i have this part of code. im beginner and want to understand this code. can someone explain me what happens if i set cumulative to true. Where is the difference to false. Would be nice if someone could explain me the difference.
i just see that the output is difference but i dont know why
#include <opencv2/highgui/highgui.hpp>
#include <iostream>
#include <opencv2/imgproc.hpp>
using namespace std;
using namespace cv;
cv::Mat plotHistogram(cv::Mat &image, bool cumulative = false, int histSize = 256);
int main()
{
cv::Mat img = cv::imread("\\schrott.png"); // Read the file
if (img.empty()) // Check for invalid input
{
std::cout << "Could not open or find the frame" << std::endl;
return -1;
}
cv::Mat img_gray;
cv::cvtColor(img, img_gray, cv::COLOR_BGR2GRAY); // In case img is colored
cv::namedWindow("Input Image", cv::WINDOW_AUTOSIZE); // Create a window for display.
cv::imshow("Input Image", img);
cv::Mat hist;
hist = plotHistogram(img_gray);
cv::namedWindow("Histogram", cv::WINDOW_NORMAL); // Create a window for display.
cv::imshow("Histogram", hist);
cv::waitKey(0);
}
cv::Mat plotHistogram(cv::Mat &image, bool cumulative, int histSize) {
// Create Image for Histogram
int hist_w = 1024; int hist_h = 800;
int bin_w = cvRound((double)hist_w / histSize);
cv::Mat histImage(hist_h, hist_w, CV_8UC1, Scalar(255, 255, 255));
if (image.channels() > 1) {
cerr << "plotHistogram: Please insert only gray images." << endl;
return histImage;
}
// Calculate Histogram
float range[] = { 0, 256 };
const float* histRange = { range };
cv::Mat hist;
calcHist(&image, 1, 0, Mat(), hist, 1, &histSize, &histRange);
if (cumulative) {
cv::Mat accumulatedHist = hist.clone();
for (int i = 1; i < histSize; i++) {
accumulatedHist.at<float>(i) += accumulatedHist.at<float>(i - 1);
}
hist = accumulatedHist;
}
// Normalize the result to [ 0, histImage.rows ]
normalize(hist, hist, 0, histImage.rows, NORM_MINMAX, -1, Mat());
// Draw bars
for (int i = 1; i < histSize; i++) {
cv::rectangle(histImage, Point(bin_w * (i - 1), hist_h),
Point(bin_w * (i), hist_h - cvRound(hist.at<float>(i))),
Scalar(50, 50, 50), 1);
}
return histImage; // Not really call by value, as cv::Mat only saves a pointer to the image data
}
``
Without looking at the code: the difference between a histogram and a cumulative histogram is that the cumulative histogram at index i has the value of the normal histogram at index i, plus the value of the cumulative histogram at index i - 1. There is a c++ stl algorithm that does the same, and it's called std::partial_sum.
In other words, in image processing a cumulative histogram tells you how many pixels have at most a given color value c
For example, given an array [0, 1, 2, 1, 2, 3, 2, 1, 2, 3, 4] we can plot the histogram and cumulative histogram like so:
The X axis here is the value of the array element while the Y axis is the number of times this element occurs in the array. This is a typical pattern in image processing: in a color histogram the X axis is usually the value of your color. In a 8bpp grayscale image, for example, the X axis has values in the range 0..255. The Y axis then is the number of pixels that have that specific color value.
One important property of a cumulative histogram (in contrast to a normal histogram) is that it's monotonically increasing, i.e. h[i] >= h[i - 1] where i = 1..length(h) and h is the cumulative histogram. This allows operations like histogram equalization. Since a monotonically increasing sequence is by definition also a sorted sequence, you can also perform operation on it that are only allowed on sorted sequences, like binary search.
The next step is usually to calculate a normalized cumulative histogram, which is done by dividing each value in the cumulative histogram by the number of values in your original array. For example
a = [1, 2, 3, 4]
h = hist(a) // histogram of a
ch = partial_sum(h) // cumulative histogram of a
nch = ch / length(a) // normalized, cumulative histogram of a
Another example, given an array [1, 2, 3, 4, 3, 2, 1] we can plot the histogram and cumulative histogram like so:
The X axis here is the 1 based index in the array and the Y axis is the value of that element.
Here is another figure:
And another one, explaining the same:
Starting with what the cumulative histogram is might be good. A histogram is a distribution of the number of pixels according to their intensities but if the thing in question is a cumulative histogram; we don't find counts for a single bin in the vertical axis, but rather we map that counts the cumulative number of pixel intensity values in all of the bins up to the current bin. And linear cumulative distribution or cumulative histogram is essential for some image processing algorithms e.g image equalization.
Histogram (H):
For each pixel of the image
value = Intensity(pixel)
H(value)++
end
The cumulative histogram of the H:
When you set cumulative to true; you are now calculating the cumulative histogram therefore, it is normal for the outputs to be different. In each step of the iteration, you add the previous histogram value to the cumulative histogram.
if (cumulative) {
cv::Mat accumulatedHist = hist.clone();
for (int i = 1; i < histSize; i++) {
accumulatedHist.at<float>(i) += accumulatedHist.at<float>(i - 1);
}
hist = accumulatedHist;
}
You can think of this as a trick when switching from a normal histogram to a cumulative histogram.
accumulatedHist.at<float>(i) += accumulatedHist.at<float>(i - 1);
These references might be useful to understand the basic structure
Histograms
Histogram Equalization
Cumulative Distribution Function
Related
I am using OpenCV and I have the following problem I wish to solve on an image. However, my question doesn't have to be restricted to OpenCV if it is an issue, it could simply be more general c++ on, say, vectors.
The problem
I want to map the pixel values of an input image (or elements of an input vector) into an output image (or vector) of same size. Each element of the output should contain the percentile* of the corresponding element in the input.
My question is
How would I code an implementation of this problem? (In c++ or OpenCV)
Example
I will show an example of a one-dimensional image, just for simplicity.
Input:
(1, 2, 10, 3, 4, 5, 6, 12, 7)
Output*: (0.11, 0.22, 0.89, 0.33, 0.44, 0.56, 0.67, 1.00, 0.78)
Performance?
I'm writing code for an analysis of images that may be a few hundred by a few hundred. I assume that my problem is possible in O(n log n), but I don't think even O(n^2) would be an issue (where n is the total number of elements in the image/vector). However, if precise percentiles cause too much issues with the complexity, I'm okay with having a certain number of bins instead.
(*) I know that there are a few different ways of conceptualizing percentile, whether you round up or down et cetera. This is of no importance to me. Whatever way works.
I am not sure it this is what you're looking for but this a naive implementation of percentile for image pixel values.
cv::Mat image = cv::imread("image.jpg",cv::IMREAD_UNCHANGED);
// convert image to gray
cv::Mat gray;
cv::cvtColor(image, gray, cv::COLOR_BGR2GRAY);
// calculate histogram for every pixel value (i.e [0 - 255])
cv::Mat hist;
int histSize = 256;
float range[] = { 0, 256 } ;
const float* histRange = { range };
bool uniform = true; bool accumulate = false;
cv::calcHist( &gray, 1, 0, cv::Mat(), hist, 1, &histSize, &histRange, uniform, accumulate );
// total pixels in image
float totalPixels = gray.cols * gray.rows;
// calculate percentage of every histogram bin (i.e: pixel value [0 - 255])
// the 'bins' variable holds pairs of (int pixelValue, float percentage)
std::vector<std::pair<int, float>> bins;
float percentage;
for(int i = 0; i < 256; ++i)
{
percentage = (hist.at<float>(i,0)*100.0)/totalPixels;
bins.push_back(std::make_pair(i, percentage));
}
// sort the bins according to percentage
sort(bins.begin(), bins.end(),comparator());
// compute percentile for a pixel value
int pixel = 185;
float sum = 0;
for (auto b : bins)
{
if(b.first != pixel)
sum += b.second;
else
{
sum += b.second/2;
break;
}
}
std::cout<<"Percentile for pixel("<<pixel<<"): "<<sum<<std::endl;
I want to find dominant color on an image. For this, I know that I should use image histogram. But I am not sure of image format. Which one of rgb, hsv or gray image, should be used?
After the histogram is calculated, I should find max value on histogram. For this, should I find below maximum binVal value for hsv image? Why my result image contains only black color?
float binVal = hist.at<float>(h, s);
EDIT :
I have tried the below code. I draw h-s histogram. And my result images are here. I don't find anything after binary threshold. Maybe I find max histogram value incorrectly.
cvtColor(src, hsv, CV_BGR2HSV);
// Quantize the hue to 30 levels
// and the saturation to 32 levels
int hbins = 20, sbins = 22;
int histSize[] = {hbins, sbins};
// hue varies from 0 to 179, see cvtColor
float hranges[] = { 0, 180 };
// saturation varies from 0 (black-gray-white) to
// 255 (pure spectrum color)
float sranges[] = { 0, 256 };
const float* ranges[] = { hranges, sranges };
MatND hist;
// we compute the histogram from the 0-th and 1-st channels
int channels[] = {0, 1};
calcHist( &hsv, 1, channels, Mat(), // do not use mask
hist, 2, histSize, ranges,
true, // the histogram is uniform
false );
double maxVal=0;
minMaxLoc(hist, 0, &maxVal, 0, 0);
int scale = 10;
Mat histImg = Mat::zeros(sbins*scale, hbins*10, CV_8UC3);
int maxIntensity = -100;
for( int h = 0; h < hbins; h++ ) {
for( int s = 0; s < sbins; s++ )
{
float binVal = hist.at<float>(h, s);
int intensity = cvRound(binVal*255/maxVal);
rectangle( histImg, Point(h*scale, s*scale),
Point( (h+1)*scale - 1, (s+1)*scale - 1),
Scalar::all(intensity),
CV_FILLED );
if(intensity > maxIntensity)
maxIntensity = intensity;
}
}
std::cout << "max Intensity " << maxVal << std::endl;
Mat dst;
cv::threshold(src, dst, maxIntensity, 255, cv::THRESH_BINARY);
namedWindow( "Dest", 1 );
imshow( "Dest", dst );
namedWindow( "Source", 1 );
imshow( "Source", src );
namedWindow( "H-S Histogram", 1 );
imshow( "H-S Histogram", histImg );
Alternatively you could try a k-means approach. Calculate k clusters with k ~ 2..5 and take the centroid of the biggest group as your dominant color.
The python docu of OpenCv has an illustrated example that gets the dominant color(s) pretty well:
The solution
Find H-S histogram
Find peak H value(using minmaxLoc function)
Split image 3 channel(h,s,v)
Apply to threshold.
Create image by merge 3 channel
Here's a Python approach using K-Means Clustering to determine the dominant colors in an image with sklearn.cluster.KMeans()
Input image
Results
With n_clusters=5, here are the most dominant colors and percentage distribution
[14.69488554 34.23074345 41.48107857] 13.67%
[141.44980073 207.52576948 236.30722987] 15.69%
[ 31.75790423 77.52713644 114.33328324] 18.77%
[ 48.41205713 118.34814452 176.43411287] 25.19%
[ 84.04820266 161.6848298 217.14045211] 26.69%
Visualization of each color cluster
Similarity with n_clusters=10,
[ 55.09073171 113.28271003 74.97528455] 3.25%
[ 85.36889668 145.80759374 174.59846237] 5.24%
[164.17201088 223.34258123 241.81929254] 6.60%
[ 9.97315932 22.79468111 22.01822211] 7.16%
[19.96940211 47.8375841 72.83728002] 9.27%
[ 26.73510467 70.5847759 124.79314278] 10.52%
[118.44741779 190.98204701 230.66728334] 13.55%
[ 51.61750364 130.59930047 198.76335878] 13.82%
[ 41.10232129 104.89923271 160.54431333] 14.53%
[ 81.70930412 161.823664 221.10258949] 16.04%
import cv2, numpy as np
from sklearn.cluster import KMeans
def visualize_colors(cluster, centroids):
# Get the number of different clusters, create histogram, and normalize
labels = np.arange(0, len(np.unique(cluster.labels_)) + 1)
(hist, _) = np.histogram(cluster.labels_, bins = labels)
hist = hist.astype("float")
hist /= hist.sum()
# Create frequency rect and iterate through each cluster's color and percentage
rect = np.zeros((50, 300, 3), dtype=np.uint8)
colors = sorted([(percent, color) for (percent, color) in zip(hist, centroids)])
start = 0
for (percent, color) in colors:
print(color, "{:0.2f}%".format(percent * 100))
end = start + (percent * 300)
cv2.rectangle(rect, (int(start), 0), (int(end), 50), \
color.astype("uint8").tolist(), -1)
start = end
return rect
# Load image and convert to a list of pixels
image = cv2.imread('1.jpg')
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
reshape = image.reshape((image.shape[0] * image.shape[1], 3))
# Find and display most dominant colors
cluster = KMeans(n_clusters=5).fit(reshape)
visualize = visualize_colors(cluster, cluster.cluster_centers_)
visualize = cv2.cvtColor(visualize, cv2.COLOR_RGB2BGR)
cv2.imshow('visualize', visualize)
cv2.waitKey()
Here are some suggestions to get you started.
All 3 channels in RGB contribute to the color, so you'd have to
somehow figure out where three different histograms are all at maximum. (Or their sum is maximum, or whatever.)
HSV has all of the color (well, Hue) information in one channel, so
you only have to consider one histogram.
Grayscale throws away all color information so is pretty much useless for
finding color.
Try converting to HSV, then calculate the histogram on the H channel.
As you say, you want to find the max value in the histogram. But:
You might want to consider a range of values instead of just one, say
from 20-40 instead of just 30. Try different range sizes.
Remember that Hue is circular, so H=0 and H=360 are the same.
Try plotting the histogram following this:
http://docs.opencv.org/doc/tutorials/imgproc/histograms/histogram_calculation/histogram_calculation.html
to see if your results make sense.
If you're using a range of Hues and you find a range that is maximum, you can either just use the middle of that range as your dominant color, or you can find the mean of the colors within that range and use that.
i want to use a homomorphic filter to work on underwater image. I tried to code it with the codes found on the internet but i have always a black image... I tried to normalized my result but didn't work.
Here my functions :
void HomomorphicFilter::butterworth_homomorphic_filter(Mat &dft_Filter, int D, int n, float high_h_v_TB, float low_h_v_TB)
{
Mat single(dft_Filter.rows, dft_Filter.cols, CV_32F);
Point centre = Point(dft_Filter.rows/2, dft_Filter.cols/2);
double radius;
float upper = (high_h_v_TB * 0.01);
float lower = (low_h_v_TB * 0.01);
//create essentially create a butterworth highpass filter
//with additional scaling and offset
for(int i = 0; i < dft_Filter.rows; i++)
{
for(int j = 0; j < dft_Filter.cols; j++)
{
radius = (double) sqrt(pow((i - centre.x), 2.0) + pow((double) (j - centre.y), 2.0));
single.at<float>(i,j) =((upper - lower) * (1/(1 + pow((double) (D/radius), (double) (2*n))))) + lower;
}
}
//normalize(single, single, 0, 1, CV_MINMAX);
//Apply filter
mulSpectrums( dft_Filter, single, dft_Filter, 0);
}
void HomomorphicFilter::Shifting_DFT(Mat &fImage)
{
//For visualization purposes we may also rearrange the quadrants of the result, so that the origin (0,0), corresponds to the image center.
Mat tmp, q0, q1, q2, q3;
/*First crop the image, if it has an odd number of rows or columns.
Operator & bit to bit by -2 (two's complement : -2 = 111111111....10) to eliminate the first bit 2^0 (In case of odd number on row or col, we take the even number in below)*/
fImage = fImage(Rect(0, 0, fImage.cols & -2, fImage.rows & -2));
int cx = fImage.cols/2;
int cy = fImage.rows/2;
/*Rearrange the quadrants of Fourier image so that the origin is at the image center*/
q0 = fImage(Rect(0, 0, cx, cy));
q1 = fImage(Rect(cx, 0, cx, cy));
q2 = fImage(Rect(0, cy, cx, cy));
q3 = fImage(Rect(cx, cy, cx, cy));
/*We reverse each quadrant of the frame with its other quadrant diagonally opposite*/
/*We reverse q0 and q3*/
q0.copyTo(tmp);
q3.copyTo(q0);
tmp.copyTo(q3);
/*We reverse q1 and q2*/
q1.copyTo(tmp);
q2.copyTo(q1);
tmp.copyTo(q2);
}
void HomomorphicFilter::Fourier_Transform(Mat frame_bw, Mat &image_phase, Mat &image_mag)
{
Mat frame_log;
frame_bw.convertTo(frame_log, CV_32F);
/*Take the natural log of the input (compute log(1 + Mag)*/
frame_log += 1;
log( frame_log, frame_log); // log(1 + Mag)
/*2. Expand the image to an optimal size
The performance of the DFT depends of the image size. It tends to be the fastest for image sizes that are multiple of 2, 3 or 5.
We can use the copyMakeBorder() function to expand the borders of an image.*/
Mat padded;
int M = getOptimalDFTSize(frame_log.rows);
int N = getOptimalDFTSize(frame_log.cols);
copyMakeBorder(frame_log, padded, 0, M - frame_log.rows, 0, N - frame_log.cols, BORDER_CONSTANT, Scalar::all(0));
/*Make place for both the complex and real values
The result of the DFT is a complex. Then the result is 2 images (Imaginary + Real), and the frequency domains range is much larger than the spatial one. Therefore we need to store in float !
That's why we will convert our input image "padded" to float and expand it to another channel to hold the complex values.
Planes is an arrow of 2 matrix (planes[0] = Real part, planes[1] = Imaginary part)*/
Mat image_planes[] = {Mat_<float>(padded), Mat::zeros(padded.size(), CV_32F)};
Mat image_complex;
/*Creates one multichannel array out of several single-channel ones.*/
merge(image_planes, 2, image_complex);
/*Make the DFT
The result of thee DFT is a complex image : "image_complex"*/
dft(image_complex, image_complex);
/***************************/
//Create spectrum magnitude//
/***************************/
/*Transform the real and complex values to magnitude
NB: We separe Real part to Imaginary part*/
split(image_complex, image_planes);
//Starting with this part we have the real part of the image in planes[0] and the imaginary in planes[1]
phase(image_planes[0], image_planes[1], image_phase);
magnitude(image_planes[0], image_planes[1], image_mag);
}
void HomomorphicFilter::Inv_Fourier_Transform(Mat image_phase, Mat image_mag, Mat &inverseTransform)
{
/*Calculates x and y coordinates of 2D vectors from their magnitude and angle.*/
Mat result_planes[2];
polarToCart(image_mag, image_phase, result_planes[0], result_planes[1]);
/*Creates one multichannel array out of several single-channel ones.*/
Mat result_complex;
merge(result_planes, 2, result_complex);
/*Make the IDFT*/
dft(result_complex, inverseTransform, DFT_INVERSE|DFT_REAL_OUTPUT);
/*Take the exponential*/
exp(inverseTransform, inverseTransform);
}
and here my main code :
/**************************/
/****Homomorphic filter****/
/**************************/
/**********************************************/
//Getting the frequency and magnitude of image//
/**********************************************/
Mat image_phase, image_mag;
HomomorphicFilter().Fourier_Transform(frame_bw, image_phase, image_mag);
/******************/
//Shifting the DFT//
/******************/
HomomorphicFilter().Shifting_DFT(image_mag);
/********************************/
//Butterworth homomorphic filter//
/********************************/
int high_h_v_TB = 101;
int low_h_v_TB = 99;
int D = 10;// radius of band pass filter parameter
int order = 2;// order of band pass filter parameter
HomomorphicFilter().butterworth_homomorphic_filter(image_mag, D, order, high_h_v_TB, low_h_v_TB);
/******************/
//Shifting the DFT//
/******************/
HomomorphicFilter().Shifting_DFT(image_mag);
/*******************************/
//Inv Discret Fourier Transform//
/*******************************/
Mat inverseTransform;
HomomorphicFilter().Inv_Fourier_Transform(image_phase, image_mag, inverseTransform);
imshow("Result", inverseTransform);
If someone can explain me my mistakes, I would appreciate a lot :). Thank you and sorry for my poor english.
EDIT : Now, i have something but it's not perfect ... I modified 2 things in my code.
I applied log(mag + 1) after dft and not on the input image.
I removed exp() after idft.
here the results (i can post only 2 links ...) :
my input image :
final result :
after having seen several topics, i find similar results on my butterworth filter and on my magnitude after dft/shifting.
Unfortunately, my final result isn't very good. Why i have so much "noise" ?
I was doing this method to balance illumination when camera was changed caused the Image waw dark!
I tried to FFT to the frequency to filter the image! it's work.but use too much time.(2750*3680RGB image).so I do it in Spatial domain.
here is my code!
//IplImage *imgSrcI=cvLoadImage("E:\\lean.jpg",-1);
Mat imgSrcM(imgSrc,true);
Mat imgDstM;
Mat imgGray;
Mat imgHls;
vector<Mat> vHls;
Mat imgTemp1=Mat::zeros(imgSrcM.size(),CV_64FC1);
Mat imgTemp2=Mat::zeros(imgSrcM.size(),CV_64FC1);
if(imgSrcM.channels()==1)
{
imgGray=imgSrcM.clone();
}
else if (imgSrcM.channels()==3)
{
cvtColor(imgSrcM, imgHls, CV_BGR2HLS);
split(imgHls, vHls);
imgGray=vHls.at(1);
}
else
{
return -1;
}
imgGray.convertTo(imgTemp1,CV_64FC1);
imgTemp1=imgTemp1+0.0001;
log(imgTemp1,imgTemp1);
GaussianBlur(imgTemp1, imgTemp2, Size(21, 21), 0.1, 0.1, BORDER_DEFAULT);//imgTemp2是低通滤波的结果
imgTemp1 = (imgTemp1 - imgTemp2);//imgTemp1是对数减低通的高通
addWeighted(imgTemp2, 0.7, imgTemp1, 1.4, 1, imgTemp1, -1);//imgTemp1是压制低频增强高频的结构
exp(imgTemp1,imgTemp1);
normalize(imgTemp1,imgTemp1,0,1,NORM_MINMAX);
imgTemp1=imgTemp1*255;
imgTemp1.convertTo(imgGray, CV_8UC1);
//imwrite("E:\\leanImgGray.jpg",imgGray);
if (imgSrcM.channels()==3)
{
vHls.at(1)=imgGray;
merge(vHls,imgHls);
cvtColor(imgHls, imgDstM, CV_HLS2BGR);
}
else if (imgSrcM.channels()==1)
{
imgDstM=imgGray.clone();
}
cvCopy(&(IplImage)imgDstM,imgDst);
//cvShowImage("jpg",imgDst);
return 0;
I took your code corrected it at a few places and got decent results as the homographic filter output.
Here are the corrections that I made.
1)
Instead of working just on the image_mag, work on the full output of the FFT.
2)
your filter values of high_h_v_TB = 101 and low_h_v_TB = 99 virtually made little effect in filtering.
Here are the values I used.
int high_h_v_TB = 100;
int low_h_v_TB = 20;
int D = 10;// radius of band pass filter parameter
int order = 4;
Here is my main code
//float_img == grayscale image in 0-1 scale
Mat log_img;
log(float_img, log_img);
Mat fft_phase, fft_mag;
Mat fft_complex;
HomomorphicFilter::Fourier_Transform(log_img, fft_complex);
HomomorphicFilter::ShiftFFT(fft_complex);
int high_h_v_TB = 100;
int low_h_v_TB = 30;
int D = 10;// radius of band pass filter parameter
int order = 4;
//get a butterworth filter of same image size as the input image
//dont call mulSpectrums yet, just get the filter of correct size
Mat butterWorthFreqDomain;
HomomorphicFilter::ButterworthFilter(fft_complex.size(), butterWorthFreqDomain, D, order, high_h_v_TB, low_h_v_TB);
//this should match fft_complex in size and type
//and is what we will be using for 'mulSpectrums' call
Mat butterworth_complex;
//make two channels to match fft_complex
Mat butterworth_channels[] = {Mat_<float>(butterWorthFreqDomain.size()), Mat::zeros(butterWorthFreqDomain.size(), CV_32F)};
merge(butterworth_channels, 2, butterworth_complex);
//do mulSpectrums on the full fft
mulSpectrums(fft_complex, butterworth_complex, fft_complex, 0);
//shift back the output
HomomorphicFilter::ShiftFFT(fft_complex);
Mat log_img_out;
HomomorphicFilter::Inv_Fourier_Transform(fft_complex, log_img_out);
Mat float_img_out;
exp(log_img_out, float_img_out);
//float_img_out is gray in 0-1 range
Here is my output.
I have the gradients from the Sobel operator for each pixel. In my case 320x480. But how can I relate them with the orientation? For an example, I'm planning to draw an orientation map for fingerprints. So, how do I start?
Is it by dividing the gradients into blocks (example 16x24) then adding the gradients together and diving it by 384 to get the average gradients? Then from there draw a line from the center of the block using the average gradient?
Correct me if i'm wrong. Thank you.
Here are the codes that i used to find gradients
cv::Mat original_Mat=cv::imread("original.bmp", 1);
cv::Mat grad = cv::Mat::zeros(original_Mat.size(), CV_64F);
cv::Mat grad_x = cv::Mat::zeros(original_Mat.size(), CV_64F);
cv::Mat grad_y = cv::Mat::zeros(original_Mat.size(), CV_64F);
/// Gradient X
cv::Sobel(original_Mat, grad_x, CV_16S, 1, 0, 3);
/// Gradient Y
cv::Sobel(original_Mat, grad_y, CV_16S, 0, 1, 3);
short* pixelX = grad_x.ptr<short>(0);
short* pixelY = grad_y.ptr<short>(0);
int count = 0;
int min = 999999;
int max = -1;
int a=0,b=0;
for(int i = 0; i < grad_x.rows * grad_x.cols; i++)
{
double directionRAD = atan2(pixelY[i], pixelX[i]);
int directionDEG = (int)(180 + directionRAD / CV_PI * 180);
//printf("%d ",directionDEG);
if(directionDEG < min){min = directionDEG;}
if(directionDEG > max){max = directionDEG;}
if(directionDEG < 0 || directionDEG > 360)
{
cout<<"Weird gradient direction given in method: getGradients.";
}
}
There are several ways to visualize an orientation map:
As you suggested, you could draw it block-wise, but then you would have to be careful about "averaging" the directions. For example, what happens if you average the directions 0° and 180°?
More commonly, the direction is simply mapped to a grey value. This would visualize the gradient per pixel. For example as:
int v = (int)(128+directionRAD / CV_PI * 128);
(Disclaimer: not 100% sure about the 128, one of them might actually have to be a 127...
Or you could map the x and y gradient magnitudes to the rand gcomponents, respectively, ideally after normalizing the gradient vector to length 1. Assuming normX to be the normalized gradient in the x direction with values between -1 and 1:
int red = (int)((normX + 1)*127.5);
int green= (int)((normY + 1)*127.5);
Averaging depends on Sobel kernel size.
It'll be better to use CV_32FC or CV_64FC instead of CV_16S for results.
Also you can speed up your code using cv::phase method.
see my answer here: Sobel operator for gradient angle
I am using the normalise function in the code below. My understanding was that normalising the histogram would result in the bins summing to one? But when I add them all up I keep getting a result higher then one. I dont know if I am doing something wrong or have misunderstood what the function does?
//read in image
Mat img = imread("image.jpg",1);
vector<Mat> planes;
split(img, planes);
//calculate hist
MatND hist;
int nbins = 256; // hold 256 levels
int hsize[] = { nbins }; // one dimension
float range[] = { 0, 255 };
const float *ranges[] = { range };
int chnls[] = {0};
calcHist(&planes[0], 1, chnls, Mat(), hist,1,hsize,ranges);
//normalise
normalize(hist,hist,1);
float tot = 0;
for( int n = 0;n < nbins; n++ )
{
float binVal = hist.at<float>(n);
tot+=binVal;
}
cout<<tot;
Normalized array doesn't sum to 1, but square root of sum of squares of components equals 1, F.e. in vector:
It is normalized, when:
sqrt(x^2 + y^2 + z^2) = 1
*This applies for vectors
in OpenCV - histogram - normalize is described here OpenCV histogram normalize, it should be clear (after reading the specs) that it doesn't have to sum to 1