Bottom-up and memorization of the Fibonacci - c++

I'm made a memorization version of the Fibonacci function (code commented out). Now I want to make a bottom-up and memorization version of the same function. However, my solution seem to be out of the range for really large numbers.
class Solution
{
public:
//Function to count number of ways to reach the nth stair.
int fib(int n)
{
// int memo[n + 1];
// for(int i = 0; i < n + 1; i++) {
// memo[i] = -1;
// }
// if(memo[n] == -1) {
// if(n <= 2) {
// memo[n] = 1;
// } else {
// memo[n] = fib(n - 1) + fib(n - 2);
// }
// }
// return memo[n];
int memo[n + 1];
memo[0] = 1;
memo[1] = 1;
memo[2] = 1;
for(int i = 3; i < n + 1; i++) {
memo[i] = memo[i - 1] + memo[i - 2];
}
return memo[n];
}
// Returns number of ways to
// reach s'th stair
int countWays(int s)
{
int memo[s + 1];
return fib(s + 1);
}
};
example input:
Input:
84
Its Correct output is:
93254120
And Your Code's output is:
-1289228135

You should use uint64_t instead of int to cover wider range of numbers (up to term number 93 which is 12200160415121876738) and avoid this overflow problem, also correct that memo[0] = 0; not 1. Finally, the term number 84 is 160500643816367088 not 93254120.
The prober code for the first method should be like this:
uint64_t fib(int n)
{
if (n < 2)
return n;
else
return fib(n - 1) + fib(n - 2);
}
This code will take long time for later terms.
For the second method:
uint64_t fib(int n)
{
uint64_t *memo = new uint64_t[n + 1];
memo[0] = 0;
memo[1] = 1;
for (int i = 2; i <= n; i++)
memo[i] = memo[i - 1] + memo[i - 2];
return memo[n];
}
This one is much more efficient and faster.

Related

How to get a subset from maximum size subset with given sum solution [C]

I need to find a maximum size subset from a set of numbers which will have a given sum X.
I've found a solution which solves this:
// A Dynamic Programming solution for the
// subset sum problem+ maximal subset size.
#include <bits/stdc++.h>
using namespace std;
// Returns size of maximum sized subset
// if there is a subset of set[] with sum
// equal to given sum. It returns -1 if there
// is no subset with given sum.
int isSubsetSum(int set[], int n, int sum)
{
// The value of subset[i][j] will be true if there
// is a subset of set[0..j-1] with sum equal to i
bool subset[sum + 1][n + 1];
int count[sum + 1][n + 1];
// If sum is 0, then answer is true
for (int i = 0; i <= n; i++)
{
subset[0][i] = true;
count[0][i] = 0;
}
// If sum is not 0 and set is empty,
// then answer is false
for (int i = 1; i <= sum; i++)
{
subset[i][0] = false;
count[i][0] = -1;
}
// Fill the subset table in bottom up manner
for (int i = 1; i <= sum; i++)
{
for (int j = 1; j <= n; j++)
{
subset[i][j] = subset[i][j - 1];
count[i][j] = count[i][j - 1];
if (i >= set[j - 1])
{
subset[i][j] = subset[i][j] ||
subset[i - set[j - 1]][j - 1];
if (subset[i][j])
count[i][j] = max(count[i][j - 1],
count[i - set[j - 1]][j - 1] + 1);
}
}
}
return count[sum][n];
}
// Driver code
int main()
{
int set[] = { 2, 3, 5, 10 };
int sum = 20;
int n = 4;
cout << isSubsetSum(set, n, sum);
}
However that solutions provided output is maximum number of elements from the set that sum up to given sum X. I would also need to have the subset as well.
For example:
set[] = { 2, 3, 5, 7, 10, 15 }
sum = 10
The output will be 3 which is correct, but I would also know the subset which in this case would be {2, 3, 5}.
It is not obvious for me how to extract this as I don't fully understand the algorithm. I am working on C implementation, but if anyone can explain the algorithm then that would also help.
EDIT:
I've worked up some solution in standard C which works, but seems to have some problem.
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
struct s_set {
int indx;
int arr[15];
};
int main(int argc, char *argv[]) {
int set[] = {2, 3, 5, 10, 7, 6, 1, 1};
int sum= 10;
int n=8;
int i, j, index;
bool subset[sum + 1][n + 1]; // [subset_sum][subset_size]
int count[sum + 1][n + 1];
s_set lset[sum + 1][n + 1];
s_set element;
// if sum is 0, then answer is true - edge case when user provides sum vaue of 0 so no subset can exists
i = 0;
for (i; i <= n; i++)
{
subset[0][i] = true;
count[0][i] = 0;
}
// if sum is not 0 and set is empty, then answer is false - edge case when user provides empty set so no subset to be found
i = 1;
for (i; i <= sum; i++)
{
subset[i][0] = false;
count[i][0] = -1;
}
// set indexes to 0
i=0;
for (i; i <= sum; i++)
{
lset[i][0].indx=0;
}
// fill the subset table in bottom up manner
i = 1;
for (i; i <= sum; i++) { // column index
j=1;
for (j; j <= n; j++) {
subset[i][j] = subset[i][j - 1];
count[i][j] = count[i][j - 1];
lset[i][j]=lset[i][j - 1];
if (i >= set[j - 1]) {
subset[i][j] = subset[i][j] || subset[i - set[j - 1]][j - 1];
if (subset[i][j])
if ((count[i - set[j - 1]][j - 1] + 1) > count[i][j - 1]) {
count[i][j]=count[i - set[j - 1]][j - 1] + 1;
element=lset[i - set[j - 1]][j - 1];
index=element.indx;
element.arr[index]=set[j - 1];
element.indx=index+1;
lset[i][j]=element;
}
else
{
count[i][j]=count[i][j - 1];
}
}
}
}
printf("Maximum number of elements from set: %d \n", count[sum][n]);
//printf("Maximum number of elements from set: %d \n", lset[sum][n].indx);
i=0;
printf("SET{");
for (i;i<=count[sum][n]-1;i++) {
printf(" %d ", lset[sum][n].arr[i]);
}
printf("}");
return 0;
}
The problem is that if arr size in the struct s_set is too low then it will not work and will give return code 3221225477. I've gotten it to work by randomly increasing the number (40 seems to work fine), but I don't understand why does this have any effect. The index number which is used to write into arr variable should not go so high.
Working (arr size 40):
Not working (arr size 10):

Multiplying BigInts

class BigInt
{
private:
string data;
bool isNegative;
};
BigInt multiplication(BigInt left, BigInt right)
{
BigInt sum;
BigInt result;
sum.data.pop_back();
result.data.pop_back();
int count = 0;
int l1 = static_cast<int>(left.data.size());
int l2 = static_cast<int>(right.data.size());
int carry = 0;
for(int x = 0; x < l1 + l2; x++)
{
result.data.push_back('0');
}
for(int i = 0; i < l1; i++)
{
for(int k = count; k > 0 ; --k)
{
result.data.push_back('0');
}
for(int j = 0; j < l2; j++)
{
result = (left.data[j] - '0') * (right.data[i] - '0');
sum = sum + result;
if(result.data[i] >= 10)
{
carry = result.data[i + 1] / (10 - '0');
result.data[i] = (result.data[i] + '0') % 10;
}
else
{
carry = 0;
}
}
count++;
}
return sum;
}
I am suppose to be able to multiply very large numbers using strings. My code is working for single digits numbers only. Does anyone know why? Any insight would help greatly.
I can't multiply any numbers with more than one digit. I'm getting nothing for results.
This is a solution from geeksforgeeks which is very similar to what you are trying to do. I modified it to fit your class there might be an error as I have not compiled it.
BigInt multiplication(BigInt num1, BigInt num2)
{
int n1 = num1.data.size();
int n2 = num2.data.size();
if (n1 == 0 || n2 == 0)
return "0";
// will keep the result number in vector
// in reverse order
vector<int> result(n1 + n2, 0);
// Below two indexes are used to find positions
// in result.
int i_n1 = 0;
int i_n2 = 0;
// Go from right to left in num1
for (int i=n1-1; i>=0; i--)
{
int carry = 0;
int n1 = num1.data[i] - '0';
// To shift position to left after every
// multiplication of a digit in num2
i_n2 = 0;
// Go from right to left in num2
for (int j=n2-1; j>=0; j--)
{
// Take current digit of second number
int n2 = num2[j].data - '0';
// Multiply with current digit of first number
// and add result to previously stored result
// at current position.
int sum = n1*n2 + result[i_n1 + i_n2] + carry;
// Carry for next iteration
carry = sum/10;
// Store result
result[i_n1 + i_n2] = sum % 10;
i_n2++;
}
// store carry in next cell
if (carry > 0)
result[i_n1 + i_n2] += carry;
// To shift position to left after every
// multiplication of a digit in num1.
i_n1++;
}
// ignore '0's from the right
int i = result.size() - 1;
while (i>=0 && result[i] == 0)
i--;
// If all were '0's - means either both or
// one of num1 or num2 were '0'
if (i == -1)
return "0";
// generate the result string
string s = "";
while (i >= 0)
s += std::to_string(result[i--]);
BigInt temp(s, num1.isNegative ^ num2.isNegative);
return temp;
}
Hope this helps.

Codility MinAbsSum

I tried this Codility test: MinAbsSum.
https://codility.com/programmers/lessons/17-dynamic_programming/min_abs_sum/
I solved the problem by searching the whole tree of possibilities. The results were OK, however, my solution failed due to timeout for large input. In other words the time complexity was not as good as expected. My solution is O(nlogn), something normal with trees. But this coding test was in the section "Dynamic Programming", and there must be some way to improve it. I tried with summing the whole set first and then using this information, but always there is something missing in my solution. Does anybody have an idea on how to improve my solution using DP?
#include <vector>
using namespace std;
int sum(vector<int>& A, size_t i, int s)
{
if (i == A.size())
return s;
int tmpl = s + A[i];
int tmpr = s - A[i];
return min (abs(sum(A, i+1, tmpl)), abs(sum(A, i+1, tmpr)));
}
int solution(vector<int> &A) {
return sum(A, 0, 0);
}
I could not solve it. But here's the official answer.
Quoting it:
Notice that the range of numbers is quite small (maximum 100). Hence,
there must be a lot of duplicated numbers. Let count[i] denote the
number of occurrences of the value i. We can process all occurrences
of the same value at once. First we calculate values count[i] Then we
create array dp such that:
dp[j] = −1 if we cannot get the sum j,
dp[j] >= ­ 0 if we can get sum j.
Initially, dp[j] = -1 for all of j (except dp[0] = 0). Then we scan
through all the values a appearing in A; we consider all a such
that count[a]>0. For every such a we update dp that dp[j] denotes
how many values a remain (maximally) after achieving sum j. Note
that if the previous value at dp[j] >= 0 then we can set dp[j] =
count[a] as no value a is needed to obtain the sum j. Otherwise we
must obtain sum j-a first and then use a number a to get sum j. In
such a situation dp[j] = dp[j-a]-1. Using this algorithm, we can
mark all the sum values and choose the best one (closest to half of S,
the sum of abs of A).
def MinAbsSum(A):
N = len(A)
M = 0
for i in range(N):
A[i] = abs(A[i])
M = max(A[i], M)
S = sum(A)
count = [0] * (M + 1)
for i in range(N):
count[A[i]] += 1
dp = [-1] * (S + 1)
dp[0] = 0
for a in range(1, M + 1):
if count[a] > 0:
for j in range(S):
if dp[j] >= 0:
dp[j] = count[a]
elif (j >= a and dp[j - a] > 0):
dp[j] = dp[j - a] - 1
result = S
for i in range(S // 2 + 1):
if dp[i] >= 0:
result = min(result, S - 2 * i)
return result
(note that since the final iteration only considers sums up until S // 2 + 1, we can save some space and time by only creating a DP Cache up until that value as well)
The Java answer provided by fladam returns wrong result for input [2, 3, 2, 2, 3], although it gets 100% score.
Java Solution
import java.util.Arrays;
public class MinAbsSum{
static int[] dp;
public static void main(String args[]) {
int[] array = {1, 5, 2, -2};
System.out.println(findMinAbsSum(array));
}
public static int findMinAbsSum(int[] A) {
int arrayLength = A.length;
int M = 0;
for (int i = 0; i < arrayLength; i++) {
A[i] = Math.abs(A[i]);
M = Math.max(A[i], M);
}
int S = sum(A);
dp = new int[S + 1];
int[] count = new int[M + 1];
for (int i = 0; i < arrayLength; i++) {
count[A[i]] += 1;
}
Arrays.fill(dp, -1);
dp[0] = 0;
for (int i = 1; i < M + 1; i++) {
if (count[i] > 0) {
for(int j = 0; j < S; j++) {
if (dp[j] >= 0) {
dp[j] = count[i];
} else if (j >= i && dp[j - i] > 0) {
dp[j] = dp[j - i] - 1;
}
}
}
}
int result = S;
for (int i = 0; i < Math.floor(S / 2) + 1; i++) {
if (dp[i] >= 0) {
result = Math.min(result, S - 2 * i);
}
}
return result;
}
public static int sum(int[] array) {
int sum = 0;
for(int i : array) {
sum += i;
}
return sum;
}
}
I invented another solution, better than the previous one. I do not use recursion any more.
This solution works OK (all logical tests passed), and also passed some of the performance tests, but not all. How else can I improve it?
#include <vector>
#include <set>
using namespace std;
int solution(vector<int> &A) {
if (A.size() == 0) return 0;
set<int> sums, tmpSums;
sums.insert(abs(A[0]));
for (auto it = begin(A) + 1; it != end(A); ++it)
{
for (auto s : sums)
{
tmpSums.insert(abs(s + abs(*it)));
tmpSums.insert(abs(s - abs(*it)));
}
sums = tmpSums;
tmpSums.clear();
}
return *sums.begin();
}
This solution (in Java) scored 100% for both (correctness and performance)
public int solution(int[] a){
if (a.length == 0) return 0;
if (a.length == 1) return a[0];
int sum = 0;
for (int i=0;i<a.length;i++){
sum += Math.abs(a[i]);
}
int[] indices = new int[a.length];
indices[0] = 0;
int half = sum/2;
int localSum = Math.abs(a[0]);
int minLocalSum = Integer.MAX_VALUE;
int placeIndex = 1;
for (int i=1;i<a.length;i++){
if (localSum<half){
if (Math.abs(2*minLocalSum-sum) > Math.abs(2*localSum - sum))
minLocalSum = localSum;
localSum += Math.abs(a[i]);
indices[placeIndex++] = i;
}else{
if (localSum == half)
return Math.abs(2*half - sum);
if (Math.abs(2*minLocalSum-sum) > Math.abs(2*localSum - sum))
minLocalSum = localSum;
if (placeIndex > 1) {
localSum -= Math.abs(a[indices[placeIndex--]]);
i = indices[placeIndex];
}
}
}
return (Math.abs(2*minLocalSum - sum));
}
this solution treats all elements like they are positive numbers and it's looking to reach as close as it can to the sum of all elements divided by 2 (in that case we know that the sum of all other elements will be the same delta far from the half too -> abs sum will be minimum possible ).
it does so by starting with the first element and successively adding others to the "local" sum (and recording indices of elements in the sum) until it reaches sum of x >= sumAll/2. if that x is equal to sumAll/2 we have an optimal solution. if not, we go step back in the indices array and continue picking other element where last iteration in that position ended. the result will be a "local" sum having abs((sumAll - sum) - sum) closest to 0;
fixed solution:
public static int solution(int[] a){
if (a.length == 0) return 0;
if (a.length == 1) return a[0];
int sum = 0;
for (int i=0;i<a.length;i++) {
a[i] = Math.abs(a[i]);
sum += a[i];
}
Arrays.sort(a);
int[] arr = a;
int[] arrRev = new int[arr.length];
int minRes = Integer.MAX_VALUE;
for (int t=0;t<=4;t++) {
arr = fold(arr);
int res1 = findSum(arr, sum);
if (res1 < minRes) minRes = res1;
rev(arr, arrRev);
int res2 = findSum(arrRev, sum);
if (res2 < minRes) minRes = res2;
arrRev = fold(arrRev);
int res3 = findSum(arrRev, sum);
if (res3 < minRes) minRes = res3;
}
return minRes;
}
private static void rev(int[] arr, int[] arrRev){
for (int i = 0; i < arrRev.length; i++) {
arrRev[i] = arr[arr.length - 1 - i];
}
}
private static int[] fold(int[] a){
int[] arr = new int[a.length];
for (int i=0;a.length/2+i/2 < a.length && a.length/2-i/2-1 >= 0;i+=2){
arr[i] = a[a.length/2+i/2];
arr[i+1] = a[a.length/2-i/2-1];
}
if (a.length % 2 > 0) arr[a.length-1] = a[a.length-1];
else{
arr[a.length-2] = a[0];
arr[a.length-1] = a[a.length-1];
}
return arr;
}
private static int findSum(int[] arr, int sum){
int[] indices = new int[arr.length];
indices[0] = 0;
double half = Double.valueOf(sum)/2;
int localSum = Math.abs(arr[0]);
int minLocalSum = Integer.MAX_VALUE;
int placeIndex = 1;
for (int i=1;i<arr.length;i++){
if (localSum == half)
return 2*localSum - sum;
if (Math.abs(2*minLocalSum-sum) > Math.abs(2*localSum - sum))
minLocalSum = localSum;
if (localSum<half){
localSum += Math.abs(arr[i]);
indices[placeIndex++] = i;
}else{
if (placeIndex > 1) {
localSum -= Math.abs(arr[indices[--placeIndex]]);
i = indices[placeIndex];
}
}
}
return Math.abs(2*minLocalSum - sum);
}
The following is a rendering of the official answer in C++ (scoring 100% in task, correctness, and performance):
#include <cmath>
#include <algorithm>
#include <numeric>
using namespace std;
int solution(vector<int> &A) {
// write your code in C++14 (g++ 6.2.0)
const int N = A.size();
int M = 0;
for (int i=0; i<N; i++) {
A[i] = abs(A[i]);
M = max(M, A[i]);
}
int S = accumulate(A.begin(), A.end(), 0);
vector<int> counts(M+1, 0);
for (int i=0; i<N; i++) {
counts[A[i]]++;
}
vector<int> dp(S+1, -1);
dp[0] = 0;
for (int a=1; a<M+1; a++) {
if (counts[a] > 0) {
for (int j=0; j<S; j++) {
if (dp[j] >= 0) {
dp[j] = counts[a];
} else if ((j >= a) && (dp[j-a] > 0)) {
dp[j] = dp[j-a]-1;
}
}
}
}
int result = S;
for (int i =0; i<(S/2+1); i++) {
if (dp[i] >= 0) {
result = min(result, S-2*i);
}
}
return result;
}
You are almost 90% to the actual solution. It seems you understand recursion very well. Now, You should apply dynamic programming here with your program.
Dynamic Programming is nothing but memoization to the recursion so that we will not calculate same sub problems again and again. If same sub problems encounter , we return the previously calculated and memorized value. Memorization can be done with the help of a 2D array , say dp[][], where first state represent current index of array and second state represent summation.
For this problem specific, instead of giving calls to both states from each state, you sometimes can greedily take decision to skip one call.
I would like to provide the algorithm and then my implementation in C++. Idea is more or less the same as the official codility solution with some constant optimisation added.
Calculate the maximum absolute element of the inputs.
Calculate the absolute sum of the inputs.
Count the number of occurrence of each number in the inputs. Store the results in a vector hash.
Go through each input.
For each input, goes through all possible sums of any number of inputs. It is a slight constant optimisation to go only up to half of the possible sums.
For each sum that has been made before, set the occurrence count of the current input.
Check for each potential sum equal to or greater than the current input whether this input has already been used before. Update the values at the current sum accordingly. We do not need to check for potential sums less than the current input in this iteration, since it is evident that it has not been used before.
The above nested loop will fill in each possible sum with a value greater than -1.
Go through this possible sum hash again to look for the closest sum to half that is possible to make. Eventually, the min abs sum will be the difference of this from the half multiplied by two as the difference will be added up in both groups as the difference from the median.
The runtime complexity of this algorithm is O(N * max(abs(A)) ^ 2), or simply O(N * M ^ 2). That is because the outer loop is iterating M times and the inner loop is iterating sum times. The sum is basically N * M in worst case. Therefore, it is O(M * N * M).
The space complexity of this solution is O(N * M) because we allocate a hash of N items for the counts and a hash of S items for the sums. S is N * M again.
int solution(vector<int> &A)
{
int M = 0, S = 0;
for (const int e : A) { M = max(abs(e), M); S += abs(e); }
vector<int> counts(M + 1, 0);
for (const int e : A) { ++counts[abs(e)]; }
vector<int> sums(S + 1, -1);
sums[0] = 0;
for (int ci = 1; ci < counts.size(); ++ci) {
if (!counts[ci]) continue;
for (int si = 0; si < S / 2 + 1; ++si) {
if (sums[si] >= 0) sums[si] = counts[ci];
else if (si >= ci and sums[si - ci] > 0) sums[si] = sums[si - ci] - 1;
}
}
int min_abs_sum = S;
for (int i = S / 2; i >= 0; --i) if (sums[i] >= 0) return S - 2 * i;
return min_abs_sum;
}
Let me add my 50 cent, how to come up with the score 100% solution.
For me it was hard to understand the ultimate solution, proposed earlier in this thread.
So I started with warm-up solution with score 63%, because its O(NxNxM),
and because it doesn't use the fact that M is quite small value, and there are many duplicates in big arrays
here the key part is to understand how array isSumPossible is filled and interpreted:
how to fill array isSumPossible using numbers in input array:
if isSumPossible[sum] >= 0, i.e. sum is already possible, even without current number, then let's set it's value to 1 - count of current number, that is left unused for this sum, it'll go to our "reserve", so we can use it later for greater sums.
if (isSumPossible[sum] >= 0) {
isSumPossible[sum] = 1;
}
if isSumPossible[sum] <= 0, i.e. sum is considered not yet possible, with all input numbers considered previously, then let's check maybe
smaller sum sum - number is already considered as possible, and we have in "reserve" our current number (isSumPossible[sum - number] == 1), then do following
else if (sum >= number && isSumPossible[sum - number] == 1) {
isSumPossible[sum] = 0;
}
here isSumPossible[sum] = 0 means that we have used number in composing sum and it's now considered as possible (>=0), but we have no number in "reserve", because we've used it ( =0)
how to interpret filled array isSumPossible after considering all numbers in input array:
if isSumPossible[sum] >= 0 then the sum is possible, i.e. it can be reached by summation of some numbers in given array
if isSumPossible[sum] < 0 then the sum can't be reached by summation of any numbers in given array
The more simple thing here is to understand why we are searching sums only in interval [0, maxSum/2]:
because if find a possible sum, that is very close to maxSum/2,
ideal case here if we've found possible sum = maxSum/2,
if so, then it's obvious, that we can somehow use the rest numbers in input array to make another maxSum/2, but now with negative sign, so as a result of annihilation we'll get solution = 0, because maxSum/2 + (-1)maxSum/2 = 0.
But 0 the best case solution, not always reachable.
But we, nevertheless, should seek for the minimal delta = ((maxSum - sum) - sum),
so this we seek for delta -> 0, that's why we have this:
int result = Integer.MAX_VALUE;
for (int sum = 0; sum < maxSum / 2 + 1; sum++) {
if (isSumPossible[sum] >= 0) {
result = Math.min(result, (maxSum - sum) - sum);
}
}
warm-up solution
public int solution(int[] A) {
if (A == null || A.length == 0) {
return 0;
}
if (A.length == 1) {
return A[0];
}
int maxSum = 0;
for (int i = 0; i < A.length; i++) {
A[i] = Math.abs(A[i]);
maxSum += A[i];
}
int[] isSumPossible = new int[maxSum + 1];
Arrays.fill(isSumPossible, -1);
isSumPossible[0] = 0;
for (int number : A) {
for (int sum = 0; sum < maxSum / 2 + 1; sum++) {
if (isSumPossible[sum] >= 0) {
isSumPossible[sum] = 1;
} else if (sum >= number && isSumPossible[sum - number] == 1) {
isSumPossible[sum] = 0;
}
}
}
int result = Integer.MAX_VALUE;
for (int sum = 0; sum < maxSum / 2 + 1; sum++) {
if (isSumPossible[sum] >= 0) {
result = Math.min(result, maxSum - 2 * sum);
}
}
return result;
}
and after this we can optimize it, using the fact that there are many duplicate numbers in big arrays, and we come up with the solution with 100% score, its O(Mx(NxM)), because maxSum = NxM at worst case
public int solution(int[] A) {
if (A == null || A.length == 0) {
return 0;
}
if (A.length == 1) {
return A[0];
}
int maxNumber = 0;
int maxSum = 0;
for (int i = 0; i < A.length; i++) {
A[i] = Math.abs(A[i]);
maxNumber = Math.max(maxNumber, A[i]);
maxSum += A[i];
}
int[] count = new int[maxNumber + 1];
for (int i = 0; i < A.length; i++) {
count[A[i]]++;
}
int[] isSumPossible = new int[maxSum + 1];
Arrays.fill(isSumPossible, -1);
isSumPossible[0] = 0;
for (int number = 0; number < maxNumber + 1; number++) {
if (count[number] > 0) {
for (int sum = 0; sum < maxSum / 2 + 1; sum++) {
if (isSumPossible[sum] >= 0) {
isSumPossible[sum] = count[number];
} else if (sum >= number && isSumPossible[sum - number] > 0) {
isSumPossible[sum] = isSumPossible[sum - number] - 1;
}
}
}
}
int result = Integer.MAX_VALUE;
for (int sum = 0; sum < maxSum / 2 + 1; sum++) {
if (isSumPossible[sum] >= 0) {
result = Math.min(result, maxSum - 2 * sum);
}
}
return result;
}
I hope I've made it at least a little clear
Kotlin solution
Time complexity: O(N * max(abs(A))**2)
Score: 100%
import kotlin.math.*
fun solution(A: IntArray): Int {
val N = A.size
var M = 0
for (i in 0 until N) {
A[i] = abs(A[i])
M = max(M, A[i])
}
val S = A.sum()
val counts = MutableList(M + 1) { 0 }
for (i in 0 until N) {
counts[A[i]]++
}
val dp = MutableList(S + 1) { -1 }
dp[0] = 0
for (a in 1 until M + 1) {
if (counts[a] > 0) {
for (j in 0 until S) {
if (dp[j] >= 0) {
dp[j] = counts[a]
} else if (j >= a && dp[j - a] > 0) {
dp[j] = dp[j - a] - 1
}
}
}
}
var result = S
for (i in 0 until (S / 2 + 1)) {
if (dp[i] >= 0) {
result = minOf(result, S - 2 * i)
}
}
return result
}

Heap Corruption detected: after Normal block(#176)

So I got this introduction to Programming assignment, I have to write a program that find the nth member of the following sequence 1, 121, 1213121, 121312141213121.. and so on. Basically, the first member is 1, and every next one is made of [the previous member] [n] [the previous member]. N < 10. So I got this problem that I do not understand, tried searching for it in the internet but didn't get anything that can help me.
#include "stdafx.h"
#include <iostream>
using namespace std;
int size(int n, int realsize);
int main()
{
int n;
cin >> n;
if (n == 1) {
cout << "1";
return 0;
}
int helper = 0;
char c = '2';
char* look;
char* say;
say = new char[size(n, 1) + 1]();
look = new char[size(n - 1, 1) + 1]();
look[0] = '1';
while (helper < n) {
for (int i = 0; i < size(helper + 1, 1); i++) {
say[i] = look[i];
}
say[size(helper + 1, 1)] = c;
for (int i = size(helper + 1, 1) + 1; i < size(helper + 1, 1) * 2 + 1; i++) {
say[i] = look[i - (size(helper + 1, 1) + 1)];
}
for (int i = 0; i < size(helper + 1, 1) * 2 + 1; i++) {
look[i] = say[i];
}
helper += 1;
}
cout << say;
delete[] say;
delete[] look;
return 0;
}
int size(int n, int realsize)
{
if (n == 1)
return realsize;
else
return size(n - 1, realsize * 2 + 1);
}
You are overwriting the capacity of your look variable. It ends out being written with the entire contents of say, so it needs to have that same size as well.
While I don't condone the below code as good code, it has minimal adjustments from your own implementation and should give a more solid base to continue towards a working outcome. I tested it with the first couple of numbers, but that's no guarantee it is perfect.
#include <iostream>
using namespace std;
int size(int n, int realsize);
int main()
{
int n;
cin >> n;
if (n == 1)
{
cout << "1";
return 0;
}
int helper = 0;
char c = '2';
char * look;
char * say;
say = new char[size(n, 1) + 1]; // Ditch the () call, which is confusing.
look = new char[size(n, 1) + 1]; // Make the same size as "say"
look[0] = '1';
while (helper < n - 1) // You're overrunning this loop I think, so I did it to n - 1.
{
for (int i = 0; i < size(helper + 1, 1); i++)
{
say[i] = look[i];
}
say[size(helper + 1, 1)] = c + helper; // You were adding '2' every time, so this will add 2, 3, 4, etc incrementally.
for (int i = size(helper + 1, 1) + 1; i < size(helper + 1, 1) * 2 + 1; i++)
{
say[i] = look[i - (size(helper + 1, 1) + 1)];
}
for (int i = 0; i < size(helper + 1, 1) * 2 + 1; i++)
{
look[i] = say[i];
}
helper += 1;
}
say[size(n, 1)] = '\0'; // Null-terminate "say" before printing it out.
cout << say;
delete[] say;
delete[] look;
return 0;
}
int size(int n, int realsize)
{
if (n == 1)
return realsize;
else
return size(n - 1, realsize * 2 + 1);
}

C++ Newbie needs helps for printing combinations of integers

Suppose I am given:
A range of integers iRange (i.e. from 1 up to iRange) and
A desired number of combinations
I want to find the number of all possible combinations and print out all these combinations.
For example:
Given: iRange = 5 and n = 3
Then the number of combinations is iRange! / ((iRange!-n!)*n!) = 5! / (5-3)! * 3! = 10 combinations, and the output is:
123 - 124 - 125 - 134 - 135 - 145 - 234 - 235 - 245 - 345
Another example:
Given: iRange = 4 and n = 2
Then the number of combinations is iRange! / ((iRange!-n!)*n!) = 4! / (4-2)! * 2! = 6 combinations, and the output is:
12 - 13 - 14 - 23 - 24 - 34
My attempt so far is:
#include <iostream>
using namespace std;
int iRange= 0;
int iN=0;
int fact(int n)
{
if ( n<1)
return 1;
else
return fact(n-1)*n;
}
void print_combinations(int n, int iMxM)
{
int iBigSetFact=fact(iMxM);
int iDiffFact=fact(iMxM-n);
int iSmallSetFact=fact(n);
int iNoTotComb = (iBigSetFact/(iDiffFact*iSmallSetFact));
cout<<"The number of possible combinations is: "<<iNoTotComb<<endl;
cout<<" and these combinations are the following: "<<endl;
int i, j, k;
for (i = 0; i < iMxM - 1; i++)
{
for (j = i + 1; j < iMxM ; j++)
{
//for (k = j + 1; k < iMxM; k++)
cout<<i+1<<j+1<<endl;
}
}
}
int main()
{
cout<<"Please give the range (max) within which the combinations are to be found: "<<endl;
cin>>iRange;
cout<<"Please give the desired number of combinations: "<<endl;
cin>>iN;
print_combinations(iN,iRange);
return 0;
}
My problem:
The part of my code related to the printing of the combinations works only for n = 2, iRange = 4 and I can't make it work in general, i.e., for any n and iRange.
Your solution will only ever work for n=2. Think about using an array (combs) with n ints, then the loop will tick up the last item in the array. When that item reaches max update then comb[n-2] item and set the last item to the previous value +1.
Basically working like a clock but you need logic to find what to uptick and what the next minimum value is.
Looks like a good problem for recursion.
Define a function f(prefix, iMin, iMax, n), that prints all combinations of n digits in the range [iMin, iMax] and returns the total number of combinations. For n = 1, it should print every digit from iMin to iMax and return iMax - iMin + 1.
For your iRange = 5 and n = 3 case, you call f("", 1, 5, 3). The output should be 123 - 124 - 125 - 134 - 135 - 145 - 234 - 235 - 245 - 345.
Notice that the first group of outputs are simply 1 prefixed onto the outputs of f("", 2, 5, 2), i.e. f("1", 2, 5, 2), followed by f("2", 3, 5, 2) and f("3", 4, 5, 2). See how you would do that with a loop. Between this, the case for n = 1 above, and traps for bad inputs (best if they print nothing and return 0, it should simplify your loop), you should be able to write f().
I'm stopping short because this looks like a homework assignment. Is this enough to get you started?
EDIT: Just for giggles, I wrote a Python version. Python has an easier time throwing around sets and lists of things and staying legible.
#!/usr/bin/env python
def Combos(items, n):
if n <= 0 or len(items) == 0:
return []
if n == 1:
return [[x] for x in items]
result = []
for k in range(len(items) - n + 1):
for s in Combos(items[k+1:], n - 1):
result.append([items[k]] + s)
return result
comb = Combos([str(x) for x in range(1, 6)], 3)
print len(comb), " - ".join(["".join(c) for c in comb])
Note that Combos() doesn't care about the types of the items in the items list.
Here is your code edited :D :D with a recursive solution:
#include <iostream>
int iRange=0;
int iN=0; //Number of items taken from iRange, for which u want to print out the combinations
int iTotalCombs=0;
int* pTheRange;
int* pTempRange;
int find_factorial(int n)
{
if ( n<1)
return 1;
else
return find_factorial(n-1)*n;
}
//--->Here is another solution:
void print_out_combinations(int *P, int K, int n_i)
{
if (K == 0)
{
for (int j =iN;j>0;j--)
std::cout<<P[j]<<" ";
std::cout<<std::endl;
}
else
for (int i = n_i; i < iRange; i++)
{
P[K] = pTheRange[i];
print_out_combinations(P, K-1, i+1);
}
}
//Here ends the solution...
int main()
{
std::cout<<"Give the set of items -iRange- = ";
std::cin>>iRange;
std::cout<<"Give the items # -iN- of iRange for which the combinations will be created = ";
std::cin>>iN;
pTheRange = new int[iRange];
for (int i = 0;i<iRange;i++)
{
pTheRange[i]=i+1;
}
pTempRange = new int[iN];
iTotalCombs = (find_factorial(iRange)/(find_factorial(iRange-iN)*find_factorial(iN)));
std::cout<<"The number of possible combinations is: "<<iTotalCombs<<std::endl;
std::cout<<"i.e.the combinations of "<<iN<<" elements drawn from a set of size "<<iRange<<" are: "<<std::endl;
print_out_combinations(pTempRange, iN, 0);
return 0;
}
Here's an example of a plain recursive solution. I believe there exists a more optimal implementation if you replace recursion with cycles. It could be your homework :)
#include <stdio.h>
const int iRange = 9;
const int n = 4;
// A more efficient way to calculate binomial coefficient, in my opinion
int Cnm(int n, int m)
{
int i;
int result = 1;
for (i = m + 1; i <= n; ++i)
result *= i;
for (i = n - m; i > 1; --i)
result /= i;
return result;
}
print_digits(int *digits)
{
int i;
for (i = 0; i < n; ++i) {
printf("%d", digits[i]);
}
printf("\n");
}
void plus_one(int *digits, int index)
{
int i;
// Increment current digit
++digits[index];
// If it is the leftmost digit, run to the right, setup all the others
if (index == 0) {
for (i = 1; i < n; ++i)
digits[i] = digits[i-1] + 1;
}
// step back by one digit recursively
else if (digits[index] > iRange) {
plus_one(digits, index - 1);
}
// otherwise run to the right, setting up other digits, and break the recursion once a digit exceeds iRange
else {
for (i = index + 1; i < n; ++i) {
digits[i] = digits[i-1] + 1;
if (digits[i] > iRange) {
plus_one(digits, i - 1);
break;
}
}
}
}
int main()
{
int i;
int digits[n];
for (i = 0; i < n; ++i) {
digits[i] = i + 1;
}
printf("%d\n\n", Cnm(iRange, n));
// *** This loop has been updated ***
while (digits[0] <= iRange - n + 1) {
print_digits(digits);
plus_one(digits, n - 1);
}
return 0;
}
This is my C++ function with different interface (based on sts::set) but performing the same task:
typedef std::set<int> NumbersSet;
typedef std::set<NumbersSet> CombinationsSet;
CombinationsSet MakeCombinations(const NumbersSet& numbers, int count)
{
CombinationsSet result;
if (!count) throw std::exception();
if (count == numbers.size())
{
result.insert(NumbersSet(numbers.begin(), numbers.end()));
return result;
}
// combinations with 1 element
if (!(count - 1) || (numbers.size() <= 1))
{
for (auto number = numbers.begin(); number != numbers.end(); ++number)
{
NumbersSet single_combination;
single_combination.insert(*number);
result.insert(single_combination);
}
return result;
}
// Combinations with (count - 1) without current number
int first_num = *numbers.begin();
NumbersSet truncated_numbers = numbers;
truncated_numbers.erase(first_num);
CombinationsSet subcombinations = MakeCombinations(truncated_numbers, count - 1);
for (auto subcombination = subcombinations.begin(); subcombination != subcombinations.end(); ++subcombination)
{
NumbersSet cmb = *subcombination;
// Add current number
cmb.insert(first_num);
result.insert(cmb);
}
// Combinations with (count) without current number
subcombinations = MakeCombinations(truncated_numbers, count);
result.insert(subcombinations.begin(), subcombinations.end());
return result;
}
I created a next_combination() function similar to next_permutation(), but valid input is required to make it work
//nums should always be in ascending order
vector <int> next_combination(vector<int>nums, int max){
int size = nums.size();
if(nums[size-1]+1<=max){
nums[size-1]++;
return nums;
}else{
if(nums[0] == max - (size -1)){
nums[0] = -1;
return nums;
}
int pos;
int negate = -1;
for(int i = size-2; i>=0; i--){
if(nums[i]+1 <= max + negate){
pos = i;
break;
}
negate --;
}
nums[pos]++;
pos++;
while(pos<size){
nums[pos] = nums[pos-1]+1;
pos++;
}
}
return nums;
}