How many partitions does my athena table have? - amazon-web-services

I have this query:
SHOW PARTITIONS tablename;
Result is:
dt=2018-01-12
dt=2018-01-20
dt=2018-05-21
dt=2018-04-07
dt=2018-01-03
Do I have 5 partitions or 1, being the date? What counts towards athena's 20,000 partition limit. 5 or 1?

I would say "it is partitioned by date, with 5 partitions" because ADD PARTITION is used to add a single directory. Therefore, it would could as 5 towards the 20,000 limit.
The partition is useful if you often use WHERE DT = '2018-xx-xx' statements in your queries, but will not particularly help otherwise. (Splitting data into multiple files does help to parallelize work, but it also comes with an overhead.)

Related

How many rows are required by partition to have good performances in BigQuery?

I receive every day 100 rows from an application. Good practices in my company suggest to partition every table by day. I dont think is good to do this on the new table that I will create to daily insert a hundred of rows. I want to partition the data by year, is it good?
How many rows by partition are required for the best performances?
It really also depends on the queries that you are going to execute on this table that is what kind of date filters are going to use and joins on what columns. Refer to below answer which will really help you to decide on this.
Answer1
Answer2
Keep in mind that the number of partitions is limited (to 4000). Therefore partitioning is great for low cardinality. Per day, is perfect (about 11 years -> 4000 days).
If you have higher cardinality, customer ID for example (and I hope you have more than 4000 customers!), clustering is the solution to speed up the request.
When you partition, and cluster, your data, you create small bag. Lesser the data to process (load, read, store in cache (...)) you have, faster will be your query! Of course, on only 100 rows, you won't see any differences

Convert indexes to sortkeys Redshift

Do zonemaps exists only in memory? Or its populated in memory from disk where its stored persistently? Is it stored along with the 1MB block, or in a separate place?
We are migrating from oracle to redshift, there are bunch of indexes to cater to reporting needs. The nearest equivalent of index in Redshift is sortkeys. For bunch of tables, the total number of cols of all the indexes are between 15-20 (some are composite indexes, some are single col indexes). Interleaved keys seems to be best fit, but there cannot be more than 8 cols in an interleaved sortkey. But if I use compound sortkey, it wont be effective since the queries might not have prefix colums.
Whats the general advice in such cases - which type of sort key to use? How to convert many indexes from rdbms to sort keys in redshift?
Are high cardinality cols such as identity cols, dates and timestamps not good fit with interleaved keys? Would it be same with compound sortkeys? Any disadvanatges with interleaved sortkeys to keep in consideration?
You are asking the right questions so let's take these down one at a time. First, zonemaps are located on the leader node and stored on disk and the table data is stored on the compute nodes. They are located separate from each other. The zonemaps store the min and max values for every column for every 1MB block in a table. No matter if a column is in your sortkey list or not, there will be zonemap data for the block. When a column shows up in a WHERE clause Redshift will first compare to the zonemap data to decide if the block is needed for the query. If a block is not needed it won't be read from disk resulting in significant performance improvements for very large tables. I call this "block rejection". A few key points - This really only makes a difference on tables will 10s of millions of rows and when there are selective WHERE predicates.
So you have a number of reports each of which looks at the data by different aspects - common. You want all of these to work well, right? Now the first thing to note is that each table can have it's own sortkeys, they aren't linked. What is important is how does the choice of sortkeys affect the min and max values in the zonemaps for the columns you will use as WHERE clauses. With composite sortkeys you have to think about what impact later keys will have on the composition of the block - not much after the 3rd or 4th key. This is greatly impacted by the ordinality of the data but you get the idea. The good news is that sorting on one column will impact the zonemaps of all the columns so you don't always have to have a column in the sortkey list to get the benefit.
The question of compound vs interleaved sortkeys is a complicated one but remember you want to get high levels of block rejection as often as possible (and on the biggest tables). When different queries have different WHERE predicates it can be tricky to get a good mix of sortkeys to make this happen. In general compound sortkeys are easier to understand and have less table maintenance implications. You can inspect the zonemaps and see what impacts your sortkey choices are having and make informed decisions on how to adjust. If there are columns with low ordinality put those first so that the next sortkeys can have impact on the overall row order and therefore make block with different value ranges for these later keys. For these reasons I like compound keys over interleaved but there are cases where things will improve with interleaved keys. When you have high ordinality for all the columns and they are all equally important interleaved may be the right answer. I usually learn about the data trying to optimize compound keys that even if I end up with interleaved keys I can make smart choices about what columns I want in the sortkeys.
Just some metrics to help in you choice. Redshift can store 200,000 row elements in a single block and I've seen columns with over 2M elements per block. Blocks are distributed across the cluster so you need a lot of rows to fill up enough blocks that rejecting a high percentage of them is even possible. If you have a table of 5 million rows and you are sweating the sortkeys you are into the weeds. (Yes sorting can impact other aspects of the query like joining but these are sub-second improvements not make or break performance impacts.) Compression can have a huge impact on the number of row elements per block and therefore how many rows are represented in an entry in the zonemap. This can increase block rejection but will increase the read data needed to scan the entire table - a tradeoff you will want to make sure you are winning (1 query gets faster by 10 get slower is likely not a good tradeoff).
Your question about ordinality is a good one. If I sort my a high ordinality column first in a compound sortkey list this will set the overall order of the rows potentially making all other sortkeys impotent. However if I sort by a low ordinality column first then there is a lot of power left for other sortkeys to change the order of the rows and therefore the zonemap contents. For example if I have Col_A with only 100 unique values and Col_B which is a timestamp with 1microsecond resolution. If I sort by Col_B first all the rows are likely order just by sorting on this column. But if I sort by Col_A first there are lots of rows with the same value and the later sortkey (Col_B) can order these rows. Interleaved works the same way except which column is "first" changes by region of the table. If I interleave sort base on the same Col_A and Col_B above (just 2 sortkeys), then half the table will be sorted by Col_A first and half by Col_B first. For this example Col_A will be useless half of the time - not the best answer. Interleave sorting just modifies which column is use as the first sortkey throughout the table (and second and third if more keys are used). High ordinality in a sort key makes later sortkeys less powerful and this independent of sort style - it's just the interleave changes up which columns are early and which are late by region of the table.
Because ordinality of sortkeys can be such an important factor in gaining block rejection across many WHERE predicates that it is common to add derived columns to tables to hold lower ordinality versions of other columns. In the example above I might add Col_B2 to the table and have if just hold the year and month (month truncated date) of Col_B. I would use Col_B2 in my sortkey list but my queries would still be referencing Col_B. It "roughly" sorts based on Col_B so that Col_A can have some sorting power if it was to come later in the sortkey list. This is a common reason for making data model changes when moving Redshift.
It is also critical that "block rejecting" WHERE clauses on written against the fact table column, not applied to a dimension table column after the join. Zonemap information is read BEFORE the query starts to execute and is done on the leader node - it can't see through joins. Another data model change is to denormalize some key information into the fact tables so these common where predicates can be applied to the fact table and zonemaps will be back in play.
Sorry for the tome but this is a deep topic which I've spent year optimizing. I hope this is of use to you and reach out if anything isn't clear (and I hope you have the DISTKEYS sorted out already :) ).

Does "limit" reduce the amount of scanned data on AWS Athena?

I have S3 with compressed JSON data partitioned by year/month/day.
I was thinking that it might reduce the amount of scanned data if construct query with filtering looking something like this:
...
AND year = 2020
AND month = 10
AND day >= 1 "
ORDER BY year, month, day DESC
LIMIT 1
Is this combination of partitioning, order and limit an effective measure to reduce the amount of data being scanned per query?
Partitioning is definitely an effective way to reduce the amount of data that is scanned by Athena. A good article that focuses on performance optimization can be found here: https://aws.amazon.com/de/blogs/big-data/top-10-performance-tuning-tips-for-amazon-athena/ - and better performance mostly comes from reducing the amount of data that is scanned.
It's also recommended to store the data in a column based format, like Parquet and additionally compress the data. If you store data like that you can optimize queries by just selecting columns you need (there is a difference between select * and select col1,col2,.. in this case).
ORDER BY definitely doesn't limit the data that is scanned, as you need to scan all of the columns in the order by clause to be able to order them. As you have JSON as underlying storage it most likely reads all data.
LIMIT will potentially reduce the amount of data that is read, it depends on the overall size of the data - if limit is way smaller than the overall count of rows it will help.
In general I can recommend to test queries in the Athena interface in AWS - it will tell you the amount of scanned data after a successful execution. I tested on one of my partitioned tables (based on compressed parquet):
partition columns in WHERE clause reduces the amount of scanned data
LIMIT further reduces the amount of scanned data in some cases
ORDER BY leads to reading the all partitions again because it otherwise can't be sorted

Best order of joins and append for performance

I'm having huge performance issues with a SAS DI job that I need to get up and running. Therefore I'm looking for clever ways to optimize the job.
One thing in particular that I thought of is that I should perhaps permute the order of some joins and an append. Currently, my job is configured as follows:
there are several similarly structured source tables which I first apply a date filter to (to reduce the number of rows) and sort on two fields, say a and b, then I left join each table to a table with account table on the same fields a and b (I'd like to create indexes for these if possible, but don't know how to do it for temporary work tables in SAS DI). After each of these joins is complete, I append the resulting tables into one dataset.
It occurs to me that I could first append, and then do just one join, but I have no notion of which approach is faster, or if the answer is that it depends I have no notion of what it depends on (though I'd guess the size of the constituent tables).
So, is it better to do many joins then append, or to append then do one join?
EDIT
Here is an update with some relevant information (requested by user Robert Penridge).
The number of source tables here is 7, and the size of these tables ranges from 1500 to 5.2 million. 10 000 is typical. The number of columns is 25. These tables are each being joined with the same table, which has about 5000 rows and 8 columns.
I estimate that the unique key partitions the tables into subsets of roughly equal size; the size reduction here should be between 8% and 30% (the difference is due to the fact that some of the source tables carry much more historical data than others, adding to the percentage of the table grouped into the same number of groups).
I have limited the number of columns to the exact minimum amount required (21).
By default SAS DI creates all temporary datasets as views, and I have not changed that.
The code for the append and joins are auto-generated by SAS DI after constructing them with GUI elements.
The final dataset is not sorted; my reason for sorting the data which feeds the joins is that the section of this link on join performance (page 35) mentions that it should improve performance.
As I mentioned, I'm not sure if one can put indexes on temporary work tables or views in SAS DI.
I cannot say whether the widths of the fields is larger than absolutely necessary, but if so I doubt it is egregious. I hesitate to change this since it would have to be done manually, on several tables, and when new data comes in it might need that extra column width.
Much gratitude
Performance in SAS is mainly about reducing IO (ie. reading/writing to the disk).
Without additional details it's difficult to help but some additional things you can consider are:
limit the columns you are processing by using a keep statement (reduces IO)
if the steps performing the joins are IO intensive, consider using views rather than creating temporary tables
if the joins are still time consuming, consider replacing them with hash table lookups
make sure you are using proc append to append the 2 datasets together to reduce the IO. Append the smaller dataset to the larger dataset.
consider not sorting the final dataset but placing an index on it for consumers of the data.
ensure you are using some type of dataset compression, or ensure your column widths are set appropriately for all columns (ie. you don't have a width of 200 on a field that uses a width of 8)
reduce the number of rows as early in the process as possible (you are already doing this, just listing it here for completeness)
Adjusting the order of left-joins and appends probably won't make as much difference as doing the above.
As per your comments it seems that
1. There are 7 input source tables
2. Join these 7 source tables to 1 table
3. Append the results
In SAS DI studio, use a Lookup to perform the above much faster
1. Connect the 7 Input tables to a Lookup Transform (lets call them SRC 1-7)
2. The table with 5000 records is the tables on which lookup is performed on keys A and B (lets call this LKUP-1)
3. Take the relevant columns from LKUP-1 to propagate into the TARGET tables.
This will be much faster and you don't have to perform JOINs in this case as I suspect you are doing a Many-Many join which is degrading the performance in SAS DIS.

Amazon Redshift Equality filter performance and sortkeys

Does Redshift efficiently (i.e. binary search) find a block of a table that is sorted on a column A for a query with a condition A=?
As an example, let there be a table T with ~500m rows, ~50 fields, distributed and sorted on field A. Field A has high cardinality - so there are ~4.5 m different A values, with exactly the same number of rows in T: ~100 rows per value.
Assume a redshift cluster with a single XL node.
Field A is not compressed. All other fields have some form compression, as suggested by ANALYZE COMPRESSION. A ratio of 1:20 was given compared to an uncompressed table.
Given a trivial query:
select avg(B),avg(C) from
(select B,C from T where A = <val>)
After VACUUM and ANALYZE the following explain plan is given:
XN Aggregate (cost=1.73..1.73 rows=1 width=8)
-> XN Seq Scan on T (cost=0.00..1.23 rows=99 width=8)
Filter: (A = <val>::numeric)
This query takes 39 seconds to complete.
The main question is: Is this the expected behavior of redshift?
According to the documentation at Choosing the best sortkey:
"If you do frequent range filtering or equality filtering on one column, specify that column as the sort key. Redshift can skip reading entire blocks of data for that column because it keeps track of the minimum and maximum column values stored on each block and can skip blocks that don't apply to the predicate range."
In Choosing sort keys:
"Another optimization that depends on sorted data is the efficient handling of range-restricted predicates. Amazon Redshift stores columnar data in 1 MB disk blocks. The min and max values for each block are stored as part of the metadata. If a range-restricted column is a sort key, the query processor is able to use the min and max values to rapidly skip over large numbers of blocks during table scans. For example, if a table stores five years of data sorted by date and a query specifies a date range of one month, up to 98% of the disk blocks can be eliminated from the scan. If the data is not sorted, more of the disk blocks (possibly all of them) have to be scanned. For more information about these optimizations, see Choosing distribution keys."
Secondary questions:
What is the complexity of the aforementioned skipping scan on a sort key? Is it linear ( O(n) ) or some variant of binary search ( O(logn) )?
If a key is sorted - is skipping the only optimization available?
What would this "skipping" optimization look like in the explain plan?
Is the above explain the best one possible for this query?
What is the fastest result redshift can be expected to provide given this scenario?
Does vanilla ParAccel have different behavior in this use case?
This question is answered on amazon forum: https://forums.aws.amazon.com/thread.jspa?threadID=137610