I have built a horse human detector using keras CNN on Google colab the model worked and loaded perfectly on colab. Now I am building a flask application while loading he .h5 model file I was getting error
TypeError: __init__() got an unexpected keyword argument 'ragged'
I reinstall keras 2.3.1 using pip and now I am getting a library error
NameError: name 'six' is not defined
my App.py
#Import necessary libraries
from flask import Flask, render_template, request
import numpy as np
import os
from keras.preprocessing.image import load_img
from keras.preprocessing.image import img_to_array
from keras.models import load_model
#load model
model = load_model("predictor.h5" )
print("## model loaded")
def pred_human_horse(model , horse_or_human):
test_image = load_img(horse_or_human , target_size=(150,150)) #resize
print("## Got Image for predicton")
test_image = img_to_array(test_image)/255 #numpy array between 0-1
test_image = np.expand_dims(test_image,axis=0) #4 dimension
result= model.predict(test_image).round(3) #rounding off
pred =np.argmax(result)
print("## Raw results = ",result)
print("## class = ", pred)
if pred==0:
return "Horse"
else:
return "Human"
# Crate flask app
app = Flask(__name__)
#app.route("/",methods=["GET","POST"])
def home():
return render_template("index.html")
#app.route("/predict",methods=["GET","POST"])
def predict():
if request.method=="POST":
#get input image file
file = request.files["image"]
filename= file.filename
print("## File recieved",filename)
#save the file
file_path= os.path.join("static/user_uploaded",filename)
file.save(file_path)
print("## Prediction...")
pred=pred_human_horse(horse_or_human=file_path )
return render_template("predict.html" ,pred_output= pred , user_image=file_path )
if __name__=="__main__":
app.run(threaded=False)
Error I am getting
runfile('F:/INTERNSHIP/Crisp-Metric-MAY21/Human-horse-prediction/app.py', wdir='F:/INTERNSHIP/Crisp-Metric-MAY21/Human-horse-prediction')
Traceback (most recent call last):
File "<ipython-input-26-df590f092cb6>", line 1, in <module>
runfile('F:/INTERNSHIP/Crisp-Metric-MAY21/Human-horse-prediction/app.py', wdir='F:/INTERNSHIP/Crisp-Metric-MAY21/Human-horse-prediction')
File "C:\Users\DANIA NIAZI\Anaconda3\lib\site-packages\spyder_kernels\customize\spydercustomize.py", line 827, in runfile
execfile(filename, namespace)
File "C:\Users\DANIA NIAZI\Anaconda3\lib\site-packages\spyder_kernels\customize\spydercustomize.py", line 110, in execfile
exec(compile(f.read(), filename, 'exec'), namespace)
File "F:/INTERNSHIP/Crisp-Metric-MAY21/Human-horse-prediction/app.py", line 13, in <module>
model = load_model("predictor.h5" )
File "C:\Users\DANIA NIAZI\Anaconda3\lib\site-packages\keras\engine\saving.py", line 492, in load_wrapper
File "C:\Users\DANIA NIAZI\Anaconda3\lib\site-packages\keras\engine\saving.py", line 582, in load_model
File "C:\Users\DANIA NIAZI\Anaconda3\lib\site-packages\keras\utils\io_utils.py", line 211, in is_supported_type
NameError: name 'six' is not defined
Maybe you should try installing the six package which will be installed when installing Django. Anyway you can install it using:
pip install six
Related
I'm trying to use a tensorflow classifier with some tools from scikit learn, namely model_selection.cross_val_score. When I run the following code (adapted from this example from the tensorflow docs), I get a TypeError (see full traceback below).
From what I can tell the problem is that cross_val_score tries to clone the estimator by performing what amounts to estimator.__class__(**estimator.get_params(deep=True)). For some reason, SKCompat.get_params returns {}, the init method on the class requires one argument (as shown in the example code) so the operation blows up.
Am I doing something wrong? Or is this a bug with tensorflow?
Failing example
"""Example of DNNClassifier for Iris plant dataset."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from sklearn import metrics
from sklearn import model_selection
import tensorflow as tf
def main(unused_argv):
# Load dataset.
iris = tf.contrib.learn.datasets.load_dataset('iris')
# Build 3 layer DNN with 10, 20, 10 units respectively.
feature_columns = tf.contrib.learn.infer_real_valued_columns_from_input(
iris.data)
classifier = tf.contrib.learn.SKCompat(
tf.contrib.learn.DNNClassifier(
feature_columns=feature_columns,
hidden_units=[10, 20, 10],
n_classes=3
)
)
# Fit and predict.
scores = model_selection.cross_val_score(classifier, iris.data, iris.target,
scoring='accuracy')
print('Accuracy: {0:f}'.format(scores.mean()))
if __name__ == '__main__':
tf.app.run()
Traceback
Traceback (most recent call last):
File "iris.py", line 49, in <module>
tf.app.run()
File "/Users/Matt/.virtualenvs/numerai/lib/python2.7/site-packages/tensorflow/python/platform/app.py", line 48, in run
_sys.exit(main(_sys.argv[:1] + flags_passthrough))
File "iris.py", line 44, in main
scoring='accuracy')
File "/Users/Matt/.virtualenvs/numerai/lib/python2.7/site-packages/sklearn/model_selection/_validation.py", line 140, in cross_val_score
for train, test in cv_iter)
File "/Users/Matt/.virtualenvs/numerai/lib/python2.7/site-packages/sklearn/externals/joblib/parallel.py", line 758, in __call__
while self.dispatch_one_batch(iterator):
File "/Users/Matt/.virtualenvs/numerai/lib/python2.7/site-packages/sklearn/externals/joblib/parallel.py", line 603, in dispatch_one_batch
tasks = BatchedCalls(itertools.islice(iterator, batch_size))
File "/Users/Matt/.virtualenvs/numerai/lib/python2.7/site-packages/sklearn/externals/joblib/parallel.py", line 127, in __init__
self.items = list(iterator_slice)
File "/Users/Matt/.virtualenvs/numerai/lib/python2.7/site-packages/sklearn/model_selection/_validation.py", line 140, in <genexpr>
for train, test in cv_iter)
File "/Users/Matt/.virtualenvs/numerai/lib/python2.7/site-packages/sklearn/base.py", line 70, in clone
new_object = klass(**new_object_params)
TypeError: __init__() takes exactly 2 arguments (1 given)
Versions
python: 2.7.3
tensorflow: 1.1.0
scikit-learn: 0.18.1
I could not load a doc2vec model on my computer and I got the following error. But, when I load that model on other computers, I can use that model.Therefore, I know the model was built correctly.
what should I do.
This is the code:
# coding: utf-8
from gensim.models.doc2vec import Doc2Vec
import gensim.models.doc2vec
from gensim.models.doc2vec import LabeledSentence
import os
import pickle
pth='/home/fatemeh/Step2/input-output/model/iterator'
model= Doc2Vec.load(pth+'/my_model.doc2vec')
This is the error:
Traceback (most recent call last):
File "CreateAnnoyIndex.py", line 16, in <module>
model= Doc2Vec.load(pth+'/my_model.doc2vec')
File "/usr/local/lib/python2.7/dist-packages/gensim-0.13.3-py2.7-linux-x86_64.egg/gensim/models/word2vec.py", line 1762, in load
model = super(Word2Vec, cls).load(*args, **kwargs)
File "/usr/local/lib/python2.7/dist-packages/gensim-0.13.3-py2.7-linux-x86_64.egg/gensim/utils.py", line 248, in load
obj = unpickle(fname)
File "/usr/local/lib/python2.7/dist-packages/gensim-0.13.3-py2.7-linux-x86_64.egg/gensim/utils.py", line 912, in unpickle
return _pickle.loads(f.read())
EOFError
I think your model causes the problem. Are you check with same model? I mean build in a same way. please see this page
I have submitted a training job to cloud ml. But, it can't find the csv file. it is there in the bucket. this is the code.
# Use scikit-learn to grid search the batch size and epochs
import numpy
from sklearn.model_selection import GridSearchCV
from keras.models import Sequential
from keras.layers import Dense
from keras.wrappers.scikit_learn import KerasClassifier
def create_model():
model = Sequential()
model.add(Dense(12, input_dim=11, activation='relu'))
model.add(Dense(1, activation='sigmoid'))
model.compile(loss='binary_crossentropy', optimizer='nadam', metrics=['accuracy'])
return model
seed = 7
numpy.random.seed(seed)
FIL = "gs://bubbly-hexagon-112008-ml/dataset/mixed.csv"
dataset = numpy.loadtxt(FIL, delimiter=",")
X = dataset[:,0:11]
Y = dataset[:,11]
model = KerasClassifier(build_fn=create_model, verbose=1)
batch_size = [10, 20, 40, 60, 80, 100]
epochs = [10, 50, 100, 500, 1000]
param_grid = dict(batch_size=batch_size, nb_epoch=epochs)
grid = GridSearchCV(estimator=model, param_grid=param_grid, n_jobs=-1)
grid_result = grid.fit(X, Y)
print("Best: %f using %s" % (grid_result.best_score_, grid_result.best_params_))
means = grid_result.cv_results_['mean_test_score']
stds = grid_result.cv_results_['std_test_score']
params = grid_result.cv_results_['params']
for mean, stdev, param in zip(means, stds, params):
print("%f (%f) with: %r" % (mean, stdev, param))
after submitting the job i get this error.
Traceback (most recent call last): File "/usr/lib/python2.7/runpy.py", line 162, in _run_module_as_main "__main__", fname, loader, pkg_name) File "/usr/lib/python2.7/runpy.py", line 72, in _run_code exec code in
run_globals File "/root/.local/lib/python2.7/
site-packages/trainer/task.py", line 18, in <module> dataset = numpy.loadtxt(FIL, delimiter=",") File "/root/.local/lib/python2.7/
site-packages/numpy/lib/npyio.py", line 803, in loadtxt fh = iter(open(fname, 'U')) IOError: [Errno 2] No such file or directory:
'gs://bubbly-hexagon-112008-ml/dataset/mixed.csv'
-The file is in the specified bucket and its permission includes cloud ml as reader.
-I also used gcloud beta ml init-project to initialize the project.
-And i created a new bucket and put the file in there, but got the same error.
-My bucket is in the same region as my submitted job.
Thanks
file_io from tensorflow works great:
from tensorflow.python.lib.io import file_io
import numpy as np
import json
To read a numpy array:
with file_io.FileIO(path_npx, 'rb') as f:
np_arr = np.load( BytesIO(f.read()) )
print(np_arr)
To read a json file:
with file_io.FileIO(path_json, 'r') as f:
print(json.loads(f.read()))
You can't read directly from gfs like that you need to use some sort of io library.
from io import BytesIO
import tensorflow as tf
import numpy as np
from tensorflow.python.lib.io import file_io
FIL = "gs://bubbly-hexagon-112008-ml/dataset/mixed.csv"
f = BytesIO(file_io.read_file_to_string(FIL, binary_mode=True))
data = np.load(f)
I don't think you can read gcs files directly with numpy.
I have a sample BDD scenario in Python Behave. When i run the feature I get the error:
ImportError: No module named features.steps.pages.home_page
I am not sure why it is complaining. home_page.py is in the pages folder, pages is in the steps folder and steps folder is in the features folder.
In pages folder I have an init.py file.
Why is it complaining it cannot find home_page.py?
My code is: features\steps.py
from behave import *
#from features.steps.pages import home_page
from features.steps.pages.home_page import HomePage
#from features.steps.pages import search_page
from features.steps.pages.search_page import SearchPage
from features.steps.pages import home_page
#Given ('we are on the homepage')
def step(context):
context.browser.get('http://www.test.com')
#When ('we enter "{product}" in the search field')
def step(context, product):
#search_field = context.browser.find_element(By.XPATH, 'id("twotabsearchtextbox")')
#search_field.send_keys(product)
home_page = HomePage(context)
home_page.enter_product_in_search_field(product, context)
#When ('And we click the search button')
def step(context):
#search_button = context.browser.find_element(By.XPATH, './/*[#id="nav-search"]/form/div[2]/div/input')
searchPage_results = home_page.click_search_button(context)
#search_button.click()
#Then ('the list of products are displayed')
def step(context):
context.searchPage_results.search_products_results(context)
#wait = WebDriverWait(context.browser, 60)
#divs = wait.until(EC.presence_of_all_elements_located((By.XPATH, '//div/a/h2')))
#for i in divs:
#div2 = divs + '/a/h2'
#print divs.get_attribute('value')
#print divs
#print i.text
#print "i"
# divs
features\steps\pages\home_page.py
from selenium.webdriver.support.ui import WebDriverWait
from selenium.webdriver.support import expected_conditions
from selenium.webdriver.support import expected_conditions as EC
from selenium.webdriver.common.by import By
from search_page import SearchPage
class HomePage(object):
def __init__(self, context):
context = context
def enter_product_in_search_field(self, product, context):
search_field = context.browser.find_element(By.XPATH, 'id("twotabsearchtextbox")')
search_field.send_keys(product)
return self
def click_search_button(self, context):
search_button = context.find_element(By.XPATH, './/*[#id="nav-search"]/form/div[2]/div/input').click()
return SearchPage(context)
features\test_feature.feature
Feature: testing product
Scenario Outline: visit test and search for product
Given we are on the test homepage
When we enter "<product>" in the search field
And we click the search button
Then the list of products are displayed
Examples: By product
| Forumla One |
| PS4 |
| Headphones |
My directory structure is:
E:features\test_feature.feature
E:features\init.py
E:features\pages\init.py
E:features\pages\home_page.py
E:features\pages\search_page.py
The full error is:
E:\RL Fusion\projects\BDD\Python BDD\PythonBDD\Selenium Sample\features>behave test_feature.feature
Exception ImportError: No module named features.steps.pages.home_page
Traceback (most recent call last):
File "C:\Python27\lib\runpy.py", line 162, in _run_module_as_main
"__main__", fname, loader, pkg_name)
File "C:\Python27\lib\runpy.py", line 72, in _run_code
exec code in run_globals
File "C:\Python27\scripts\behave.exe\__main__.py", line 9, in <module>
File "C:\Python27\lib\site-packages\behave\__main__.py", line 109, in main
failed = runner.run()
File "C:\Python27\lib\site-packages\behave\runner.py", line 672, in run
return self.run_with_paths()
File "C:\Python27\lib\site-packages\behave\runner.py", line 678, in run_with_paths
self.load_step_definitions()
File "C:\Python27\lib\site-packages\behave\runner.py", line 658, in load_step_definitions
exec_file(os.path.join(path, name), step_module_globals)
File "C:\Python27\lib\site-packages\behave\runner.py", line 304, in exec_file
exec(code, globals, locals)
File "steps\amazon_steps.py", line 6, in <module>
from features.steps.pages.home_page import HomePage
ImportError: No module named features.steps.pages.home_page
How can I resolve this issue?
Thanks, Riaz
It looks like you are not importing your modules correctly. To turn a directory in to a module, change all your init.py files to __init__.py.
Then when you are importing in features/steps.py you can use:
from pages.home_page import HomePage
I am trying to get familiar with Flask-APScheduler plug-in through the following sample code: https://github.com/viniciuschiele/flask-apscheduler/blob/master/examples/jobs.py#L1
My project has the following structure:
backend
run.py
application
__init__.py
utilities
__init__.py
views
models
where,
backend>run.py is:
from application import app
app.run(debug=True)
from application import scheduler
scheduler.start()
backend>application>__init__.py is:
from flask import Flask
app = Flask(__name__)
from application.utilities.views import Config
from flask_apscheduler import APScheduler
app.config.from_object(Config())
scheduler = APScheduler()
scheduler.init_app(app)
backend>application>utilities>__init__.py is empty
backend>application>utilities>models.py is empty
backend>application>utilities>views.py is:
class Config(object):
JOBS = [
{
'id': 'job1',
'func': 'application:utilities:views:job1',
'args': (1, 2),
'trigger': {
'type': 'cron',
'second': 10
}
}
]
def job1(a, b):
print(str(a) + ' ' + str(b))
However, I get the following error:
(env)$ python run.py local
Traceback (most recent call last):
File "run.py", line 1, in <module>
from application import app
File "HOME/backend/application/__init__.py", line 106, in <module>
scheduler.init_app(app)
File "/home/xxxxxx/.anaconda/envs/env/lib/python2.7/site-packages/flask_apscheduler/scheduler.py", line 73, in init_app
self.__load_jobs(app)
File "/home/xxxxxx/.anaconda/envs/env/lib/python2.7/site-packages/flask_apscheduler/scheduler.py", line 136, in __load_jobs
self.__load_job(job, app)
File "/home/xxxxxx/.anaconda/envs/env/lib/python2.7/site-packages/flask_apscheduler/scheduler.py", line 159, in __load_job
func = ref_to_obj(func)
File "/home/xxxxxx/.anaconda/envs/env/lib/python2.7/site-packages/apscheduler/util.py", line 264, in ref_to_obj
raise LookupError('Error resolving reference %s: error looking up object' % ref)
LookupError: Error resolving reference application:utilities:views:job1: error looking up object
Does my structure look like ok? Have a placed the right code in the right place? What should I change to make it work?
Your reference should only have one colon (":"). The colon separates the required import from the variable that has to be looked up. So:
'func': 'application.utilities.views:job1'