sort an array based on number of set bits - c++

Example:
Input: arr = [0,1,2,3,4,5,6,7,8]
Output: [0,1,2,4,8,3,5,6,7]
Explanation: [0] is the only integer with 0 bits.
[1,2,4,8] all have 1 bit.
[3,5,6] have 2 bits.
[7] has 3 bits.
The sorted array by bits is [0,1,2,4,8,3,5,6,7]
I have tried to use custom sorting in C++ but I am not understanding where did I go wrong!
Here's my code!
class Solution {
public:
static int setbits(int temp) {
int c, n = temp;
while(n > 0) {
if(n & 1) c++;
n = n >> 1;
}
return c;
}
static bool myfun(int a, int b) {
int c1 = setbits(a);
int c2 = setbits(b);
if(c1 == c2 || c1 < c2) return a < b;
return a > b;
}
vector<int> sortByBits(vector<int>& arr) {
sort(arr.begin(), arr.end(), myfun);
return arr;
}
};

You forgot to initialize c in the setbits function:
int c = 0;
Moreover, there was a problem in the logic of the comparator. I get correct result with
if (c1 == c2) return a < b;
return c1 < c2;
Note that the code could be more efficient by first calculating the weight of all numbers and keep them in a array.

Replace
if(c1 == c2 || c1 < c2) return a < b;
return a > b;
with
return (c1 <= c2 );

Related

How to 'define' a datatype in C++?

I was solving a CodeChef problem which asked to calculate the factorial of input. The range of input is 100. Here's the problem's link.
https://www.codechef.com/problems/FCTRL2
So, there is one method to solve the factorial of 100 by using arrays because I used the 'Insertion sort' method but there's a time limit exceeded error. So
I came up with another method by using unsigned long long int datatype. I defined int unsigned long long int but it's not working. I'll be if you help fix it.
#include <bits/stdc++.h>
using namespace std;
#define int unsigned long long;
int main() {
int t,n;
cin>>t;
if(1<=t<=100){
while (t--) {
cin>>n;
if(1<=n<=100){
int fact=1;
for(int i=1;i<=n;i++){
fact*=i;
}
cout<<fact<<endl;
}
}
}
return 0;
}
Factorial of 100 is way too large for 64 bits, it will overflow regardless. The point is that you should implement your own big-number class, or use an existing implementation like the one in Boost.
Factorial of 100 has 158 digits!
100! is way too big for a 64 bit integer. It has 158 digits. You have to implement the BigInteger library. Hopefully, #LightOj Judge creator #Jane Alom Jan has a nice implementation that you can check. I am sharing his implementation, you can modify and test this for this problem.
#include <cstdio>
#include <string>
#include <algorithm>
#include <iostream>
using namespace std;
struct Bigint {
// representations and structures
string a; // to store the digits
int sign; // sign = -1 for negative numbers, sign = 1 otherwise
// constructors
Bigint() {} // default constructor
Bigint( string b ) { (*this) = b; } // constructor for string
// some helpful methods
int size() { // returns number of digits
return a.size();
}
Bigint inverseSign() { // changes the sign
sign *= -1;
return (*this);
}
Bigint normalize( int newSign ) { // removes leading 0, fixes sign
for( int i = a.size() - 1; i > 0 && a[i] == '0'; i-- )
a.erase(a.begin() + i);
sign = ( a.size() == 1 && a[0] == '0' ) ? 1 : newSign;
return (*this);
}
// assignment operator
void operator = ( string b ) { // assigns a string to Bigint
a = b[0] == '-' ? b.substr(1) : b;
reverse( a.begin(), a.end() );
this->normalize( b[0] == '-' ? -1 : 1 );
}
// conditional operators
bool operator < ( const Bigint &b ) const { // less than operator
if( sign != b.sign ) return sign < b.sign;
if( a.size() != b.a.size() )
return sign == 1 ? a.size() < b.a.size() : a.size() > b.a.size();
for( int i = a.size() - 1; i >= 0; i-- ) if( a[i] != b.a[i] )
return sign == 1 ? a[i] < b.a[i] : a[i] > b.a[i];
return false;
}
bool operator == ( const Bigint &b ) const { // operator for equality
return a == b.a && sign == b.sign;
}
// mathematical operators
Bigint operator + ( Bigint b ) { // addition operator overloading
if( sign != b.sign ) return (*this) - b.inverseSign();
Bigint c;
for(int i = 0, carry = 0; i<a.size() || i<b.size() || carry; i++ ) {
carry+=(i<a.size() ? a[i]-48 : 0)+(i<b.a.size() ? b.a[i]-48 : 0);
c.a += (carry % 10 + 48);
carry /= 10;
}
return c.normalize(sign);
}
Bigint operator - ( Bigint b ) { // subtraction operator overloading
if( sign != b.sign ) return (*this) + b.inverseSign();
int s = sign; sign = b.sign = 1;
if( (*this) < b ) return ((b - (*this)).inverseSign()).normalize(-s);
Bigint c;
for( int i = 0, borrow = 0; i < a.size(); i++ ) {
borrow = a[i] - borrow - (i < b.size() ? b.a[i] : 48);
c.a += borrow >= 0 ? borrow + 48 : borrow + 58;
borrow = borrow >= 0 ? 0 : 1;
}
return c.normalize(s);
}
Bigint operator * ( Bigint b ) { // multiplication operator overloading
Bigint c("0");
for( int i = 0, k = a[i] - 48; i < a.size(); i++, k = a[i] - 48 ) {
while(k--) c = c + b; // ith digit is k, so, we add k times
b.a.insert(b.a.begin(), '0'); // multiplied by 10
}
return c.normalize(sign * b.sign);
}
Bigint operator / ( Bigint b ) { // division operator overloading
if( b.size() == 1 && b.a[0] == '0' ) b.a[0] /= ( b.a[0] - 48 );
Bigint c("0"), d;
for( int j = 0; j < a.size(); j++ ) d.a += "0";
int dSign = sign * b.sign; b.sign = 1;
for( int i = a.size() - 1; i >= 0; i-- ) {
c.a.insert( c.a.begin(), '0');
c = c + a.substr( i, 1 );
while( !( c < b ) ) c = c - b, d.a[i]++;
}
return d.normalize(dSign);
}
Bigint operator % ( Bigint b ) { // modulo operator overloading
if( b.size() == 1 && b.a[0] == '0' ) b.a[0] /= ( b.a[0] - 48 );
Bigint c("0");
b.sign = 1;
for( int i = a.size() - 1; i >= 0; i-- ) {
c.a.insert( c.a.begin(), '0');
c = c + a.substr( i, 1 );
while( !( c < b ) ) c = c - b;
}
return c.normalize(sign);
}
// output method
void print() {
if( sign == -1 ) putchar('-');
for( int i = a.size() - 1; i >= 0; i-- ) putchar(a[i]);
}
};
int main() {
Bigint a, b, c; // declared some Bigint variables
/////////////////////////
// taking Bigint input //
/////////////////////////
string input; // string to take input
cin >> input; // take the Big integer as string
a = input; // assign the string to Bigint a
cin >> input; // take the Big integer as string
b = input; // assign the string to Bigint b
//////////////////////////////////
// Using mathematical operators //
//////////////////////////////////
c = a + b; // adding a and b
c.print(); // printing the Bigint
puts(""); // newline
c = a - b; // subtracting b from a
c.print(); // printing the Bigint
puts(""); // newline
c = a * b; // multiplying a and b
c.print(); // printing the Bigint
puts(""); // newline
c = a / b; // dividing a by b
c.print(); // printing the Bigint
puts(""); // newline
c = a % b; // a modulo b
c.print(); // printing the Bigint
puts(""); // newline
/////////////////////////////////
// Using conditional operators //
/////////////////////////////////
if( a == b ) puts("equal"); // checking equality
else puts("not equal");
if( a < b ) puts("a is smaller than b"); // checking less than operator
return 0;
}
As the problem has a source limit of 2000 bytes so adding the hole BigInteger library will cross the source limit.
So only string multiplication can be done here.
A clean approach of multiplication is given below using C++
#include<bits/stdc++.h>
using namespace std;
int main(){
int t;
cin >> t;
while(t--){
vector<int> arr;
int n;
cin >> n;
arr.push_back(1);
int carry = 0;
for(int i = 2; i <= n; i++){
vector<int> t;
for(int j = arr.size() - 1; j >= 0; j--){
int r = arr[j] * i + carry;
carry = r / 10;
t.push_back(r % 10);
}
while(carry){
t.push_back(carry % 10);
carry /= 10;
}
reverse(t.begin(), t.end());
arr = t;
}
for(auto el : arr){
cout << el;
}
cout << endl;
}
return 0;
}
Input
2
10
100
Output
3628800
93326215443944152681699238856266700490715968264381621468592963895217599993229915608941463976156518286253697920827223758251185210916864000000000000000000000000
Also adding an easy python implementation
test = int(input())
for i in range(0, test):
n = int(input())
res = 1
for j in range(2, n + 1):
res = res * j
print(res)
Already 3 days old question, but anyway.
The solution is a rather simple task. We can do it like we would do it on a piece of paper. We use a std::vector of digits to hold the number. Because the result will be already too big for an unsigned long long for 22!.
The answer will be exact. Also the code is short and compact.
With such an approach the calculation is simple. I do not even know what to explain further.
Please be careful with the runtime. It will be extremely long for big numbers. If speed is an issue, then use the original BigInt header only lib.
Please see the code:
#include <iostream>
#include <vector>
int main()
{
std::cout << "Calculate n! Enter n (max 10000): ";
if (unsigned int input{}; (std::cin >> input) && (input <= 10000)) {
// Here we store the resulting number as single digits
std::vector<unsigned int> result(3000, 0); // Magic number. Is big enough for 100000!
result.back() = 1; // Start calculation with 1 (from right to left)
// Multiply up to the given input value
for (unsigned int count = 2; count <= input; count++)
{
unsigned int sum{}, remainder{};
unsigned int i = result.size() - 1; // Calculate from right to left
while (i > 0)
{
// Simple multiplication like on a piece of paper
sum = result[i] * count + remainder;
result[i--] = sum % 10;
remainder = sum / 10;
}
}
// Show output. Supporess leading zeroes
bool showZeros{ false };
for (const unsigned int i : result) {
if ((i != 0) || showZeros) {
std::cout << i;
showZeros = true;
}
}
}
else std::cerr << "\nError: Wrong input.";
}
Developed and tested with Microsoft Visual Studio Community 2019, Version 16.8.2.
Additionally compiled and tested with clang11.0 and gcc10.2
Language: C++17

Calculating a^b^c mod 10^9+7

Problem Link - https://cses.fi/problemset/task/1712
input -
1
7
8
10
Expected Output - 928742408
My output - 989820350
point that is confusing me - Out of 100s of inputs, in only 1 or 2 test cases my code is providing wrong output, if the code is wrong shouldn't it give wrong output for everything?
My code -
#include <iostream>
#include <algorithm>
typedef unsigned long long ull;
constexpr auto N = 1000000007;
using namespace std;
ull binpow(ull base, ull pwr) {
base %= N;
ull res = 1;
while (pwr > 0) {
if (pwr & 1)
res = res * base % N;
base = base * base % N;
pwr >>= 1;
}
return res;
}
ull meth(ull a, ull b, ull c) {
if (a == 0 && (b == 0 || c == 0))
return 1;
if (b == 0 && c == 0)
return 1;
if (c == 0)
return a;
ull pwr = binpow(b, c);
ull result = binpow(a, pwr);
return result;
}
int main() {
ios_base::sync_with_stdio(0);
cin.tie(0);
ull a, b, c, n;
cin >> n;
for (ull i = 0; i < n; i++) {
cin >> a >> b >> c;
cout << meth(a, b, c) << "\n";
}
return 0;
}
`
Your solution is based on an incorrect mathematical assumption. If you want to compute abc mod m you can't reduce the exponent bc mod 109 + 7. In other words, abc mod m != abc mod m mod m. Instead, you can reduce it mod 109 + 6 which works because of Fermat's little theorem. Therefore, you need to compute your exponent bc under a different modulus.
For reference
Change
ull pwr = binpow(b, c);
To a pwr = bc calculation.
810 --> ‭1,073,741,824‬
7‭1,073,741,824‬ mod 100000007 --> 928742408
if the code is wrong shouldn't it give wrong output for everything?
Likely the other bc were always < 100000007

getNthRoots function wrong answers

So i have a function
Vector getNthRoots(double a, double b, double c, int n)
{
Vector v;
int i;
v.length = 0;
double m, a2, b2, c2;
if (n % 2 == 0)
{
a2 = a;
b2 = b;
c2 = c;
if (a<0)
a2 = a*(-1);
if (b<0)
b2 = b*(-1);
if (c<0)
c2 = c*(-1);
m = floor(pow(max(a2, b2, c2),1/n));
for (i = 1; i <= m; i++)
if (pow(i, n) >= min(a2, b2, c2) && pow(i, n) <= max(a2, b2, c2))
{
v.values[v.length] = i;
v.length++;
v.values[v.length] = (-1)*i;
v.length++;
}
return v;
}
else {
for (i = ceil(pow(min(a, b, c),1/n)); i <= floor(pow(max(a, b, c),1/n)); i++)
if (pow(i, n) >= min(a, b, c) && pow(i, n) <= max(a, b, c))
{
v.values[v.length] = i;
v.length++;
}
return v;
}
}
This function is supposed to give you the numbers at power n (number^n) which are in the interval of min(a,b,c) and max(a,b,c);
Other functions/headers
double max(double a, double b, double c)
{
if (a >= b && a >= c)
return a;
if (b >= a && b >= c)
return b;
if (c >= a && c >= b)
return c;
return a;
}
double min(double a, double b, double c)
{
if (a <= b && a <= c)
return a;
if (b <= a && b <= c)
return b;
if (c <= a && c <= b)
return c;
return a;
}
#include <iostream>
#include <cmath>
using namespace std;
#define MAX_ARRAY_LENGTH 100
struct Vector
{
unsigned int length;
int values[MAX_ARRAY_LENGTH];
};
It seems i can`t receive the good answer . For example
for getNthRoots(32,15,37,5) it should return a vector [2] because 2^5 =32 which belongs to interval [15,37] but i don`t receive anything
or getNthRoots(32,1,7,5) it should return a vector [1,2] but i only receive 1 as answer
I am guessing here is the problem for (i = ceil(pow(min(a, b, c),1/n)); i <= floor(pow(max(a, b, c),1/n)); i++)but i don`t know how i could fix it
1/n evaluates to 0, because it is evaluated as an integer expression. Try replacing all the "1/n"s with "1.0/n"s.
Take care to handle the case where n is 0.

How to convert a decimal string to binary string?

I have a decimal string like this (length < 5000):
std::string decimalString = "555";
Is there a standard way to convert this string to binary representation? Like this:
std::string binaryString = "1000101011";
Update.
This post helps me.
As the number is very large, you can use a big integer library (boost, maybe?), or write the necessary functions yourself.
If you decide to implement the functions yourself, one way is to implement the old pencil-and-paper long division method in your code, where you'll need to divide the decimal number repeatedly by 2 and accumulate the remainders in another string. May be a little cumbersome, but division by 2 should not be so hard.
Since 10 is not a power of two (or the other way round), you're out of luck. You will have to implement arithmetics in base-10. You need the following two operations:
Integer division by 2
Checking the remainder after division by 2
Both can be computed by the same algorithm.
Alternatively, you can use one of the various big integer libraries for C++, such as GNU MP or Boost.Multiprecision.
I tried to do it.. I don't think my answer is right but here is the IDEA behind what I was trying to do..
Lets say we have 2 decimals:
100 and 200..
To concatenate these, we can use the formula:
a * CalcPower(b) + b where CalcPower is defined below..
Knowing this, I tried to split the very long decimal string into chunks of 4. I convert each string to binary and store them in a vector..
Finally, I go through each string and apply the formula above to concatenate each binary string into one massive one..
I didn't get it working but here is the code.. maybe someone else see where I went wrong.. BinaryAdd, BinaryMulDec, CalcPower works perfectly fine.. the problem is actually in ToBinary
#include <iostream>
#include <bitset>
#include <limits>
#include <algorithm>
std::string BinaryAdd(std::string First, std::string Second)
{
int Carry = 0;
std::string Result;
while(Second.size() > First.size())
First.insert(0, "0");
while(First.size() > Second.size())
Second.insert(0, "0");
for (int I = First.size() - 1; I >= 0; --I)
{
int FirstBit = First[I] - 0x30;
int SecondBit = Second[I] - 0x30;
Result += static_cast<char>((FirstBit ^ SecondBit ^ Carry) + 0x30);
Carry = (FirstBit & SecondBit) | (SecondBit & Carry) | (FirstBit & Carry);
}
if (Carry)
Result += 0x31;
std::reverse(Result.begin(), Result.end());
return Result;
}
std::string BinaryMulDec(std::string value, int amount)
{
if (amount == 0)
{
for (auto &s : value)
{
s = 0x30;
}
return value;
}
std::string result = value;
for (int I = 0; I < amount - 1; ++I)
result = BinaryAdd(result, value);
return result;
}
std::int64_t CalcPowers(std::int64_t value)
{
std::int64_t t = 1;
while(t < value)
t *= 10;
return t;
}
std::string ToBinary(const std::string &value)
{
std::vector<std::string> sets;
std::vector<int> multipliers;
int Len = 0;
int Rem = value.size() % 4;
for (auto it = value.end(), jt = value.end(); it != value.begin() - 1; --it)
{
if (Len++ == 4)
{
std::string t = std::string(it, jt);
sets.push_back(std::bitset<16>(std::stoull(t)).to_string());
multipliers.push_back(CalcPowers(std::stoull(t)));
jt = it;
Len = 1;
}
}
if (Rem != 0 && Rem != value.size())
{
sets.push_back(std::bitset<16>(std::stoull(std::string(value.begin(), value.begin() + Rem))).to_string());
}
auto formula = [](std::string a, std::string b, int mul) -> std::string
{
return BinaryAdd(BinaryMulDec(a, mul), b);
};
std::reverse(sets.begin(), sets.end());
std::reverse(multipliers.begin(), multipliers.end());
std::string result = sets[0];
for (std::size_t i = 1; i < sets.size(); ++i)
{
result = formula(result, sets[i], multipliers[i]);
}
return result;
}
void ConcatenateDecimals(std::int64_t* arr, int size)
{
auto formula = [](std::int64_t a, std::int64_t b) -> std::int64_t
{
return (a * CalcPowers(b)) + b;
};
std::int64_t val = arr[0];
for (int i = 1; i < size; ++i)
{
val = formula(val, arr[i]);
}
std::cout<<val;
}
int main()
{
std::string decimal = "64497387062899840145";
//6449738706289984014 = 0101100110000010000100110010111001100010100000001000001000001110
/*
std::int64_t arr[] = {644, 9738, 7062, 8998, 4014};
ConcatenateDecimals(arr, 5);*/
std::cout<<ToBinary(decimal);
return 0;
}
I found my old code that solve sport programming task:
ai -> aj
2 <= i,j <= 36; 0 <= a <= 10^1000
time limit: 1sec
Execution time was ~0,039 in worst case. Multiplication, addition and division algorithms is very fast because of using 10^9 as numeration system, but implementation can be optimized very well I think.
source link
#include <iostream>
#include <string>
#include <vector>
using namespace std;
#define sz(x) (int((x).size()))
typedef vector<int> vi;
typedef long long llong;
int DigToNumber(char c) {
if( c <= '9' && c >= '0' )
return c-'0';
return c-'A'+10;
}
char NumberToDig(int n) {
if( n < 10 )
return '0'+n;
return n-10+'A';
}
const int base = 1000*1000*1000;
void mulint(vi& a, int b) { //a*= b
for(int i = 0, carry = 0; i < sz(a) || carry; i++) {
if( i == sz(a) )
a.push_back(0);
llong cur = carry + a[i] * 1LL * b;
a[i] = int(cur%base);
carry = int(cur/base);
}
while( sz(a) > 1 && a.back() == 0 )
a.pop_back();
}
int divint(vi& a, int d) { // carry = a%d; a /= d; return carry;
int carry = 0;
for(int i = sz(a)-1; i >= 0; i--) {
llong cur = a[i] + carry * 1LL * base;
a[i] = int(cur/d);
carry = int(cur%d);
}
while( sz(a) > 1 && a.back() == 0 )
a.pop_back();
return carry;
}
void add(vi& a, vi& b) { // a += b
for(int i = 0, c = 0, l = max(sz(a),sz(b)); i < l || c; i++) {
if( i == sz(a) )
a.push_back(0);
a[i] += ((i<sz(b))?b[i]:0) + c;
c = a[i] >= base;
if( c ) a[i] -= base;
}
}
int main() {
ios_base::sync_with_stdio(0);
cin.tie(0);
int from, to; cin >> from >> to;
string s; cin >> s;
vi res(1,0); vi m(1,1); vi tmp;
for(int i = sz(s)-1; i >= 0; i--) {
tmp.assign(m.begin(), m.end());
mulint(tmp,DigToNumber(s[i]));
add(res,tmp); mulint(m,from);
}
vi ans;
while( sz(res) > 1 || res.back() != 0 )
ans.push_back(divint(res,to));
if( sz(ans) == 0 )
ans.push_back(0);
for(int i = sz(ans)-1; i >= 0; i--)
cout << NumberToDig(ans[i]);
cout << "\n";
return 0;
}
How "from -> to" works for string "s":
accumulate Big Number (vector< int >) "res" with s[i]*from^(|s|-i-1), i = |s|-1..0
compute digits by dividing "res" by "to" until res > 0 and save them to another vector
send it to output digit-by-digit (you can use ostringstream instead)
PS I've noted that nickname of thread starter is Denis. And I think this link may be useful too.

How to add two numbers without using ++ or + or another arithmetic operator

How do I add two numbers without using ++ or + or any other arithmetic operator?
It was a question asked a long time ago in some campus interview. Anyway, today someone asked a question regarding some bit-manipulations, and in answers a beautiful quide Stanford bit twiddling was referred. I spend some time studying it and thought that there actually might be an answer to the question. I don't know, I could not find one. Does an answer exist?
This is something I have written a while ago for fun. It uses a two's complement representation and implements addition using repeated shifts with a carry bit, implementing other operators mostly in terms of addition.
#include <stdlib.h> /* atoi() */
#include <stdio.h> /* (f)printf */
#include <assert.h> /* assert() */
int add(int x, int y) {
int carry = 0;
int result = 0;
int i;
for(i = 0; i < 32; ++i) {
int a = (x >> i) & 1;
int b = (y >> i) & 1;
result |= ((a ^ b) ^ carry) << i;
carry = (a & b) | (b & carry) | (carry & a);
}
return result;
}
int negate(int x) {
return add(~x, 1);
}
int subtract(int x, int y) {
return add(x, negate(y));
}
int is_even(int n) {
return !(n & 1);
}
int divide_by_two(int n) {
return n >> 1;
}
int multiply_by_two(int n) {
return n << 1;
}
int multiply(int x, int y) {
int result = 0;
if(x < 0 && y < 0) {
return multiply(negate(x), negate(y));
}
if(x >= 0 && y < 0) {
return multiply(y, x);
}
while(y > 0) {
if(is_even(y)) {
x = multiply_by_two(x);
y = divide_by_two(y);
} else {
result = add(result, x);
y = add(y, -1);
}
}
return result;
}
int main(int argc, char **argv) {
int from = -100, to = 100;
int i, j;
for(i = from; i <= to; ++i) {
assert(0 - i == negate(i));
assert(((i % 2) == 0) == is_even(i));
assert(i * 2 == multiply_by_two(i));
if(is_even(i)) {
assert(i / 2 == divide_by_two(i));
}
}
for(i = from; i <= to; ++i) {
for(j = from; j <= to; ++j) {
assert(i + j == add(i, j));
assert(i - j == subtract(i, j));
assert(i * j == multiply(i, j));
}
}
return 0;
}
Or, rather than Jason's bitwise approach, you can calculate many bits in parallel - this should run much faster with large numbers. In each step figure out the carry part and the part that is sum. You attempt to add the carry to the sum, which could cause carry again - hence the loop.
>>> def add(a, b):
while a != 0:
# v carry portion| v sum portion
a, b = ((a & b) << 1), (a ^ b)
print b, a
return b
when you add 1 and 3, both numbers have the 1 bit set, so the sum of that 1+1 carries. The next step you add 2 to 2 and that carries into the correct sum four. That causes an exit
>>> add(1,3)
2 2
4 0
4
Or a more complex example
>>> add(45, 291)
66 270
4 332
8 328
16 320
336
Edit:
For it to work easily on signed numbers you need to introduce an upper limit on a and b
>>> def add(a, b):
while a != 0:
# v carry portion| v sum portion
a, b = ((a & b) << 1), (a ^ b)
a &= 0xFFFFFFFF
b &= 0xFFFFFFFF
print b, a
return b
Try it on
add(-1, 1)
to see a single bit carry up through the entire range and overflow over 32 iterations
4294967294 2
4294967292 4
4294967288 8
...
4294901760 65536
...
2147483648 2147483648
0 0
0L
int Add(int a, int b)
{
while (b)
{
int carry = a & b;
a = a ^ b;
b = carry << 1;
}
return a;
}
You could transform an adder circuit into an algorithm. They only do bitwise operations =)
Well, to implement an equivalent with boolean operators is quite simple: you do a bit-by-bit sum (which is an XOR), with carry (which is an AND). Like this:
int sum(int value1, int value2)
{
int result = 0;
int carry = 0;
for (int mask = 1; mask != 0; mask <<= 1)
{
int bit1 = value1 & mask;
int bit2 = value2 & mask;
result |= mask & (carry ^ bit1 ^ bit2);
carry = ((bit1 & bit2) | (bit1 & carry) | (bit2 & carry)) << 1;
}
return result;
}
You've already gotten a couple bit manipulation answers. Here's something different.
In C, arr[ind] == *(arr + ind). This lets us do slightly confusing (but legal) things like int arr = { 3, 1, 4, 5 }; int val = 0[arr];.
So we can define a custom add function (without explicit use of an arithmetic operator) thusly:
unsigned int add(unsigned int const a, unsigned int const b)
{
/* this works b/c sizeof(char) == 1, by definition */
char * const aPtr = (char *)a;
return (int) &(aPtr[b]);
}
Alternately, if we want to avoid this trick, and if by arithmetic operator they include |, &, and ^ (so direct bit manipulation is not allowed) , we can do it via lookup table:
typedef unsigned char byte;
const byte lut_add_mod_256[256][256] = {
{ 0, 1, 2, /*...*/, 255 },
{ 1, 2, /*...*/, 255, 0 },
{ 2, /*...*/, 255, 0, 1 },
/*...*/
{ 254, 255, 0, 1, /*...*/, 253 },
{ 255, 0, 1, /*...*/, 253, 254 },
};
const byte lut_add_carry_256[256][256] = {
{ 0, 0, 0, /*...*/, 0 },
{ 0, 0, /*...*/, 0, 1 },
{ 0, /*...*/, 0, 1, 1 },
/*...*/
{ 0, 0, 1, /*...*/, 1 },
{ 0, 1, 1, /*...*/, 1 },
};
void add_byte(byte const a, byte const b, byte * const sum, byte * const carry)
{
*sum = lut_add_mod_256[a][b];
*carry = lut_add_carry_256[a][b];
}
unsigned int add(unsigned int a, unsigned int b)
{
unsigned int sum;
unsigned int carry;
byte * const aBytes = (byte *) &a;
byte * const bBytes = (byte *) &b;
byte * const sumBytes = (byte *) ∑
byte * const carryBytes = (byte *) &carry;
byte const test[4] = { 0x12, 0x34, 0x56, 0x78 };
byte BYTE_0, BYTE_1, BYTE_2, BYTE_3;
/* figure out endian-ness */
if (0x12345678 == *(unsigned int *)test)
{
BYTE_0 = 3;
BYTE_1 = 2;
BYTE_2 = 1;
BYTE_3 = 0;
}
else
{
BYTE_0 = 0;
BYTE_1 = 1;
BYTE_2 = 2;
BYTE_3 = 3;
}
/* assume 4 bytes to the unsigned int */
add_byte(aBytes[BYTE_0], bBytes[BYTE_0], &sumBytes[BYTE_0], &carryBytes[BYTE_0]);
add_byte(aBytes[BYTE_1], bBytes[BYTE_1], &sumBytes[BYTE_1], &carryBytes[BYTE_1]);
if (carryBytes[BYTE_0] == 1)
{
if (sumBytes[BYTE_1] == 255)
{
sumBytes[BYTE_1] = 0;
carryBytes[BYTE_1] = 1;
}
else
{
add_byte(sumBytes[BYTE_1], 1, &sumBytes[BYTE_1], &carryBytes[BYTE_0]);
}
}
add_byte(aBytes[BYTE_2], bBytes[BYTE_2], &sumBytes[BYTE_2], &carryBytes[BYTE_2]);
if (carryBytes[BYTE_1] == 1)
{
if (sumBytes[BYTE_2] == 255)
{
sumBytes[BYTE_2] = 0;
carryBytes[BYTE_2] = 1;
}
else
{
add_byte(sumBytes[BYTE_2], 1, &sumBytes[BYTE_2], &carryBytes[BYTE_1]);
}
}
add_byte(aBytes[BYTE_3], bBytes[BYTE_3], &sumBytes[BYTE_3], &carryBytes[BYTE_3]);
if (carryBytes[BYTE_2] == 1)
{
if (sumBytes[BYTE_3] == 255)
{
sumBytes[BYTE_3] = 0;
carryBytes[BYTE_3] = 1;
}
else
{
add_byte(sumBytes[BYTE_3], 1, &sumBytes[BYTE_3], &carryBytes[BYTE_2]);
}
}
return sum;
}
All arithmetic operations decompose to bitwise operations to be implemented in electronics, using NAND, AND, OR, etc. gates.
Adder composition can be seen here.
For unsigned numbers, use the same addition algorithm as you learned in first class, but for base 2 instead of base 10. Example for 3+2 (base 10), i.e 11+10 in base 2:
1 ‹--- carry bit
0 1 1 ‹--- first operand (3)
+ 0 1 0 ‹--- second operand (2)
-------
1 0 1 ‹--- total sum (calculated in three steps)
If you're feeling comedic, there's always this spectacularly awful approach for adding two (relatively small) unsigned integers. No arithmetic operators anywhere in your code.
In C#:
static uint JokeAdder(uint a, uint b)
{
string result = string.Format(string.Format("{{0,{0}}}{{1,{1}}}", a, b), null, null);
return result.Length;
}
In C, using stdio (replace snprintf with _snprintf on Microsoft compilers):
#include <stdio.h>
unsigned int JokeAdder(unsigned int a, unsigned int b)
{
return snprintf(NULL, 0, "%*.*s%*.*s", a, a, "", b, b, "");
}
Here is a compact C solution. Sometimes recursion is more readable than loops.
int add(int a, int b){
if (b == 0) return a;
return add(a ^ b, (a & b) << 1);
}
#include<stdio.h>
int add(int x, int y) {
int a, b;
do {
a = x & y;
b = x ^ y;
x = a << 1;
y = b;
} while (a);
return b;
}
int main( void ){
printf( "2 + 3 = %d", add(2,3));
return 0;
}
short int ripple_adder(short int a, short int b)
{
short int i, c, s, ai, bi;
c = s = 0;
for (i=0; i<16; i++)
{
ai = a & 1;
bi = b & 1;
s |= (((ai ^ bi)^c) << i);
c = (ai & bi) | (c & (ai ^ bi));
a >>= 1;
b >>= 1;
}
s |= (c << i);
return s;
}
## to add or subtract without using '+' and '-' ##
#include<stdio.h>
#include<conio.h>
#include<process.h>
void main()
{
int sub,a,b,carry,temp,c,d;
clrscr();
printf("enter a and b:");
scanf("%d%d",&a,&b);
c=a;
d=b;
while(b)
{
carry=a&b;
a=a^b;
b=carry<<1;
}
printf("add(%d,%d):%d\n",c,d,a);
temp=~d+1; //take 2's complement of b and add it with a
sub=c+temp;
printf("diff(%d,%d):%d\n",c,d,temp);
getch();
}
The following would work.
x - (-y)
This can be done recursively:
int add_without_arithm_recursively(int a, int b)
{
if (b == 0)
return a;
int sum = a ^ b; // add without carrying
int carry = (a & b) << 1; // carry, but don’t add
return add_without_arithm_recursively(sum, carry); // recurse
}
or iteratively:
int add_without_arithm_iteratively(int a, int b)
{
int sum, carry;
do
{
sum = a ^ b; // add without carrying
carry = (a & b) << 1; // carry, but don’t add
a = sum;
b = carry;
} while (b != 0);
return a;
}
Code to implement add,multiplication without using +,* operator;
for subtraction pass 1's complement +1 of number to add function
#include<stdio.h>
unsigned int add(unsigned int x,unsigned int y)
{
int carry=0;
while (y != 0)
{
carry = x & y;
x = x ^ y;
y = carry << 1;
}
return x;
}
int multiply(int a,int b)
{
int res=0;
int i=0;
int large= a>b ? a :b ;
int small= a<b ? a :b ;
for(i=0;i<small;i++)
{
res = add(large,res);
}
return res;
}
int main()
{
printf("Sum :: %u,Multiply is :: %d",add(7,15),multiply(111,111));
return 0;
}
The question asks how to add two numbers so I don't understand why all the solutions offers the addition of two integers? What if the two numbers were floats i.e. 2.3 + 1.8 are they also not considered numbers? Either the question needs to be revised or the answers.
For floats I believe the numbers should be broken into their components i.e. 2.3 = 2 + 0.3 then the 0.3 should be converted to an integer representation by multiplying with its exponent factor i.e 0.3 = 3 * 10^-1 do the same for the other number and then add the integer segment using one of the bit shift methods given as a solution above handling situations for carry over to the unit digits location i.e. 2.7 + 3.3 = 6.0 = 2+3+0.7+0.3 = 2 + 3 + 7x10^-1 + 3x10^-1 = 2 + 3 + 10^10^-1 (this can be handled as two separate additions 2+3=5 and then 5+1=6)
With given answers above, it can be done in single line code:
int add(int a, int b) {
return (b == 0) ? a : add(a ^ b, (a & b) << 1);
}
You can use double negetive to add two integers for example:
int sum2(int a, int b){
return -(-a-b);
}
Without using any operators adding two integers can be done in different ways as follows:
int sum_of_2 (int a, int b){
int sum=0, carry=sum;
sum =a^b;
carry = (a&b)<<1;
return (b==0)? a: sum_of_2(sum, carry);
}
// Or you can just do it in one line as follows:
int sum_of_2 (int a, int b){
return (b==0)? a: sum_of_2(a^b, (a&b)<<1);
}
// OR you can use the while loop instead of recursion function as follows
int sum_of_2 (int a, int b){
if(b==0){
return a;
}
while(b!=0){
int sum = a^b;
int carry = (a&b)<<1;
a= sum;
b=carry;
}
return a;
}
int add_without_arithmatic(int a, int b)
{
int sum;
char *p;
p = (char *)a;
sum = (int)&p[b];
printf("\nSum : %d",sum);
}