Below is the code snippet of reversing a positive of a negative number.But it always returning positive number of all negative numbers.If anyone know what's happening please do let me know.
code:
int reverse(int x){
int sub=0;
if(x<0){
while (x!=0){
sub = sub*10 + x%10;
x = x/10;
}
return (sub * -1);
}
else{
while (x!=0)
{
sub = sub*10 + x%10;
x = x/10;
}
return sub;
}
}
int main(){
int x = -123;
cout<<reverse(x);
cout<<c;
return 0;
}
Well:
return (sub * -1);
Sub will be -321 at this time. And -321 * -1 = 321.
The usual approach is to write code that handles non-negative numbers, and convert negative numbers to positive:
bool neg = false;
if (x < 0) {
neg = true;
x = -x;
}
// code to reverse the digits goes here
if (neg)
x = -x;
or, if you like recursive functions:
int reverse(int x) {
if (x < 0)
return -reverse(-x);
// code to reverse the digits goes here
return whatever;
}
Related
i need to determine if a number is palindrome or not
ex: 121 yes,
ex: -121 no.
the program seems to work with palindrome numbers however i am having trouble figuring out the negative numbers, and non palindrome numbers
class Solution {
public:
bool isPalindrome(int x) {
int reverse = 0;
int digit;
int n = x;
bool t = true;
while(x > 0){
digit = x%10;
reverse = (reverse*10) + digit;
x = x/10;
}
if (n == reverse) {
return t;
}
else if(n != reverse) {
return -1;
}
return -1;
}
};
bool isPalindrome(int A)
{
int Rev{ 0 } , rem , C{ A };
while( ( abs( A ) ) ! = 0 )
{
rem = ( abs( A ) ) % 10;
Rev = Rev * 10 + rem;
A / = 10;
}
if( C ! = Rev or C < 0)
return false;
else if( C == Rev and C > 0)
return true;
}
Change your if statements with the following and then this works for negative numbers.
Hope this works for you!!
class Solution {
public boolean isPalindrome(int x){
int reverse=0;
int duplicate_x=x;
for(int i=0;i<=x;i++)
{
int r=x%10;
reverse=(reverse*10)+r;
x=x/10;
}
if(x>=1){ **wrote this if condition to catch unit place number**
reverse=(reverse*10)+x;
}
if(reverse==duplicate_x)
{
return true;
}
else
{
return false;
}
}
}
I used for loop because I was getting time exceeding error in leetcode
and has you mention in your question about negative number palindrome I don't get it why should we write code for those negative number palindrome where we know a **negative number cannot be a palindrome number!
Please correct me if I am wrong
int x=121;
if(x<0){
System.out.println("false");
System.exit(0);
}
int div, sum=0;
int res=x;
while(x!=0){
div = x%10;
sum = sum*10 + div;
x=x/10;
}
if(sum==res)
System.out.println("True");
Can't be able to come up with a simple solution more than this one.
Strong number is the number that the sum of the factorial of its digits is equal to number itself.
For example: 145, since
1! + 4! + 5! = 1 + 24 + 120 = 145
Here is my code, It passes most of the test except one test
#include <string>
using namespace std;
string strong_num (int number )
{
int sum = 0;
while(number != 0) {
int last = number % 10;
number /= 10;
sum+= last * (last-1);
}
if(sum == number)
return "STRONG!!!!";
else
return "Not Strong !!";
}
What is wrong with my code?
I'm surprised you're passing any test cases at all. For one thing, you are destroying number before you compare it to sum, and for another your logic is flawed.
Try this:
int factorial (int x)
{
int result = 1;
while (x > 1)
{
result *= x;
x--;
}
return result;
}
string strong_num (int number)
{
int sum = 0;
int x = number;
while (x != 0) {
int digit = x % 10;
sum += factorial (digit);
x /= 10;
}
if (sum == number)
return "STRONG!!!!";
else
return "Not Strong !!";
}
Live demo
Replace int by long long to be able to test larger numbers.
There are two problems:
first - you are changing the value of number before comparing it to sum,
second - the thing you used last * (last-1) is not a definition of factorial, the definition of factorial is factorial(x) = 1 * 2 * 3 * ... * x
int factorial (int x) {
if(x < 2) return 1;
return x * factorial(x - 1);
}
string strong_num (int number)
{
int sum = 0;
int x = number;
while (x != 0) {
int last = x % 10;
sum += factorial (last);
x /= 10;
}
if (sum == number)
return "STRONG!!!!";
else
return "Not Strong !!";
}
Hello I am trying a simple reverse integer operation in c++. Code below:
#include <iostream>
#include <algorithm>
#include <climits>
using namespace std;
class RevInteger {
public:
int reverse(int x)
{
int result = 0;
bool isNeg = x > 0 ? false : true;
x = abs(x);
while (x != 0)
{
result = result * 10 + x % 10;
x = x / 10;
}
if (isNeg)
result *= -1;
if (result > INT_MAX || result < INT_MIN)
return 0;
else
return (int)result;
}
};
When I give it an input as 1534236469; I want it to return me 0, instead it returns me some junk values. What is wrong in my program. Also, I am trying to use the climits lib for the purpose, is there a simpler way of doing the same?
The simplest approach is to use long long in place of int for the result, and check for overflow at the end:
long long result = 0;
/* the rest of your code */
return (int)result; // Now the cast is necessary; in your code you could do without it
Another approach is to convert the int to string, reverse it, and then use the standard library to try converting it back, and catch the problems along the way (demo):
int rev(int n) {
auto s = to_string(n);
reverse(s.begin(), s.end());
try {
return stoi(s);
} catch (...) {
return 0;
}
}
If you must stay within integers, an approach would be to check intermediate result before multiplying it by ten, and also checking for overflow after the addition:
while (x != 0) {
if (result > INT_MAX/10) {
return 0;
}
result = result * 10 + x % 10;
if (result < 0) {
return 0;
}
x = x / 10;
}
class Solution {
public:
int reverse(int x) {
int reversed = 0;
while (x != 0) {
if (reversed > INT_MAX / 10 || reversed < INT_MIN / 10) return 0;
reversed = reversed * 10 + (x % 10);
x /= 10;
}
return reversed;
}
};
If reversed bigger than 8 digit INT_MAX (INT_MAX / 10), then if we add 1 digit to reversed, we will have an int overflow. And similar to INT_MIN.
As suggested by #daskblinkenlight; changing the result as long long and type casting at the end solves the problem.
Working class:
class intReverse {
public:
int reverse(int x) {
long long result = 0; // only change here
bool isNeg = x > 0 ? false : true;
x = abs(x);
while (x != 0) {
result = result * 10 + x % 10;
x = x / 10;
}
if (isNeg) {
result *= -1;
}
if (result > INT_MAX || result < INT_MIN)
{
return 0;
}
else
{
return (int) result;
}
}
};
int reverse(int x) {
int pop = 0;
int ans = 0;
while(x) {
// pop
pop = x % 10;
x /= 10;
// check overflow
if(ans > INT_MAX/10 || ans == INT_MAX/10 && pop > 7) return 0;
if(ans < INT_MIN/10 || ans == INT_MIN/10 && pop < -8) return 0;
// push
ans = ans * 10 + pop;
}
return ans;
}
I've tried to check whether a number is a palindrome with the following code:
unsigned short digitsof (unsigned int x)
{
unsigned short n = 0;
while (x)
{
x /= 10;
n++;
}
return n;
}
bool ispalindrome (unsigned int x)
{
unsigned short digits = digitsof (x);
for (unsigned short i = 1; i <= digits / 2; i++)
{
if (x % (unsigned int)pow (10, i) != x % (unsigned int)pow (10, digits - 1 + i))
{
return false;
}
}
return true;
}
However, the following code isn't able to check for palindromes - false is always returned even if the number is a palindrome.
Can anyone point out the error?
(Please note: I'm not interested to make it into a string and reverse it to see where the problem is: rather, I'm interested to know where the error is in the above code.)
I personally would just build a string from the number, and then treat it as a normal palindrome check (check that each character in the first half matches the ones at length()-index).
x % (unsigned int)pow (10, i) is not the ith digit.
The problem is this:
x % (unsigned int)pow (10, i)
Lets try:
x =504405
i =3
SO I want 4.
x % 10^3 => 504405 %1000 => 405 NOT 4
How about
x / (unsigned int)pow (10, i -1) % 10
Just for more info! The following two functions are working for me:
double digitsof (double x)
{
double n = 0;
while (x > 1)
{
x /= 10;
n++;
}
return n;
}
bool ispalindrome (double x)
{
double digits = digitsof (x);
double temp = x;
for(double i = 1; i <= digits/2; i++)
{
float y = (int)temp % 10;
cout<<y<<endl;
temp = temp/10;
float z = (int)x / (int)pow(10 , digits - i);
cout<<(int)z<<endl;
x = (int)x % (int)pow(10 , digits - i);
if(y != z)
return false;
}
return true;
}
Code to check if given number is palindrome or not in JAVA
import java.util.*;
public class HelloWorld{
private static int countDigits(int num) {
int count = 0;
while(num>0) {
count++;
num /= 10;
}
return count;
}
public static boolean isPalin(int num) {
int digs = HelloWorld.countDigits(num);
int divderToFindMSD = 1;
int divderToFindLSD = 1;
for (int i = 0; i< digs -1; i++)
divderToFindMSD *= 10;
int mid = digs/2;
while(mid-- != 0)
{
int msd = (num/divderToFindMSD)%10;
int lsd = (num/divderToFindLSD)%10;
if(msd!=lsd)
return false;
divderToFindMSD /= 10;
divderToFindLSD *= 10;
}
return true;
}
public static void main(String []args) {
boolean isPalin = HelloWorld.isPalin(1221);
System.out.println("Results: " + isPalin);
}
}
I have done this with my own solution which is restricted with these conditions
Do not convert int to string.
Do not use any helper function.
var inputNumber = 10801
var firstDigit = 0
var lastDigit = 0
var quotient = inputNumber
while inputNumber > 0 {
lastDigit = inputNumber % 10
var tempNum = inputNumber
var count = 0
while tempNum > 0 {
tempNum = tempNum / 10
count = count + 1
}
var n = 1
for _ in 1 ..< count {
n = n * 10
}
firstDigit = quotient / n
if firstDigit != lastDigit {
print("Not a palindrome :( ")
break
}
quotient = quotient % n
inputNumber = inputNumber / 10
}
if firstDigit == lastDigit {
print("It's a palindrome :D :D ")
}
Is there any predefined function in c++ to check whether the number is square of any number and same for the cube..
No, but it's easy to write one:
bool is_perfect_square(int n) {
if (n < 0)
return false;
int root(round(sqrt(n)));
return n == root * root;
}
bool is_perfect_cube(int n) {
int root(round(cbrt(n)));
return n == root * root * root;
}
sqrt(x), or in general, pow(x, 1./2) or pow(x, 1./3)
For example:
int n = 9;
int a = (int) sqrt((double) n);
if(a * a == n || (a+1) * (a+1) == n) // in case of an off-by-one float error
cout << "It's a square!\n";
Edit: or in general:
bool is_nth_power(int a, int n) {
if(n <= 0)
return false;
if(a < 0 && n % 2 == 0)
return false;
a = abs(a);
int b = pow(a, 1. / n);
return pow((double) b, n) == a || pow((double) (b+1), n) == a;
}
No, there are no standard c or c++ functions to check whether an integer is a perfect square or a perfect cube.
If you want it to be fast and avoid using the float/double routines mentioned in most of the answers, then code a binary search using only integers. If you can find an n with n^2 < m < (n+1)^2, then m is not a perfect square. If m is a perfect square, then you'll find an n with n^2=m. The problem is discussed here
Try this:
#include<math.h>
int isperfect(long n)
{
double xp=sqrt((double)n);
if(n==(xp*xp))
return 1;
else
return 0;
}
The most efficient answer could be this
int x=sqrt(num)
if(sqrt(num)>x){
Then its not a square root}
else{it is a perfect square}
This method works because of the fact that x is an int and it will drop down the decimal part to store only the integer part. If a number is perfect square of an integer, its square root will be an integer and hence x and sqrt(x) will be equal.
For identifying squares i tried this algorithm in java. With little syntax difference you can do it in c++ too.
The logic is, the difference between every two consecutive perfect squares goes on increasing by 2. Diff(1,4)=3 , Diff(4,9)=5 , Diff(9,16)= 7 , Diff(16,25)= 9..... goes on.
We can use this phenomenon to identify the perfect squares.
Java code is,
boolean isSquare(int num){
int initdiff = 3;
int squarenum = 1;
boolean flag = false;
boolean square = false;
while(flag != true){
if(squarenum == num){
flag = true;
square = true;
}else{
square = false;
}
if(squarenum > num){
flag = true;
}
squarenum = squarenum + initdiff;
initdiff = initdiff + 2;
}
return square;
}
To make the identification of squares faster we can use another phenomenon, the recursive sum of digits of perfect squares is always 1,4,7 or 9.
So a much faster code can be...
int recursiveSum(int num){
int sum = 0;
while(num != 0){
sum = sum + num%10;
num = num/10;
}
if(sum/10 != 0){
return recursiveSum(sum);
}
else{
return sum;
}
}
boolean isSquare(int num){
int initdiff = 3;
int squarenum = 1;
boolean flag = false;
boolean square = false;
while(flag != true){
if(squarenum == num){
flag = true;
square = true;
}else{
square = false;
}
if(squarenum > num){
flag = true;
}
squarenum = squarenum + initdiff;
initdiff = initdiff + 2;
}
return square;
}
boolean isCompleteSquare(int a){
// System.out.println(recursiveSum(a));
if(recursiveSum(a)==1 || recursiveSum(a)==4 || recursiveSum(a)==7 || recursiveSum(a)==9){
if(isSquare(a)){
return true;
}else{
return false;
}
}else{
return false;
}
}
For perfect square you can also do:
if(sqrt(n)==floor(sqrt(n)))
return true;
else
return false;
For perfect cube you can:
if(cbrt(n)==floor(cbrt(n)))
return true;
else
return false;
Hope this helps.
We could use the builtin truc function -
#include <math.h>
// For perfect square
bool is_perfect_sq(double n) {
double r = sqrt(n);
return !(r - trunc(r));
}
// For perfect cube
bool is_perfect_cube(double n) {
double r = cbrt(n);
return !(r - trunc(r));
}
bool isSquare(int n) {
return floor(sqrt(n)) == ceil(sqrt(n));
}
bool isQube(int n) {
return floor(cbrt(n)) == ceil(cbrt(n));
}