can live with Visual C++ specific solution, take a look at Parallel Patterns Library, and the concept of Pipelines.

Threading using pthread

Let say I have an array of 5 threads :
//main thread
pthread_t t[5];
pthread_mutex_t mutex[5];
queue<int> q[5];
for(int i = 0; i < 5; i++){
pthread_create(&pthread_t[i], NULL, worker, NULL);
}
for(int i = 0; i < 5; i++){
pthread_mutex_lock(&mutex[i]);
queue[i].push_back(i);
pthread_mutex_unlock(&mutex[i]);
}
void* worker(void* arg){
pthread_mutex_lock(&mutex[?]);
}
I am confused with the mutex_lock here. My question is:
How could I let the worker know which mutex to lock?
When I access the mutex through mutex[i], do I need another lock since the child thread might be accessing the mutex array as well?
Thanks.
You need to be clear which threads are sharing which queues. The code you've written suggests each worker thread works on a specific queue, but the main thread (that spawns the workers) will be pushing back new values onto those queues. If that's what you want, then what you've done is basically correct, and you can let the worker threads know the array index of the mutex they're to lock/unlock by casting it to void* and passing it as the argument to pthread_create, which will in turn be passed as a void* to the worker function. You do not need any additional layer of locking around the mutex array - it is entirely safe to access specific elements independently, though if it were say a vector that was being resized at run-time, then you would need that extra level of locking.
Associate the mutex with the queue creating a new struct;
typedef struct {
pthread_mutex_t mutex;
queue<int> q;
} safe_queue;
safe_queue queue_pool [5];
void* worker(safe_queue){
pthread_mutex_lock(&safe_queue.mutex);
}
That last argument to the pthread_create is handed over to the thread when it's called, so you can just pass a value to the specific thread.
Since you want both a specific mutex and a specific queue, you're better off passing in the value of i directly.
for(int i = 0; i < 5; i++){
pthread_create(&pthread_t[i], NULL, worker, (void*)i);
}
void *worker (void *pvI) {
int idx = (int)pvI; // Check for cast problems.
// Use mutex[idx] and q[idx].
}
However, if you want to do it this way, I'd go for a single queue and mutex.
That's because the act of putting something on the queue is almost certainly going to be much faster than processing an item on the queue (otherwise you wouldn't need threads at all).
If you have multiple queues, the main thread has to figure out somehow which are the underutilised threads so it can select the best queue. If you have one queue and one mutex to protect it, the threads will self-organise for efficiency. Those threads that do long jobs won't try to get something from the queue. Those doing short jobs will come back sooner.
I should mention that mutexes on their own are not a good solution for this producer/consumer model. You can't have a thread lock the mutex then wait indefinitely on the queue since that will prevent the main thread putting anything on the queue.
So that means your worker threads will be constantly polling the queues looking for work.
If you use a mutex combined with a condition variable, it will be a lot more efficient. That's because the threads are signalled by the main thread when work is available rather than constantly grabbing the mutex, checking for work, then releasing the mutex.
The basic outline will be, for the main thread:
initialise
while not finished:
await work
lock mutex
put work on queue
signal condvar
unlock mutex
terminate
and, for the worker threads:
initialise
while not finished:
lock mutex
while queue is empty:
wait on condvar
get work from queue
unlock mutex
do work
terminate
Don't pass a NULL pointer as arg to the thread. Instead use a pointer to an object that defines what the thread has to do.
How could I let the worker know which mutex to lock?
Pass the number as the last parameter to pthread_create()
for(int i = 0; i < 5; i++)
{
pthread_create(&pthread_t[i], NULL, worker, reinterpret_cast<void*>(i));
}
Then you can get the value like this:
void* worker(void* arg)
{
int index = reinterpret_cast<int>(arg);
pthread_mutex_lock(&mutex[index]);
}
When I access the mutex through mutex[i], do I need another lock since the child thread might be accessing the mutex array as well?
No. Because the variable mutex itself is never modified. Each member of the array behaves in an atomic fashion via the pthread_mutext_X() methods.
A slightly better design would be:
//main thread
struct ThreadData
{
pthread_mutex_t mutex;
queue<int> queue;
};
pthread_t t[5];
ThreadData d[5];
for(int i = 0; i < 5; i++)
{
pthread_create(&t[i], NULL, worker, &d[i]); // Pass a pointer to ThreadData
}
void* worker(void* arg)
{
// Retrieve the ThreadData object.
ThreadData d = reinterpret_cast<ThreadData*>(arg);
pthread_mutex_lock(&(d.mutex));
<STUFF>
}