I am trying to switch between two class objects based on a global variable DOF. The idea is to change the return type using the template class. But the first line inside main() has a compile-time error template argument deduction/substitution failed. Could you please help me to understand the problem and fix it and is there a better way of doing this? Any suggestions and help are appreciated. Thanks in advance.
#include <iostream>
#include <string>
class MM
{
public:
MM(){}
std::string printName()
{
return "MM";
}
};
class MM2
{
public:
MM2(){}
std::string printName()
{
return "MM2";
}
};
using namespace std;
const unsigned short int DOF = 7;
MM* obj = nullptr;
MM2* obj2 = nullptr;
template<class T>
T getClass()
{
if(DOF==7)
{
if(obj == nullptr)
{
obj = new MM();
}
return obj;
}
else if(DOF == 6)
{
if(obj2 == nullptr)
{
obj2 = new MM2();
}
return obj2;
}
}
int main()
{
getClass()->printName();
//std::cout << "class name " << getClass()->printName() << std::endl;
return 0;
}
That is not how templates work in C++. The type of the template parameter must be known at compile time and cannot change at runtime.
The pattern you are trying to achieve in your example scan easily be done with virtual functions: make MM and MM2 have a common base class and make printName a virtual function. While we are here: don't use manual memory management, i.e. don't use explicit new/delete. Use smart pointers like unique_ptr.
Other options are std::any and std:: variant but I wouldn't recommend them unless you have a very particular use case for them.
For your simple example an option could be to return a function pointer or a std::function. That would work on your example because your classes are stateless, but I suspect your real classes have state or more methods you wish to access in which case you shouldn't try to do this.
If you can use C++17 (and if you can't then that's a shame), you can do this if you switch things round a bit.
Firstly, use a template parameter to determine what getClass does and use if constexpr instead of just plain old if:
template<int N>
auto getClass()
{
if constexpr (N == 7)
{
if(obj == nullptr)
{
obj = new MM();
}
return obj;
}
else if constexpr (N == 6)
{
if(obj2 == nullptr)
{
obj2 = new MM2();
}
return obj2;
}
}
Then invoke this template like this:
std::cout << "class name " << getClass <DOF> ()->printName() << std::endl;
Miscellaneous notes:
All paths through getClass should return a value.
You are leaking memory by calling new and not calling delete. Better options are available.
Edit: Here's a C++11 solution using SFINAE:
template<int N, typename std::enable_if<N == 7, int>::type = 0>
MM *getClass()
{
if(obj == nullptr)
{
obj = new MM();
}
return obj;
}
template<int N, typename std::enable_if<N == 6, int>::type = 0>
MM2 *getClass()
{
if(obj2 == nullptr)
{
obj2 = new MM2();
}
return obj2;
}
And then you can still do:
std::cout << "class name " << getClass <DOF> ()->printName() << std::endl;
Live demo
This is something you might try. As others have said, templates only work at compile time: if you want to dynamically change the types later during runtime, then polymorphism is the way to go. You can use a kind of 'PIMPL' design to effectively 'insert' a base class above the MM and MM2 classes. The base class includes pure virtual functions for all the common functions for MM and MM2 that you need to access (eg printName() in this example).
#include <iostream>
#include <memory>
#include <string>
class MM
{
public:
MM() {}
std::string printName()
{
return "MM";
}
};
class MM2
{
public:
MM2() {}
std::string printName()
{
return "MM2";
}
};
class MMBase
{
public:
virtual std::string printName() = 0;
virtual ~MMBase() {}
};
//Templated wrapper for each MM class type, deriving from abstract MMBase
template<class T>
class MMWrap : public MMBase
{
std::unique_ptr<T> _impl;
public:
MMWrap() : _impl(nullptr)
{
_impl = std::make_unique<T>();
}
//Pass function call to _impl pointer
std::string printName()
{
return _impl->printName();
}
};
class MMFactory
{
public:
enum MMType {TypeMM2=6,TypeMM};
static MMType _type;
static std::unique_ptr<MMBase> getMM()
{
if (_type == TypeMM) return std::unique_ptr<MMBase>(new MMWrap<MM>());
if (_type == TypeMM2) return std::unique_ptr<MMBase>(new MMWrap<MM2>());
return nullptr; //Avoids compiler warning about not all paths return value
}
};
//Initialize static member to which default MM type is required
MMFactory::MMType MMFactory::_type = MMFactory::TypeMM;
int main()
{
std::cout<< MMFactory::getMM()->printName() << std::endl;
MMFactory::_type = MMFactory::TypeMM2;
std::cout << MMFactory::getMM()->printName() << std::endl;
}
I've put in a templated wrapper class, but that may need modification depending what parameters the MM/MM2 constructors need. Also the wrapped pointers are created within the constructor (if they throw then there might be an issue): these could be moved to a lazy evaluation model, making _impl mutable. I don't know how MM/MM2 are used later: if they have functions which take references to other MM types then a bit more work may be needed.
Related
I would like to now if the following is possible.
I have a templated class called A which inherits from a class called Base.
In Base I set a write() function to be rewritten for every derived class.
I am creating a vector to store the references of the Base objects to be printer latter (dataBase).
I would like to know if it is possible to retrieve the reference of the A object whose reference I passed to dataBase.
I have the following code:
#include <iostream>
#include <string>
#include <array>
#include <vector>
class Base
{
public:
Base(std::string name):name_(name){}
virtual ~Base(){}
virtual void write()=0;
const std::string& name() const
{
return name_;
}
private:
std::string name_;
};
template< typename T>
class A : public Base
{
public:
A(std::string name):Base(name),name2_(name + "test"){}
~A(){}
void write();
std::string name2_;
};
template< typename T>
void A<T>::write()
{
std::cout << name2_ << std::endl;
}
int main()
{
A<int> one("one");
A<double> two("two");
A<std::array<double,4>> three("three");
std::vector<Base*> dataBase;
dataBase.push_back(&one);
dataBase.push_back(&two);
dataBase.push_back(&three);
for(auto i : dataBase)
{
i->write();
}
A<int>& getOne = lookup("one"); // this is what I want to create
getOne.name2_ = "worked";
for(auto i : dataBase)
{
i->write();
}
return 0;
}
Best Regards
A<int>& lookup(std::vector<Base*> & dataBase, // need to provide database
const std::string & seeking)
{
// find a match
auto found = std::find_if(dataBase.begin(),
dataBase.end(),
[seeking](Base * item)
{
return item->name() == seeking;
});
if (found != dataBase.end())
{ // found it
// convert to A<int>
A<int> * temp = dynamic_cast<A<int>*>(*found);
if (temp) // dynamic_cast returns nullptr on failure.
{ // successful conversion
return *temp; // return it.
}
throw std::runtime_error("wrong type"); // What we found isn't the desired type
}
throw std::runtime_error("not found"); // Couldn't find a match
}
Note: when returning a reference, you need to return a reference to a valid object. You can't legally return a nullptr to signal failure, so instead we throw.
Usage:
A<int>& getOne = lookup(dataBase, "one");
getOne.name2_ = "worked";
If you
A<int>& getTwo = lookup(dataBase, "two");
getTwo.name2_ = "worked";
two will be found, but the type will not match and an A<int> & can't be returned. An exception will be thrown.
If you
A<int>& getFoo = lookup(dataBase, "foo");
getFoo.name2_ = "worked";
foo will not be be found and an A<int> & can't be returned. An exception will be thrown.
Note: using a dynamic_cast often means the base class interface is not sufficiently defined to make for a good base class. See the Liskov Substitution Principle for a good test to see whether nor not inheritance is a good choice to use here.
Documentation for std::find_if
Documentation for dynamic_cast
I come from C/C# language and now I'm trying to learn about C++ and his standards functions.
Now, I'm creating a class called IMonsterDead. I will have a std::vector<IMonsterDead*> with N monsters.
Example:
class IMonsterDead {
public:
IMonsterDead(int Id)
{
this->_Id = Id;
}
virtual void OnDead() = 0;
int Id() const {
return _Id;
}
private:
int _Id;
};
One class which implements that class:
class MonsterTest : public IMonsterDead {
public:
MonsterTest(int generId)
: IMonsterDead(generId)
{
}
virtual void OnDead()
{
std::cout << "MonsterTesd died" << std::endl;
}
};
Ok, if I access directly everything works fine. But I'm trying to use std::find.
Full program test:
int main()
{
std::vector<IMonsterDead*> monsters;
for (int i = 0; i < 1000; i++)
{
monsters.emplace_back(new MonsterTest(1000 + i));
}
int id = 1033;
std::vector<IMonsterDead*>::iterator result = std::find(monsters.begin(), monsters.end(), [id]( IMonsterDead const* l) {
return l->Id() == id;
});
if (result == monsters.end())
std::cout << "Not found" << std::endl;
else
{
// Here I want to access OnDead function from result
}
return 0;
}
So I need to access OnDead function from result but I can't. Intellisense doesn't show anything for me. The result exists.
How can I access that function? Have another better way to do that?
You need to use std::find_if() instead of std::find(). std::find() is for finding an element with a specific value, so you have to pass it the actual value to find, not a user_defined predicate. std::find_if() is for finding an element based on a predicate.
Either way, if a match is found, dereferencing the returned iterator will give you a IMonsterDead* pointer (more accurately, it will give you a IMonsterDead*& reference-to-pointer). You need to then dereference that pointer in order to access any members, like OnDead().
You are also leaking memory. You are not delete'ing the objects you new. And when dealing with polymorphic types that get deleted via a pointer to a base class, the base class needs a virtual destructor to ensure all derived destructors get called properly.
With that said, you are clearly using C++11 or later (by the fact that you are using vector::emplace_back()), so you should use C++11 features to help you manage your code better:
You should use std::unique_ptr to wrap your monster objects so you don't need to delete them manually.
You should always use the override keyword when overriding a virtual method, to ensure you override it properly. The compiler can catch more syntax errors when using override than without it.
You should use auto whenever you declare a variable that the compiler can deduce its type for you. Especially useful when dealing with templated code.
Try something more like this:
#include <iostream>
#include <vector>
#include <memory>
#include <algorithm>
class IMonsterDead {
public:
IMonsterDead(int Id)
: m_Id(Id)
{
}
virtual ~IMonsterDead() {}
virtual void OnDead() = 0;
int Id() const {
return m_Id;
}
private:
int m_Id;
};
class MonsterTest : public IMonsterDead {
public:
MonsterTest(int generId)
: IMonsterDead(generId)
{
}
void OnDead() override
{
std::cout << "MonsterTest died" << std::endl;
}
};
int main()
{
std::vector<std::unique_ptr<IMonsterDead>> monsters;
for (int i = 0; i < 1000; i++)
{
// using emplace_back() with a raw pointer risks leaking memory
// if the emplacement fails, so push a fully-constructed
// std::unique_ptr instead, to maintain ownership at all times...
monsters.push_back(std::unique_ptr<IMonsterDead>(new MonsterTest(1000 + i)));
// or:
// std::unique_ptr<IMonsterDead> monster(new MonsterTest(1000 + i));
// monsters.push_back(std::move(monster));
// or, if you are using C++14 or later:
// monsters.push_back(std::make_unique<MonsterTest>(1000 + i));
}
int id = 1033;
auto result = std::find_if(monsters.begin(), monsters.end(),
[id](decltype(monsters)::value_type &l) // or: (decltype(*monsters.begin()) l)
{
return (l->Id() == id);
}
// or, if you are using C++14 or later:
// [id](auto &l) { return (l->Id() == id); }
);
if (result == monsters.end())
std::cout << "Not found" << std::endl;
else
{
auto &monster = *result; // monster is 'std::unique_ptr<IMonsterDead>&'
monster->OnDead();
}
return 0;
}
Iterators are an interesting abstraction, in this case to be reduced to pointers.
Either you receive the pointer to the element or you get an invalid end.
You can use it as a pointer: (*result)->func();
You can also use it to create a new variable:
IMonsterDead &m = **result;
m.func();
This should give the same assembly, both possible.
I have several classes that each of them has an ID and the Id is passed to the class as a template parameter:
typedef class1<1> baseClass;
typedef class2<2> baseClass;
typedef class<100> baseClass;
Now I need a map so if I can associate 1 with Class1 and 2 with Class2 and so on.
How can I create such vector? I am working on a header only library, so it should be a header only definition.
I am looking something that do the same thing that this code would do (if someone can compile it!):
std::map<int,Type> getMap()
{
std::map<int,Type> output;
output.add(1,class1);
output.add(2,class2);
output.add(100,class100);
}
The idea is that when I get as input 1, I create a class1 and when I receive 2, I create class2.
Any suggestion is very appreciated.
using this data, then I can write a function like this:
void consume(class1 c)
{
// do something interesting with c
}
void consume(class2 c)
{
// do something interesting with c
}
void consume(class3 c)
{
// do something interesting with c
}
void consume(int id,void * buffer)
{
auto map=getMap();
auto data= new map[id](buffer); // assuming that this line create a class based on map, so the map provide the type that it should be created and then this line create that class and pass buffer to it.
consume(data);
}
As a sketch:
class BaseClass { virtual ~BaseClass() = default; };
template<std::size_t I>
class SubClass : public BaseClass {};
namespace detail {
template<std::size_t I>
std::unique_ptr<BaseClass> makeSubClass() { return { new SubClass<I> }; }
template<std::size_t... Is>
std::vector<std::unique_ptr<BaseClass>(*)> makeFactory(std::index_sequence<Is...>)
{ return { makeSubclass<Is>... }; }
}
std::vector<std::unique_ptr<BaseClass>(*)> factory = detail::makeFactory(std::make_index_sequence<100>{});
We populate the vector by expanding a parameter pack, so we don't have to write out all 100 instantiations by hand. This gives you Subclass<0> at factory[0], Subclass<1> at factory[1], etc. up to Subclass<99> at factory[99].
If I understand correctly you want a map to create different types according to a given number.
If that is so, then the code should look something like this:
class Base
{
};
template <int number>
class Type : public Base
{
public:
Type()
{
std::cout << "type is " << number << std::endl;
}
};
using Type1 = Type<1>;
using Type2 = Type<2>;
using Type3 = Type<3>;
using CreateFunction = std::function<Base*()>;
std::map<int, CreateFunction> creators;
int main()
{
creators[1] = []() -> Base* { return new Type1(); };
creators[2] = []() -> Base* { return new Type2(); };
creators[3] = []() -> Base* { return new Type3(); };
std::vector<Base*> vector;
vector.push_back(creators[1]());
vector.push_back(creators[2]());
vector.push_back(creators[3]());
}
output:
type is 1
type is 2
type is 3
If you need only to create object, it would be enough to implement template creator function like:
template<int ID>
Base<ID> Create()
{
return Base<ID>();
}
And then use it:
auto obj1 = Create<1>();
auto obj2 = Create<2>();
// etc
Working example: https://ideone.com/urh7h6
Due to C++ being a statically-typed language, you may choose to either have arbitrary types that do a fixed set of things or have a fixed set of types do arbitrary things, but not both.
Such limitations is embodied by std::function and std::variant. std::function can have arbitrary types call operator() with a fixed signature, and std::variant can have arbitrary functions visit the fixed set of types.
Since you already said the types may be arbitrary, you may only have a fixed set of things you can do with such a type (e.g. consume). The simplest way is to delegate the hard work to std::function
struct Type
{
template<typename T>
Type(T&& t)
: f{[t = std::forward<T>(t)]() mutable { consume(t); }} {}
std::function<void()> f;
};
void consume(Type& t)
{
t.f();
}
What you are looking for is either the Stategy pattern:
#include <iostream>
#include <memory>
#include <string>
#include <vector>
class A {
public:
A() {}
virtual void doIt() {};
};
class Aa : public A {
public:
Aa() {}
virtual void doIt() {
std::cout << "do it the Aa way" << std::endl;
}
};
class Ab : public A {
public:
Ab() {}
virtual void doIt() {
std::cout << "do it the Ab way" << std::endl;
}
};
class Concrete {
public:
Concrete(std::string const& type) {
if (type == ("Aa")) {
_a.reset(new Aa());
} else if (type == "Ab") {
_a.reset(new Ab());
}
}
void doIt () const {
_a->doIt();
}
private:
std::unique_ptr<A> _a;
};
int main() {
std::vector<Concrete> vc;
vc.push_back(Concrete("Aa"));
vc.push_back(Concrete("Ab"));
for (auto const& i : vc) {
i.doIt();
}
return 0;
}
Will output:
do it the Aa way
do it the Ab way
We have
enum Enum {A,B,C,D,E,F,G,H, NumEnums};
class Base {};
template <Enum...> class Thing : public Base {};
and the function
Base* create (std::list<Enum>& input);
is to create an object of the type that corresponds to input. For example,
if input = {A,E,C,G,D};, then the output shall be of type Thing<A,E,C,G,D>* (let's forget the sorting here). Now I know input is obtained during run-time, but by doing a search, the output can be obtained fairly quickly. If Thing had only one parameter (i.e. input has size() one), then the simple
template <int N>
Base* createHelper (const std::list<Enum>& input) {
const Enum En = static_cast<Enum>(N);
if (input.front() == En)
return new Thing<En>;
return createHelper<N+1>(input);
}
template <>
Base* createHelper<NumEnums> (const std::list<Enum>&) {
return nullptr;
}
Base* create (const std::list<Enum>& input) {
return createHelper<0>(input);
}
will do. I tried to generalize the above to any size list (the size would have to be determined during run-time through a similar recursion as above, but that should be fairly quick too). But I got totally lost on how. So I tried to examine the structure of the naïve method:
#include <iostream>
#include <list>
#include <type_traits>
#include <typeinfo>
enum Enum {A,B,C,D,E,F,G,H, NumEnums};
class Base {
public:
virtual void print() const = 0;
};
template <Enum...> class Thing : public Base {
virtual void print() const override {std::cout << typeid(*this).name() << '\n';}
};
Base* create (std::list<Enum>& input) {
if (input.front() == A) {
input.pop_front();
if (input.empty())
return new Thing<A>;
else {
if (input.front() == A) {
input.pop_front();
if (input.empty())
return new Thing<A,A>;
else {
// ....
}
}
else if (input.front() == B) {
input.pop_front();
if (input.empty())
return new Thing<A,B>;
else {
// ....
}
}
}
}
else if (input.front() == B) {
// similar
}
// ...
}
int main() {
std::list<Enum> userInput = {A,B};
// Wish to construct an instance of Thing<A,B> (efficiently).
Base* thing = create(userInput);
thing->print(); // Thing<A,B>
}
I figured I could put this in recursive form. But I cannot think of it. I know the one-dimensional case can be generalized, but I need help here. Or perhaps there is a better way to do it altogether? Once it works, it should not take anymore than a fraction of a second for the create function to return, assuming NumEnums is a decent size and the Thing class has just several template arguments, and not hundreds.
Edit: Turns out, there may be a viable solution here:
Create an associate array between your key and a type factory class.
Dynamically allocate any variables you may need from the type factory once you have it selected (preferably using std::unique_ptr).
The end result may end of looking like this:
std::unordered_map<std::string, type_allocator> str_to_type;
str_to_type["a"] = type_allocator(int); //where type_allocator derives the type of the class from the input variable.
auto variable = str_to_type[input].allocate();
For specific size, if you compute a single index, you may dispatch at runtime to the correct compile time function:
template <std::size_t N>
std::unique_ptr<Base> make_thing3()
{
constexpr Enum a2 = Enum(N % NumEnums);
constexpr Enum a1 = Enum((N / NumEnums) % NumEnums);
constexpr Enum a0 = Enum((N / NumEnums / NumEnums) % NumEnums);
return std::make_unique<Thing<a0, a1, a2>>();
}
template <std::size_t... Is>
std::unique_ptr<Base> make_thing3(std::size_t index, std::index_sequence<Is...>)
{
using maker = std::unique_ptr<Base>();
maker* fs[] = {&make_thing3<Is>...};
return fs[index]();
}
std::unique_ptr<Base> make_thing3(const std::array<Enum, 3u>& a)
{
std::size_t index = 0;
for (Enum e : a) {
index *= NumEnums;
index += e;
}
constexpr std::size_t total = NumEnums * NumEnums * NumEnums;
return make_thing3(index, std::make_index_sequence<total>{});
}
Live Demo
Note: I had to change size of Enum, and reduce my example from make_thing5 to make_thing3 due to compiler limit (not sure if it came from the site or if it is true limits)
This solution shows that though the compile-time is long (due to the many template instantiations), the run-time look-up is instant. The compiler limits is 3 enum values as input though. The empty input case is handled too (the return type being Thing<>*).
#include <iostream>
#include <list>
#define show(variable) std::cout << #variable << " = " << variable << std::endl;
enum Enum {A,B,C,D,E,F,G,H, NumEnums};
class Base {
public:
virtual void print() const = 0;
};
template <Enum... Es> class Thing : public Base {
virtual void print() const override {
const std::list<int> a = {((std::cout << Es << ' '), 0)...};
std::cout << "\nPack size = " << sizeof...(Es) << '\n';
}
};
template <int N, int Size, Enum... Es>
struct Create {
static Base* execute (std::list<Enum>& input) {
const Enum En = static_cast<Enum>(N);
if (input.front() == En) {
input.pop_front();
return Create<0, Size-1, Es..., En>::execute(input);
}
return Create<N+1, Size, Es...>::execute(input);
}
};
template <int N, Enum... Es>
struct Create<N, 0, Es...> {
static Base* execute (std::list<Enum>&) {return new Thing<Es...>;}
};
template <int Size, Enum... Es>
struct Create<NumEnums, Size, Es...> {
static Base* execute (std::list<Enum>&) {return nullptr;} // This will never be reached
};
template <int Size>
Base* do_create (std::list<Enum>& input) {
if (input.size() == Size)
return Create<0, Size>::execute(input);
return do_create<Size+1>(input);
}
template <>
Base* do_create<4> (std::list<Enum>&) {
std::cout << "Cannot exceed 3 values.\n";
return nullptr;
}
Base* create (std::list<Enum>& input) {
return do_create<0>(input);
}
int main() {
std::list<Enum> input = {E,A,F};
Base* thing = create(input);
thing->print(); // 4 0 5
input = {};
create(input)->print(); // Pack size = 0.
}
In C++, the T q = dynamic_cast<T>(p); construction performs a runtime cast of a pointer p to some other pointer type T that must appear in the inheritance hierarchy of the dynamic type of *p in order to succeed. That is all fine and well.
However, it is also possible to perform dynamic_cast<void*>(p), which will simply return a pointer to the "most derived object" (see 5.2.7::7 in C++11). I understand that this feature probably comes out for free in the implementation of the dynamic cast, but is it useful in practice? After all, its return type is at best void*, so what good is this?
The dynamic_cast<void*>() can indeed be used to check for identity, even if dealing with multiple inheritance.
Try this code:
#include <iostream>
class B {
public:
virtual ~B() {}
};
class D1 : public B {
};
class D2 : public B {
};
class DD : public D1, public D2 {
};
namespace {
bool eq(B* b1, B* b2) {
return b1 == b2;
}
bool eqdc(B* b1, B *b2) {
return dynamic_cast<void*>(b1) == dynamic_cast<void*>(b2);
}
};
int
main() {
DD *dd = new DD();
D1 *d1 = dynamic_cast<D1*>(dd);
D2 *d2 = dynamic_cast<D2*>(dd);
std::cout << "eq: " << eq(d1, d2) << ", eqdc: " << eqdc(d1, d2) << "\n";
return 0;
}
Output:
eq: 0, eqdc: 1
Bear in mind that C++ lets you do things the old C way.
Suppose I have some API in which I'm forced to smuggle an object pointer through the type void*, but where the callback it's eventually passed to will know its dynamic type:
struct BaseClass {
typedef void(*callback_type)(void*);
virtual callback_type get_callback(void) = 0;
virtual ~BaseClass() {}
};
struct ActualType: BaseClass {
callback_type get_callback(void) { return my_callback; }
static void my_callback(void *p) {
ActualType *self = static_cast<ActualType*>(p);
...
}
};
void register_callback(BaseClass *p) {
// service.register_listener(p->get_callback(), p); // WRONG!
service.register_listener(p->get_callback(), dynamic_cast<void*>(p));
}
The WRONG! code is wrong because it fails in the presence of multiple inheritance (and isn't guaranteed to work in the absence, either).
Of course, the API isn't very C++-style, and even the "right" code can go wrong if I inherit from ActualType. So I wouldn't claim that this is a brilliant use of dynamic_cast<void*>, but it's a use.
Casting pointers to void* has its importance since way back in C days.
Most suitable place is inside the memory manager of Operating System. It has to store all the pointer and the object of what you create. By storing it in void* they generalize it to store any object on to the memory manager data structure which could be heap/B+Tree or simple arraylist.
For simplicity take example of creating a list of generic items(List contains items of completely different classes). That would be possible only using void*.
standard says that dynamic_cast should return null for illegal type casting and standard also guarantees that any pointer should be able to type cast it to void* and back from it with only exception of function pointers.
Normal application level practical usage is very less for void* typecasting but it is used extensively in low level/embedded systems.
Normally you would want to use reinterpret_cast for low level stuff, like in 8086 it is used to offset pointer of same base to get the address but not restricted to this.
Edit:
Standard says that you can convert any pointer to void* even with dynamic_cast<> but it no where states that you can not convert the void* back to the object.
For most usage, its a one way street but there are some unavoidable usage.
It just says that dynamic_cast<> needs type information for converting it back to the requested type.
There are many API's that require you to pass void* to some object eg. java/Jni Code passes the object as void*.
Without type info you cannot do the casting.If you are confident enough that type requested is correct you can ask compiler to do the dynmaic_cast<> with a trick.
Look at this code:
class Base_Class {public : virtual void dummy() { cout<<"Base\n";} };
class Derived_Class: public Base_Class { int a; public: void dummy() { cout<<"Derived\n";} };
class MostDerivedObject : public Derived_Class {int b; public: void dummy() { cout<<"Most\n";} };
class AnotherMostDerivedObject : public Derived_Class {int c; public: void dummy() { cout<<"AnotherMost\n";} };
int main () {
try {
Base_Class * ptr_a = new Derived_Class;
Base_Class * ptr_b = new MostDerivedObject;
Derived_Class * ptr_c,*ptr_d;
ptr_c = dynamic_cast< Derived_Class *>(ptr_a);
ptr_d = dynamic_cast< Derived_Class *>(ptr_b);
void* testDerived = dynamic_cast<void*>(ptr_c);
void* testMost = dynamic_cast<void*>(ptr_d);
Base_Class* tptrDerived = dynamic_cast<Derived_Class*>(static_cast<Base_Class*>(testDerived));
tptrDerived->dummy();
Base_Class* tptrMost = dynamic_cast<Derived_Class*>(static_cast<Base_Class*>(testMost));
tptrMost->dummy();
//tptrMost = dynamic_cast<AnotherMostDerivedObject*>(static_cast<Base_Class*>(testMost));
//tptrMost->dummy(); //fails
} catch (exception& my_ex) {cout << "Exception: " << my_ex.what();}
system("pause");
return 0;
}
Please correct me if this is not correct in any way.
it is usefull when we put the storage back to memory pool but we only keep a pointer to the base class. This case we should figure out the original address.
Expanding on #BruceAdi's answer and inspired by this discussion, here's a polymorphic situation which may require pointer adjustment. Suppose we have this factory-type setup:
struct Base { virtual ~Base() = default; /* ... */ };
struct Derived : Base { /* ... */ };
template <typename ...Args>
Base * Factory(Args &&... args)
{
return ::new Derived(std::forward<Args>(args)...);
}
template <typename ...Args>
Base * InplaceFactory(void * location, Args &&... args)
{
return ::new (location) Derived(std::forward<Args>(args)...);
}
Now I could say:
Base * p = Factory();
But how would I clean this up manually? I need the actual memory address to call ::operator delete:
void * addr = dynamic_cast<void*>(p);
p->~Base(); // OK thanks to virtual destructor
// ::operator delete(p); // Error, wrong address!
::operator delete(addr); // OK
Or I could re-use the memory:
void * addr = dynamic_cast<void*>(p);
p->~Base();
p = InplaceFactory(addr, "some", "arguments");
delete p; // OK now
Don't do that at home
struct Base {
virtual ~Base ();
};
struct D : Base {};
Base *create () {
D *p = new D;
return p;
}
void *destroy1 (Base *b) {
void *p = dynamic_cast<void*> (b);
b->~Base ();
return p;
}
void destroy2 (void *p) {
operator delete (p);
}
int i = (destroy2 (destroy1 (create ())), i);
Warning: This will not work if D is defined as:
struct D : Base {
void* operator new (size_t);
void operator delete (void*);
};
and there is no way to make it work.
This might be one way to provide an Opaque Pointer through an ABI. Opaque Pointers -- and, more generally, Opaque Data Types -- are used to pass objects and other resources around between library code and client code in such a way that the client code can be isolated from the implementation details of the library. There are other ways to accomplish this, to be sure, and maybe some of them would be better for a particular use case.
Windows makes a lot of use of Opaque Pointers in its API. HANDLE is, I believe, generally an opaque pointer to the actual resource you have a HANDLE to, for example. HANDLEs can be Kernel Objects like files, GDI objects, and all sorts of User Objects of various kinds -- all of which must be vastly different in implementation, but all are returned as a HANDLE to the user.
#include <iostream>
#include <string>
#include <iomanip>
using namespace std;
/*** LIBRARY.H ***/
namespace lib
{
typedef void* MYHANDLE;
void ShowObject(MYHANDLE h);
MYHANDLE CreateObject();
void DestroyObject(MYHANDLE);
};
/*** CLIENT CODE ***/
int main()
{
for( int i = 0; i < 25; ++i )
{
cout << "[" << setw(2) << i << "] :";
lib::MYHANDLE h = lib::CreateObject();
lib::ShowObject(h);
lib::DestroyObject(h);
cout << "\n";
}
}
/*** LIBRARY.CPP ***/
namespace impl
{
class Base { public: virtual ~Base() { cout << "[~Base]"; } };
class Foo : public Base { public: virtual ~Foo() { cout << "[~Foo]"; } };
class Bar : public Base { public: virtual ~Bar() { cout << "[~Bar]"; } };
};
lib::MYHANDLE lib::CreateObject()
{
static bool init = false;
if( !init )
{
srand((unsigned)time(0));
init = true;
}
if( rand() % 2 )
return static_cast<impl::Base*>(new impl::Foo);
else
return static_cast<impl::Base*>(new impl::Bar);
}
void lib::DestroyObject(lib::MYHANDLE h)
{
delete static_cast<impl::Base*>(h);
}
void lib::ShowObject(lib::MYHANDLE h)
{
impl::Foo* foo = dynamic_cast<impl::Foo*>(static_cast<impl::Base*>(h));
impl::Bar* bar = dynamic_cast<impl::Bar*>(static_cast<impl::Base*>(h));
if( foo )
cout << "FOO";
if( bar )
cout << "BAR";
}