Using the >>= and =<< operators to combine IO in Haskell - list

I am trying to run an "infinite" simulation, printing the results of each step.
There's a function nextFrameR which takes an input Map and steps forward the simulation to return an output Map, and then there's a render_ function which takes an input Map and prints some things to stdout, returning the input Map (so that I can use iterate or something like it).
I'm really struggling to put all these pieces together as am relatively new to Haskell. I found this answer extremely interesting but am not sure how to put it directly into practice due to the combination of the two functions (I have tried playing with liftM2 and iterate).
The type signatures are as follows:
nextFrameR :: Map -> IO Map
render_ :: Map -> IO Map -- originally Map -> IO ()
I'm not really sure where to go from here, I can do something like:
(iterate (>>= nextFrameR) initialMap) :: [IO Map]
But that just gives me an (infinite?) list of frames (I think), which is great, it just doesn't let me print them as I don't know how to combine the rendering function in there.

iterate works fairly well for non-IO computation, but if you are in IO you can't easily exploit iterate.
To see why, your list
(iterate (>>= nextFrameR) initialMap) :: [IO Map]
is
[ initialMap
, initialMap >>= nextFrameR
, initialMap >>= nextFrameR >>= nextFrameR
...
so... how could we exploit that to have an infinite loop? We can't take the non-existent "last element". We also can't execute all the operations in that list in sequence, since that would run initialMap many times.
It's easier if we avoid using iterate and resort to basics like recursion:
loop :: Map -> IO ()
loop m = do
m' <- nextFrameR m
render_ m' -- it looks like you want this
-- feel free to add some delay here, or some stopping condition to exit the loop
loop m'
main :: IO ()
main = do
m <- initialMap
loop m
You can turn the above code into some code which uses >>= but there is no need to.
Finally, there's no need to make render_ return the same Map. You can make that return IO ().
If you are a beginner, I'd recommend to initially stay away from "smart" library functions like mapM_, traverse, for, sequence, liftM2, ap, ... and learn to do everything using only do-blocks and recursion. Then, once you get how this works, you can try to improve your code exploiting the library helpers.

Related

How does this nested fold_left work? and what is ~f: and ~init:?

I have this code snippet in Ocaml which is taken from here. I know it fills a data structure for a demand (traffic matrix) with a the specified value and when the two hosts are the same it just fill the value with 0. In python or in any imerative language, we would use two for loop one inside another to do the task. I assume this is the reason we have two (fold_left) in this code in which each one is equivilant to a one for loop (I might be mistaken!). My question is how this code works? and what is ~f: and ~init:? are these labels. If they are labels why the compiler complains when I remove them or when I change them? even when I put these arguments in the right order?!
I have finished one book and have watched alot of youtube videos but still find it difficult to understand most of Ocaml code.
let create_3cycle_input () =
let topo = Net.Parse.from_dotfile "./data/topologies/3cycle.dot" in
let hosts = get_hosts topo in
let demands =
List.fold_left
hosts
~init:SrcDstMap.empty
~f:(fun acc u ->
List.fold_left
hosts
~init:acc
~f:(fun acc v ->
let r = if u = v then 0.0 else 53. in
SrcDstMap.set acc ~key:(u,v) ~data:r)) in
(hosts,topo,demands);;
Please, read my another SO answer that explains how fold_left works. Once you understand how a single fold works, we can move forward to the nested case (as well as to the labels).
When you have a collection of collections, i.e., when an element of a collection is another collection by itself, and you want to iterate over each element of those inner collections than you need to nest your folds. A good example, are matrices which could be seen as collections of vectors, where vectors are by themselves are also collections.
The iteration algorithm is simple,
state := init
for each inner-collection in outer-collection do
for each element in inner-collection do
state := user-function(state, element)
done
done
Or, the same in OCaml (using the Core version of the fold)
let fold_list_of_lists outer ~init ~f =
List.fold outer ~init ~f:(fun state inner ->
List.fold inner ~init:state ~f:(fun state elt ->
f state elt)
This function will have type 'a list list -> init:'b -> f:('b -> 'a -> 'b) -> 'b
and will be applicable to any list of lists.
Concerning the labels and their removal. The labels are keyworded arguments and enable passing arguments to a function in an arbitrary manner, which is very useful when you have so many arguments. Removing labels is sometimes possible, but could be disabled using a compiler option. And the Core library (which is used by the project that you have referenced) is disabling removing the labels, probably for the good sake.
In general, labels could be omitted if the application is total, i.e., when the returned value is not a function by itself. Since fold_left returns a type variable, it could always be a function, therefore we always need to use labels with the Core's List.fold (and List.fold_left) function.

Iterate produces StackOverflow errors

So I just started out with Frege and Haskell as well. I have experience with functional languages, since I was using Clojure for a couple of years now.
The first thing I wanted to try out is my usual approach at the Fibonacci numbers.
next_fib (a, b) = (b, a + b)
fibs = map fst $ iterate next_fib (0, 1)
fib x = head $ drop x fibs
This is how it turned out in Frege. It works, but for very high numbers for fib, e.g. (fib 4000), it throws StackOverflow errors. This surprised me, because same functions in Clojure would work just fine. Is this a Frege bug or am I getting the whole lazy evaluation thing wrong?
You probably don't "get the whole lazy evaluation thing wrong", but you're bitten twice by too lazy evaluation in this case.
And although GHC essentially works exactly the same as Frege in this regard, the outcome is different and seemingly unfavorable for Frege.
But the reason that Haskell can get awya with really big thunks[see below], while Frege early aborts with stack overflow is the way the runtime systems manage heap and stack. The Haskell RTS is flexible and can devote huge portions of the available memory to the stack, if the need arises. While Frege's runtime system is the JVM, which usually starts out with a tiny stack, just enough to accomodate a call depth of a few hundred. As you have observed, giving the JVM enough stack space makes the think work, exactly like it would in GHC.
Because of the ever scarce stack space in the JVM, we have developed some techniques in Frege to avoid unwanted and unneeded laziness. Two of them will be explained below. In the end, in Frege you are forced to control bad effects of laziness early, while the GHC developer can happily code away without having to take notice.
To understand the following, we need to introduce the concept "thunk". A thunk is first and foremost some yet to be evaluated expression. For example, since tuples are lazy, an expression like
(b, b+a)
is compiled to an application of the tuple constructor (,) to b and {a+b} where the notation { e } for the sake of this discussion means some implementation dependent representation of a thunk that promises to compute the expression e when evaluated. In addition, a thunk memoizes its result upon evaluation, so whenver the same thunk is evaluated again, it just returns the precomputed result. (This is only possible in a pure functional language, of course.)
For example, in Frege, to represent thunks there is a class Delayed<X> that implements Callable<X> and arranges for memoization of the result.
We shall now investigate what the result of
next_fib (next_fib (0, 1))
is. The inner application results in:
(1, {0+1})
and then the outer one computes from that:
({0+1}, {1+{0+1}})
We see here that thunks can get nested in other thunks, and this is the problem here, since every application of next_fib will result in a tuple that will have as its elements thunks that have thunks of the previous iteration nested inside them.
Now consider what is happening when the thunk for the 4000th fib-number gets evaluated, which happens, for instance, when you print it. It will have to perform an addition, but the numbers to add are actually both thunks, which must be evaluated before the addition can take place. In this way, each nested thunk means an invocation of that thunks evaluation method, unless the thunk is already evaluated. Hence, to print the 4000th number, we need a stack depth of at least 4000 in the case when no other thunk of this series was evaluated before.
So the first measure was to replace the lazy tuple constructor with the strict one:
(b; a+b)
It doesn't build thunks but computes the arguments right away. This is not available in Haskell, to do the same there you need to say something like:
let c = a+b in b `seq` c `seq` (b,c)
But this was not the end of the story. It turned out that the computation fib 4000 still overflowed the stack.
The reason is the implementation of iterate that goes like this:
iterate f x = x : iterate f (f x)
This builds an infinite list
[ x, f x, f (f x), f (f (f x)), ...]
Needless to say, all the terms except the first one are thunks!
This is normally not a problem when the list elements are evaluated in sequential order, because when, for example, the 3rd term
{f {f x}}
gets evaluated, the inner thunk is already evaluated and returns the result right away. In general, we need only enough stack depth to reach the first previously evaluated term. Here is a demo straight from the frege online REPL at try.frege-lang.org
frege> next (a,b) = (b; a+b) :: (Integer, Integer)
function next :: (Integer,Integer) -> (Integer,Integer)
frege> fibs = map fst $ iterate next (0,1)
function fibs :: [Integer]
frege> fib = (fibs!!)
function fib :: Int -> Integer
frege> map (length . show . fib) [0,500 ..]
[1,105,209,314,418,523,627,732,836,941,1045,1150,...]
frege> fib 4000
39909473435004422792081248094960912600792...
Here, with the map, we force evaluation of every 500th number (as far as the REPL demands output, it will only print initial portions of infinite lists), and compute the length of the decimal representation of each number (just so as not to display the large resulting numbers). This, in turn forces evaluation of the 500 preceding numbers, but this is ok, as there is enough stack space for that. Once that is done, we can even compute fib 4000! Because now, all the thunks up to 6000 are already evaluated.
But we can do even better with a slightly better version of iterate, which uses the head strict constructor (!:):
a !: as = a `seq` (a:as)
This evaluates the head of the list right away, which is appropriate in our case.
With the two changes, we get a program whose stack demand does not depend on the argument of fib anymore. Here is the proof:
frege> iterate' f x = x !: iterate' f (f x)
function iterate' :: (a->a) -> a -> [a]
frege> fibs2 = map fst $ iterate' next (0,1)
function fibs2 :: [Integer]
frege> (length . show . (fibs2 !!)) 4000
836
frege> (length . show . (fibs2 !!)) 8000
1672
frege> (length . show . (fibs2 !!)) 16000
3344
frege> (length . show . (fibs2 !!)) 32000
6688
frege> (length . show . (fibs2 !!)) 64000
13375
frege> (length . show . (fibs2 !!)) 128000
java.lang.OutOfMemoryError: Java heap space
Well, we'd need more heap space now to keep more than 100.000 huge numbers. But notice that there was no stack problem anymore to compute 32.000 new numbers in the last step.
We could get rid of the heap space problem with a simple tail recursive definition that doesn't need to mark all those numbers:
fib :: Int -> Integer
fib n = go n 0 1 where
go :: Int -> Integer -> Integer -> Integer
go 0 !a !b = a
go n !a !b = go (n-1) b (a+b)
I guess this would be even faster than traversing the list.
Unlike(?) in Clojure, direct list access is O(n), and long lists consume lots of space. Therefore, if you need to cache something and have an upper limit, you better use arrays. Here are 2 ways to construct an array of 10000 fibs:
frege> zzz = arrayFromList $ take 10000 $ map fst $ iterate (\(a,b) -> (b; a+b)) (0n,1)
function zzz :: JArray Integer
frege> elemAt zzz 4000
39909473435004422792081248094960912600792570982820257 ...
This works, because the intermediate list should never exist as a whole. And once created, access is O(1)
And there is also a special function for creating caches like that:
yyy = arrayCache f 10000 where
f 0 a = 0n
f 1 a = 1n
f n a = elemAt a (n-1) + elemAt a (n-2)
fib = elemAt yyy
This avoids even the intermediate list, all the tuples, and so on.
This way, you can keep your good habit of prefering combinators over explicit recursion. Please give it a try.

Pack consecutive duplicates of list elements into sublists in Ocaml

I found this problem in the website 99 problems in ocaml. After some thinking I solved it by breaking the problem into a few smaller subproblems. Here is my code:
let rec frequency x l=
match l with
|[]-> 0
|h::t-> if x=[h] then 1+(frequency x t)
else frequency x t
;;
let rec expand x n=
match n with
|0->[]
|1-> x
|_-> (expand x (n-1)) # x
;;
let rec deduct a b=
match b with
|[]-> []
|h::t -> if a=[h] then (deduct a t)
else [h]# (deduct a t)
;;
let rec pack l=
match l with
|[]-> []
|h::t -> [(expand [h] (frequency [h] l))]# (pack (deduct [h] t))
;;
It is rather clear that this implementation is overkill, as I have to count the frequency of every element in the list, expand this and remove the identical elements from the list, then repeat the procedure. The algorithm complexity is about O(N*(N+N+N))=O(N^2) and would not work with large lists, even though it achieved the required purpose. I tried to read the official solution on the website, which says:
# let pack list =
let rec aux current acc = function
| [] -> [] (* Can only be reached if original list is empty *)
| [x] -> (x :: current) :: acc
| a :: (b :: _ as t) ->
if a = b then aux (a :: current) acc t
else aux [] ((a :: current) :: acc) t in
List.rev (aux [] [] list);;
val pack : 'a list -> 'a list list = <fun>
the code should be better as it is more concise and does the same thing. But I am confused with the use of "aux current acc" in the inside. It seems to me that the author has created a new function inside of the "pack" function and after some elaborate procedure was able to get the desired result using List.rev which reverses the list. What I do not understand is:
1) What is the point of using this, which makes the code very hard to read on first sight?
2) What is the benefit of using an accumulator and an auxiliary function inside of another function which takes 3 inputs? Did the author implicitly used tail recursion or something?
3) Is there anyway to modify the program so that it can pack all duplicates like my program?
These are questions mostly of opinion rather than fact.
1) Your code is far harder to understand, in my opinion.
2a) It's very common to use auxiliary functions in OCaml and other functional languages. You should think of it more like nested curly braces in a C-like language rather than as something strange.
2b) Yes, the code is using tail recursion, which yours doesn't. You might try giving your code a list of (say) 200,000 distinct elements. Then try the same with the official solution. You might try determining the longest list of distinct values your code can handle, then try timing the two different implementations for that length.
2c) In order to write a tail-recursive function, it's sometimes necessary to reverse the result at the end. This just adds a linear cost, which is often not enough to notice.
3) I suspect your code doesn't solve the problem as given. If you're only supposed to compress adjacent elements, your code doesn't do this. If you wanted to do what your code does with the official solution you could sort the list beforehand. Or you could use a map or hashtable to keep counts.
Generally speaking, the official solution is far better than yours in many ways. Again, you're asking for an opinion and this is mine.
Update
The official solution uses an auxiliary function named aux that takes three parameters: the currently accumulated sublist (some number of repetitions of the same value), the currently accumulated result (in reverse order), and the remaining input to be processed.
The invariant is that all the values in the first parameter (named current) are the same as the head value of the unprocessed list. Initially this is true because current is empty.
The function looks at the first two elements of the unprocessed list. If they're the same, it adds the first of them to the beginning of current and continues with the tail of the list (all but the first). If they're different, it wants to start accumulating a different value in current. It does this by adding current (with the one extra value added to the front) to the accumulated result, then continuing to process the tail with an empty value for current. Note that both of these maintain the invariant.

Getting all indices of a value

Im trying to create a haskell function where all the indices of an occurence of a value in a list are returned as a list, so like
indices 3 [1,2,3,3,7]
gives [2, 3] as output. I am very new to Haskell and couldnt find something useful. I tried using filter, but all i got working is getting a list of [3, 3] but not the actual indices. It would be cool if you could give me a little hint.
This is a pretty common pattern in functional programming, sometimes called decorate-process-undecorate. The idea is that you want to attach some extra information to each of the elements in your list, filter using a slightly altered version of the filter you would have done normally, then strip that extra information away.
indicies n = undecorate . filter predicate . decorate where
decorate = ...
predicate = ...
undecodate = ...
When trying to code decorate I suggest taking a look at the function zip:
zip :: [a] -> [b] -> [(a, b)]
Consider its effect on infinite lists, too, such as repeat 1 or [1,3,...]. When trying to code undecorate you'll likely want to map:
map :: (a -> b) -> [a] -> [b]
Finally, don't worry about the efficiency of this process. In a strict language, decorate-filter-undecorate might require 3 traversals of the list. In a non-strict language like Haskell the compiler will automatically merge the 3 inner loops into a single one.

Haskell List complexity

sorry if this question has already been asked, I didn't find it. And sorry for my poor english.
I'm learning Haskell and try to use lists.
I wrote a function which transforms a list following a specific pattern, I can't check if it works now, but i think so.
This function is not a tail call function, so I think it will be horrible to compute this function with a big list:
transform :: [Int] -> [Int]
transform list = case list of
(1:0:1:[]) -> [1,1,1,1]
(1:1:[]) -> [1,0,1]
[1] -> [1,1]
(1:0:1:0:s) -> 1:1:1:1: (transform s)
(1:1:0:s) -> 1:0:1: (transform s)
(1:0:s) -> 1:1: (transform s)
(0:s) -> 0: (transform s)
So I thought about another function, which would be "better":
transform = reverse . aux []
where
aux buff (1:0:[1]) = (1:1:1:1:buff)
aux buff (1:[1]) = (1:0:1:buff)
aux buff [1] = (1:1:buff)
aux buff (1:0:1:0:s) = aux (1:1:1:1:buff) s
aux buff (1:1:0:s) = aux (1:0:1:buff) s
aux buff (1:0:s) = aux (1:1:buff) s
aux buff (0:s) = aux (0:buff) s
The problem is that I don't know how it compiles and if I'm wrong with the second function. Can you explain me how lists work ? Is it better to use (++) or reverse the list at the end ?
Thank you in advance for your answers
The first function is perfectly fine and in my opinion preferable to the second one.
The reason is laziness. If you have a transform someList expression in your code, the resulting list will not be evaluated unless you demand it. In particular the list will be evaluated only as far as it is needed; print $ take 10 $ transform xs will do less work than print $ take 20 $ transform xs.
In a strict language transform would indeed encumber the stack, since it would have to evaluate the whole list (in a non-tail recursive way) before returning anything of use. In Haskell transform (0:xs) evaluates to 0 : transform xs, a usable partial result. We can inspect the head of this result without touching the tail. There is no danger of stack overflow either: at any time there is at most a single unevaluated thunk (like transform xs in the previous example) in the tail of the list. If you demand more elements, the thunk will be just pushed further back, and the stack frame of the previous thunk can be garbage collected.
If we always fully evaluate the list then the performance of the two functions should be similar, or even then the lazy version could be somewhat faster because of the lack of reversing or the extra ++-s. So, by switching to the second function we lose laziness and gain no extra performance.
Your first version looks much better to me1. It's fine that it's not tail-recursive: you don't want it to be tail-recursive, you want it to be lazy. The second version can't produce even a single element without processing the entire input list, because in order to reverse the result of aux, the entirety of aux must be known. However,
take 10 . transform $ cycle [1,0,0,1,1,1]
would work fine with your first definition of transform, because you only consume as much of the list as you need in order to make a decision.
1 But note that (1:0:1:[]) is just [1,0,1].