How can I control custom placement of note heads (left side, right side of stem) for chords in Lilypond - customization

How can I explicitly control placement of note heads in a chord, as to the left or to the right of the stem, in Lilypond? I am using version 2.22.0.
My application is engraving music for the Steirische Harmonika, or "button box" accordion. Roughly speaking, in the widely used Griffschrift notation, different node head shapes are used to help identify which button row contains the designated note, round note heads for the outer two rows, "X" heads for the inner two rows. Because a played chord may draw buttons from any of the four rows, chords in Griffschrift notation tend to cluster some notes tightly, sometimes even placing two instances of a note head on the same staff line in a chord, but with different head shapes. Obviously, one head has to go on the left and the other on the right.
I've noticed, in music scores that I play from, that the better engraved scores tend to encode notes for the buttons in the outer rows of the instrument on the right side of the stem, and buttons in the inner rows on the left side of the stem. This actually contributes to legibility, since the left/right position of the note heads corresponds physically to the position of the button rows on the keyboard.
The Lilypond note placement and collision resolution algorithm, of course, knows nothing about this, and automatically makes good decisions for traditional instruments and voices, but has no builtin way of accommodating the eccentricities of notating for this instrument.
Can anyone recommend how I might address this level of fine-tuning in Lilypond?
A little background: I am working on engraving a polka that I've made quite a few personalization alterations to. This is my first effort at engraving in Lilypond for this instrument. I had some experience with Lilypond a dozen years ago, doing about 20 or so pieces, but solely for choral music and piano accompaniment. I've looked quite a bit through the Lilypond documentation: Learning, Notation, Internals, and to lesser degree Extending reference manuals. They're rather inscrutable. They do describe things rather nicely, for the particular features they do describe, and they are very rich in examples. But it is extremely difficult to find or distill constructive guidance on how to "roll your own" features, as it were.

Related

ai junkie neural networks tutorial - Not getting it

I've been trying to understand the neural networks tutorial at http://www.ai-junkie.com/ann/evolved/nnt1.html
I think I follow most of the tutorial up to page 8 (the last page), although maybe I don't because if I did, I'd probably understand the last page wouldn't I? Unfortunately for me, this page is not well explained because it should apparently be "easily understood from the comments within the code". And, the forum doesn't seem to work.
I guess I'm hoping for someone who has already seen or worked through this tutorial to help explain, but if you haven't and you'd like to take a look, go right ahead. Basically it combines a neural network and a genetic algorithm in order to control the left and right tracks of little tanks as they go around sweeping up mines. The neural network takes the position of the nearest mine and the direction(lookat) vector of the tank as inputs, and outputs the left and right tank tracks, which it uses to update the velocity and rotation of the tanks. At the end of a round, the tanks are bred to produce a new generation of better tanks.
But...I just don't get it. Specifically, I don't see exactly how the tank track values relate to the ability of the tank to pickup the mines, and I don't understand the difference between the rubbish tanks that don't pick up any mines and the good ones that sweep up mines quickly and efficiently.
Obviously(if you run the demo program) the tanks are improving the longer the simulation runs. But can someone explain to me (hopefully, to quote Tony Robinson, in terms that a Beano reader could understand) exactly what is going on?
Thanks!
Here is the best answer I can give, based on my interpretation of your question. Apologize if it is not what you were asking for, but you did ask for the most basic explanation.
I don't see exactly how the tank track values relate to the ability of
the tank to pickup the mines
The way the tank works is that it has two tracks - left and right. Each of them has a speed. If both tracks are moving forward at full speed, the tank will move forward in a straight line. If the left track is moving forward and the right track is moving backward at the same speed, the tank will rotate clockwise. So it's basically a complicated control mechanism, designed to make the exercise more interesting than it would be if the tanks could take "move one square north" type instructions.
The whole point of the neural net is to take the inputs (current tank direction and location of nearest mine) and generate outputs to correctly steer the tank with its wonky left/right tread controls towards the mine. The NN learns that if a mine is to its right, it needs to set left to "forward", right to "back" until it's pointed at the mine. Then it needs to set both left and right to "forward" so it actually moves forward towards the mine.
I don't understand the difference between the rubbish tanks that don't
pick up any mines and the good ones that sweep up mines quickly and
efficiently.
The rubbish tanks don't have the right NN to steer the tank correctly. If it sees a mine to its right, it might rotate left away from the mine because it doesn't "know" how to steer right. Or it might turn away from a mine it's already pointed at, rather than moving towards it. The good ones "know" how to move towards mines, which is to say that their NNs are weighted in such a way that when the input for the nearest mine is given, those NNs will tend to move towards the mine rather than away from it.

What the math behind such animation trajectories?

What's the math behind something like this? C++ perspective.
More examples on this MSDN page here.
UPDATE: Was asked for a more concrete question. What's the math/animation theory for Penner's tweens^? How do you come up with those formulas? What are the math principles they are based on?
Me and math, we are not BFFs! I'm working on a multi-FLOAT value animator for a UI thing I'm writing and I was wondering what's the math from a native C++ programmer's point of view for generating such a trajectory.
Googled and found code but I'm also looking for a bit of theory from a programming perspective... not just code or pure math. I can whip the code I need together from what I found online but I'd like to understand it in the process. Like this site that allows one to experiment with an easing function generator.
I could also use the Windows Animation Manager (and I might if things get bloody), but that operates on a single float. And just animating RGB requires animating each FLOAT by itself. It leads to huge code-bloat... very bad.
If anyone has some hints, I would very much appreciate it. I'm looking mainly for theory from a programming perspective. The end goal is to write a bunch of different animation algorithms that can animate a set of FLOATs from their initial values to their target values in a period of time or speed and such.
The plan is not just to get the code written, but also to understand what goes on behind it. And then maybe get creative with this animations... unless these prove to be some rigid standard math functions.
So think of the requirements for a tweening function.
The function should represent a valid smooth motion between two positions/states. For those who haven't read the relevant section of the book, this means that f should be a continuous and differentiable function such that f(0) == 0 and f(1) == 1; actual motions are constructed using this as a primitive.
"Ease" (in the animation tweening sense) means "derivative is zero"; this gives the effect that the motion starts and/or ends with zero velocity (i.e. a standstill). So "ease-in" means f'(0) == 0 and "ease-out" means f'(1) == 0.
Everything else is based on aesthetic considerations.
Cubic curves (e.g. Bezier/Hermite splines) are popular partly because they let you control both the position and tangent(speed) at both ends of the curve, but also because they are close to the natural shape that a flexible beam adopts if you constrain its position it at a few points. The cubic shape minimises the internal stress of a flexed beam. (Unsurprisingly, these wooden beams are known to boat designers and other drafters as "splines", for this is where we get the word.)
Historically, hand-drawn cartoon animators have always specified their tweens by feel, based on experience. Key animators draw a chart (called a "timing chart"; look this up on your favourite image search engine) on the side of their key drawings, which tell the inbetweeners how the intermediate cels should be timed.
Camera motion (pan, zoom, rotate), however, were a different matter. Layout/animation artists specified the start and the end of the motion (specified using a field chart), the number of frames over which the motion would happen, instructions on easing and anything else the layout/animation team felt important (e.g. if you had to "linger").
The actual motions needed to be calculated; the audience would notice if one frame of a rotation was out even by a couple of hundredths of a degree. Doing these calculations was part of the job of the camera department.
There's a wonderful book called "Basic Animation Stand Techniques" by Brian Salt which dates from back in the days of physical animation cameras, and describes in some detail the sort of thing they had to do, and to what extent. I recommend it if you're at all interested in this stuff.
Math is math is math.
A good tutorial on Riemann Sum will demonstrate the concept.
In fundamental programming, you have a math equation that generates a Y value (height) for a given X (time). Periodically, like once a second for example, you plug in a new X (time) value and get the height back.
The more often you evaluate this function, the better the resolution (this is where the diagrams of a Riemann sum and calculus come in). The best you will get is an approximation to the curve that looks like stair steps.
In embedded systems, there is not a lot of resources to evaluate a function like this very frequently. The curve can be approximated using line segments. The more line segments, the better the approximation (improves accuracy). So one method is to break up the curve into line segments. For a given x, use the appropriate linear formula for the line. Evaluation of a line usually takes less resources than evaluating a higher degree equation.
Your curves are usually generated from equations of Physics. So not only do you need to improve on Math, you should also improve on Physics.
Otherwise you can search the web for libraries that handle trajectories.
As we traverse closer to the hardware, a timer can be used to call a method that evaluates the trajectory function for the given X. The timer helps produce a more accurate time value.
Search the web for "curve fit algorithm", "Bresenham algorithm", "graphics collision detection algorithms"

Pattern matching/recognition library for vectors (like OpenCV for image input)

Does anyone know a good pattern matching/recognition library in C++ (oss preferred) that is able to detect whether a list of vectors is an arrow or some other class?
I already know OpenCV but this is meant to be used for raster graphics (or did I missed something?)... but I already have a vector geometry and it sounds strange to convert them back into a raster graphic where you have to detect the edges again.
So what I need is a library that uses a list of vectors as input instead of a raster graphic and can recognize if the vectors are an arrow (independent from the direction) and extract the parts of the arrow (head/tip/tail etc.).
Anyone who knows such a lib or has a hint where to look for this kind of problem (algorithms etc.)?
I try to change the way a UI is used. I already tried protractor algorithm and divided the recognition step into different parts, e.g. for arrow example:
draw, stop drawing and take result
treat first line as body (route line, arrow shaft)
wait for accept (=> result is recognised as simple line replace hand drawn graphic with route graphic) or next draw process
draw arrow head and take result coordinates
wait for accept/finish button (=> result is recognised as arrow and is no simple route)
a) replace hand drawn vectors by correct arrow graphic
b) or go on with any fletchings? bla, bla, bla
But I want to do this in a single step for all vector lines (regardless of the order and direction). Are there any recommendations?
And what if the first is a a polyline with an angle and there is also a recognition of a caret but the follow up symbology needs to decide between them?
I want to draw commands instead of searching it them in a burdened menu. But it is important to detect also the parts of a graphic (e.g. center line, left line, ...) and keep aspect ratio (dimension) as far as it is possible, which means that key coordinates should be kept, too (e.g. arrow tip). This is important for replacing the hand-drawn vectors with the corrected standard graphic.
Is this possible with a lib as a single task or should I stay at the current concept of recognising each polyline separately and look at the input order (e.g. first line must be the direction)?
You can look here to get an idea: http://depts.washington.edu/aimgroup/proj/dollar/
There is the $1 Recognizer algorithm and some derived ones and you can try them online.
The problem is, that my "commands" consists of multiple lines and every line might have a different special meaning in the context to get the complete graphic. The algorithms and libraries I already know (like the $1 Recognizer above) are more related to single gestures instead of a complex order of multiple gesture inputs which gets the precise meaning if interpreted as a whole sketch.
I think continuing with the interpretion of each line separately and not puting it into the whole context (recognise the whole sketch) could lead to a dead end. But maybe a mixed approach might get it.
Real life comparism: It is like when somebody draws a horse. You wouldn't say it is a horse if he just started to draw the first line - you'll need some more input, e.g. 4 legs etc.
(Well, I know not everyone is good in drawing and some horses could look like cows... but anyway, this should give you an idea what I mean.)
Any hints?
Update: I've found a video here that is close to the problem. The missing link is how parts of the structure are accessible after the recognition but this can be done in a separate step, too (after knowing what the drawing shows).
In my humble opinion I'don't think that there's a library in the wild that fulfils such specific needs. In the end you'll end up writing custom code.
Either way, the first thing you'll have to do is to extract classification features from every gesture you detect. You'll have then to put your acquired feature vectors in a feature space. Once you do this, there are literally a million things you can do in order to classify the feature vectors to one of the available classes (e.g., arrow, triangle etc.). For example, the guys from the University of Washington in the link you've supplied are doing their feature extraction in steps 1,2 and 3 and they classify the acquired feature vector in step 4.
The idea of breaking the gesture into sub-gestures sounds tempting, though I have a suspicion it will introduce problems in a matter of ways (e.g., how to detect the end of a sub-gesture and the beginning of the next) and it will also introduce a significant overhead
since you will end up in additional steps and a short of a decision tree structure.
One other thing that I forgot to mention above is that you will also need to create a training data-set of a reasonable size in order to train your classifiers.
I won't get into the trouble of suggesting libraries, classifiers, linear algebra packages etc. since this is out of the scope in the first place (i.e., kindly I would suggest to search the web for specific components that will help you build your application).

Group of soldiers moving on grid map together

I am making RTS game and whole terrain is like grid ( cells with x and y coordinates). I have couple soldiers in group (military unit) and I want to send them from point A to point B ( between points A and B is obstacles ). I can solve for one soldier using A* algorithm and that is not problem. How to achieve that my group of soldiers always going together ? (I notice couple corner cases when they split and go with different ways to the same destination point, I can choose leader of group but I don't need that soldiers going on same cells but by leader, for example couple at right side, couple at left side if it is possible). Was anyone solving similar problem in past ? Any idea for algorithm modification ?
You want a flocking algorithm, where you have the leader of the pack follow the A* directions and the other follow the leader in formation.
In case you have very large formations you are going to get into issues like "how to fit all those soldiers through this small hole" and that's where you will need to get smart.
An example could be to enforce a single line formation for tight spots, others would involve breaking down the groups into smaller squads.
If you don't have too many soldiers, a straightforward modification would be to consider the problem as multidimensional problem with each soldier representing 2 dimensions. You can add constaints to this multidimensional space to ensure that your soldiers keep close to each other. However, this might become computationally expensive.
Artifical Potential Fields are usually less expensive and easy to implement. And they can be extended to cooperative strategies. If combined with graph search techiques, you cannot get stuck in local minima. Google gives plenty of starting points: http://www.google.com/search?ie=UTF-8&oe=utf-8&q=motion+planning+potential+fields

Image Processing: Algorithm Improvement for 'Coca-Cola Can' Recognition

One of the most interesting projects I've worked on in the past couple of years was a project about image processing. The goal was to develop a system to be able to recognize Coca-Cola 'cans' (note that I'm stressing the word 'cans', you'll see why in a minute). You can see a sample below, with the can recognized in the green rectangle with scale and rotation.
Some constraints on the project:
The background could be very noisy.
The can could have any scale or rotation or even orientation (within reasonable limits).
The image could have some degree of fuzziness (contours might not be entirely straight).
There could be Coca-Cola bottles in the image, and the algorithm should only detect the can!
The brightness of the image could vary a lot (so you can't rely "too much" on color detection).
The can could be partly hidden on the sides or the middle and possibly partly hidden behind a bottle.
There could be no can at all in the image, in which case you had to find nothing and write a message saying so.
So you could end up with tricky things like this (which in this case had my algorithm totally fail):
I did this project a while ago, and had a lot of fun doing it, and I had a decent implementation. Here are some details about my implementation:
Language: Done in C++ using OpenCV library.
Pre-processing: For the image pre-processing, i.e. transforming the image into a more raw form to give to the algorithm, I used 2 methods:
Changing color domain from RGB to HSV and filtering based on "red" hue, saturation above a certain threshold to avoid orange-like colors, and filtering of low value to avoid dark tones. The end result was a binary black and white image, where all white pixels would represent the pixels that match this threshold. Obviously there is still a lot of crap in the image, but this reduces the number of dimensions you have to work with.
Noise filtering using median filtering (taking the median pixel value of all neighbors and replace the pixel by this value) to reduce noise.
Using Canny Edge Detection Filter to get the contours of all items after 2 precedent steps.
Algorithm: The algorithm itself I chose for this task was taken from this awesome book on feature extraction and called Generalized Hough Transform (pretty different from the regular Hough Transform). It basically says a few things:
You can describe an object in space without knowing its analytical equation (which is the case here).
It is resistant to image deformations such as scaling and rotation, as it will basically test your image for every combination of scale factor and rotation factor.
It uses a base model (a template) that the algorithm will "learn".
Each pixel remaining in the contour image will vote for another pixel which will supposedly be the center (in terms of gravity) of your object, based on what it learned from the model.
In the end, you end up with a heat map of the votes, for example here all the pixels of the contour of the can will vote for its gravitational center, so you'll have a lot of votes in the same pixel corresponding to the center, and will see a peak in the heat map as below:
Once you have that, a simple threshold-based heuristic can give you the location of the center pixel, from which you can derive the scale and rotation and then plot your little rectangle around it (final scale and rotation factor will obviously be relative to your original template). In theory at least...
Results: Now, while this approach worked in the basic cases, it was severely lacking in some areas:
It is extremely slow! I'm not stressing this enough. Almost a full day was needed to process the 30 test images, obviously because I had a very high scaling factor for rotation and translation, since some of the cans were very small.
It was completely lost when bottles were in the image, and for some reason almost always found the bottle instead of the can (perhaps because bottles were bigger, thus had more pixels, thus more votes)
Fuzzy images were also no good, since the votes ended up in pixel at random locations around the center, thus ending with a very noisy heat map.
In-variance in translation and rotation was achieved, but not in orientation, meaning that a can that was not directly facing the camera objective wasn't recognized.
Can you help me improve my specific algorithm, using exclusively OpenCV features, to resolve the four specific issues mentioned?
I hope some people will also learn something out of it as well, after all I think not only people who ask questions should learn. :)
An alternative approach would be to extract features (keypoints) using the scale-invariant feature transform (SIFT) or Speeded Up Robust Features (SURF).
You can find a nice OpenCV code example in Java, C++, and Python on this page: Features2D + Homography to find a known object
Both algorithms are invariant to scaling and rotation. Since they work with features, you can also handle occlusion (as long as enough keypoints are visible).
Image source: tutorial example
The processing takes a few hundred ms for SIFT, SURF is bit faster, but it not suitable for real-time applications. ORB uses FAST which is weaker regarding rotation invariance.
The original papers
SURF: Speeded Up Robust Features
Distinctive Image Features
from Scale-Invariant Keypoints
ORB: an efficient alternative to SIFT or SURF
To speed things up, I would take advantage of the fact that you are not asked to find an arbitrary image/object, but specifically one with the Coca-Cola logo. This is significant because this logo is very distinctive, and it should have a characteristic, scale-invariant signature in the frequency domain, particularly in the red channel of RGB. That is to say, the alternating pattern of red-to-white-to-red encountered by a horizontal scan line (trained on a horizontally aligned logo) will have a distinctive "rhythm" as it passes through the central axis of the logo. That rhythm will "speed up" or "slow down" at different scales and orientations, but will remain proportionally equivalent. You could identify/define a few dozen such scanlines, both horizontally and vertically through the logo and several more diagonally, in a starburst pattern. Call these the "signature scan lines."
Searching for this signature in the target image is a simple matter of scanning the image in horizontal strips. Look for a high-frequency in the red-channel (indicating moving from a red region to a white one), and once found, see if it is followed by one of the frequency rhythms identified in the training session. Once a match is found, you will instantly know the scan-line's orientation and location in the logo (if you keep track of those things during training), so identifying the boundaries of the logo from there is trivial.
I would be surprised if this weren't a linearly-efficient algorithm, or nearly so. It obviously doesn't address your can-bottle discrimination, but at least you'll have your logos.
(Update: for bottle recognition I would look for coke (the brown liquid) adjacent to the logo -- that is, inside the bottle. Or, in the case of an empty bottle, I would look for a cap which will always have the same basic shape, size, and distance from the logo and will typically be all white or red. Search for a solid color eliptical shape where a cap should be, relative to the logo. Not foolproof of course, but your goal here should be to find the easy ones fast.)
(It's been a few years since my image processing days, so I kept this suggestion high-level and conceptual. I think it might slightly approximate how a human eye might operate -- or at least how my brain does!)
Fun problem: when I glanced at your bottle image I thought it was a can too. But, as a human, what I did to tell the difference is that I then noticed it was also a bottle...
So, to tell cans and bottles apart, how about simply scanning for bottles first? If you find one, mask out the label before looking for cans.
Not too hard to implement if you're already doing cans. The real downside is it doubles your processing time. (But thinking ahead to real-world applications, you're going to end up wanting to do bottles anyway ;-)
Isn't it difficult even for humans to distinguish between a bottle and a can in the second image (provided the transparent region of the bottle is hidden)?
They are almost the same except for a very small region (that is, width at the top of the can is a little small while the wrapper of the bottle is the same width throughout, but a minor change right?)
The first thing that came to my mind was to check for the red top of bottle. But it is still a problem, if there is no top for the bottle, or if it is partially hidden (as mentioned above).
The second thing I thought was about the transparency of bottle. OpenCV has some works on finding transparent objects in an image. Check the below links.
OpenCV Meeting Notes Minutes 2012-03-19
OpenCV Meeting Notes Minutes 2012-02-28
Particularly look at this to see how accurately they detect glass:
OpenCV Meeting Notes Minutes 2012-04-24
See their implementation result:
They say it is the implementation of the paper "A Geodesic Active Contour Framework for Finding Glass" by K. McHenry and J. Ponce, CVPR 2006.
It might be helpful in your case a little bit, but problem arises again if the bottle is filled.
So I think here, you can search for the transparent body of the bottles first or for a red region connected to two transparent objects laterally which is obviously the bottle. (When working ideally, an image as follows.)
Now you can remove the yellow region, that is, the label of the bottle and run your algorithm to find the can.
Anyway, this solution also has different problems like in the other solutions.
It works only if your bottle is empty. In that case, you will have to search for the red region between the two black colors (if the Coca Cola liquid is black).
Another problem if transparent part is covered.
But anyway, if there are none of the above problems in the pictures, this seems be to a better way.
I really like Darren Cook's and stacker's answers to this problem. I was in the midst of throwing my thoughts into a comment on those, but I believe my approach is too answer-shaped to not leave here.
In short summary, you've identified an algorithm to determine that a Coca-Cola logo is present at a particular location in space. You're now trying to determine, for arbitrary orientations and arbitrary scaling factors, a heuristic suitable for distinguishing Coca-Cola cans from other objects, inclusive of: bottles, billboards, advertisements, and Coca-Cola paraphernalia all associated with this iconic logo. You didn't call out many of these additional cases in your problem statement, but I feel they're vital to the success of your algorithm.
The secret here is determining what visual features a can contains or, through the negative space, what features are present for other Coke products that are not present for cans. To that end, the current top answer sketches out a basic approach for selecting "can" if and only if "bottle" is not identified, either by the presence of a bottle cap, liquid, or other similar visual heuristics.
The problem is this breaks down. A bottle could, for example, be empty and lack the presence of a cap, leading to a false positive. Or, it could be a partial bottle with additional features mangled, leading again to false detection. Needless to say, this isn't elegant, nor is it effective for our purposes.
To this end, the most correct selection criteria for cans appear to be the following:
Is the shape of the object silhouette, as you sketched out in your question, correct? If so, +1.
If we assume the presence of natural or artificial light, do we detect a chrome outline to the bottle that signifies whether this is made of aluminum? If so, +1.
Do we determine that the specular properties of the object are correct, relative to our light sources (illustrative video link on light source detection)? If so, +1.
Can we determine any other properties about the object that identify it as a can, including, but not limited to, the topological image skew of the logo, the orientation of the object, the juxtaposition of the object (for example, on a planar surface like a table or in the context of other cans), and the presence of a pull tab? If so, for each, +1.
Your classification might then look like the following:
For each candidate match, if the presence of a Coca Cola logo was detected, draw a gray border.
For each match over +2, draw a red border.
This visually highlights to the user what was detected, emphasizing weak positives that may, correctly, be detected as mangled cans.
The detection of each property carries a very different time and space complexity, and for each approach, a quick pass through http://dsp.stackexchange.com is more than reasonable for determining the most correct and most efficient algorithm for your purposes. My intent here is, purely and simply, to emphasize that detecting if something is a can by invalidating a small portion of the candidate detection space isn't the most robust or effective solution to this problem, and ideally, you should take the appropriate actions accordingly.
And hey, congrats on the Hacker News posting! On the whole, this is a pretty terrific question worthy of the publicity it received. :)
Looking at shape
Take a gander at the shape of the red portion of the can/bottle. Notice how the can tapers off slightly at the very top whereas the bottle label is straight. You can distinguish between these two by comparing the width of the red portion across the length of it.
Looking at highlights
One way to distinguish between bottles and cans is the material. A bottle is made of plastic whereas a can is made of aluminum metal. In sufficiently well-lit situations, looking at the specularity would be one way of telling a bottle label from a can label.
As far as I can tell, that is how a human would tell the difference between the two types of labels. If the lighting conditions are poor, there is bound to be some uncertainty in distinguishing the two anyways. In that case, you would have to be able to detect the presence of the transparent/translucent bottle itself.
Please take a look at Zdenek Kalal's Predator tracker. It requires some training, but it can actively learn how the tracked object looks at different orientations and scales and does it in realtime!
The source code is available on his site. It's in MATLAB, but perhaps there is a Java implementation already done by a community member. I have succesfully re-implemented the tracker part of TLD in C#. If I remember correctly, TLD is using Ferns as the keypoint detector. I use either SURF or SIFT instead (already suggested by #stacker) to reacquire the object if it was lost by the tracker. The tracker's feedback makes it easy to build with time a dynamic list of sift/surf templates that with time enable reacquiring the object with very high precision.
If you're interested in my C# implementation of the tracker, feel free to ask.
If you are not limited to just a camera which wasn't in one of your constraints perhaps you can move to using a range sensor like the Xbox Kinect. With this you can perform depth and colour based matched segmentation of the image. This allows for faster separation of objects in the image. You can then use ICP matching or similar techniques to even match the shape of the can rather then just its outline or colour and given that it is cylindrical this may be a valid option for any orientation if you have a previous 3D scan of the target. These techniques are often quite quick especially when used for such a specific purpose which should solve your speed problem.
Also I could suggest, not necessarily for accuracy or speed but for fun you could use a trained neural network on your hue segmented image to identify the shape of the can. These are very fast and can often be up to 80/90% accurate. Training would be a little bit of a long process though as you would have to manually identify the can in each image.
I would detect red rectangles: RGB -> HSV, filter red -> binary image, close (dilate then erode, known as imclose in matlab)
Then look through rectangles from largest to smallest. Rectangles that have smaller rectangles in a known position/scale can both be removed (assuming bottle proportions are constant, the smaller rectangle would be a bottle cap).
This would leave you with red rectangles, then you'll need to somehow detect the logos to tell if they're a red rectangle or a coke can. Like OCR, but with a known logo?
This may be a very naive idea (or may not work at all), but the dimensions of all the coke cans are fixed. So may be if the same image contains both a can and a bottle then you can tell them apart by size considerations (bottles are going to be larger). Now because of missing depth (i.e. 3D mapping to 2D mapping) its possible that a bottle may appear shrunk and there isn't a size difference. You may recover some depth information using stereo-imaging and then recover the original size.
Hmm, I actually think I'm onto something (this is like the most interesting question ever - so it'd be a shame not to continue trying to find the "perfect" answer, even though an acceptable one has been found)...
Once you find the logo, your troubles are half done. Then you only have to figure out the differences between what's around the logo. Additionally, we want to do as little extra as possible. I think this is actually this easy part...
What is around the logo? For a can, we can see metal, which despite the effects of lighting, does not change whatsoever in its basic colour. As long as we know the angle of the label, we can tell what's directly above it, so we're looking at the difference between these:
Here, what's above and below the logo is completely dark, consistent in colour. Relatively easy in that respect.
Here, what's above and below is light, but still consistent in colour. It's all-silver, and all-silver metal actually seems pretty rare, as well as silver colours in general. Additionally, it's in a thin slither and close enough to the red that has already been identified so you could trace its shape for its entire length to calculate a percentage of what can be considered the metal ring of the can. Really, you only need a small fraction of that anywhere along the can to tell it is part of it, but you still need to find a balance that ensures it's not just an empty bottle with something metal behind it.
And finally, the tricky one. But not so tricky, once we're only going by what we can see directly above (and below) the red wrapper. Its transparent, which means it will show whatever is behind it. That's good, because things that are behind it aren't likely to be as consistent in colour as the silver circular metal of the can. There could be many different things behind it, which would tell us that it's an empty (or filled with clear liquid) bottle, or a consistent colour, which could either mean that it's filled with liquid or that the bottle is simply in front of a solid colour. We're working with what's closest to the top and bottom, and the chances of the right colours being in the right place are relatively slim. We know it's a bottle, because it hasn't got that key visual element of the can, which is relatively simplistic compared to what could be behind a bottle.
(that last one was the best I could find of an empty large coca cola bottle - interestingly the cap AND ring are yellow, indicating that the redness of the cap probably shouldn't be relied upon)
In the rare circumstance that a similar shade of silver is behind the bottle, even after the abstraction of the plastic, or the bottle is somehow filled with the same shade of silver liquid, we can fall back on what we can roughly estimate as being the shape of the silver - which as I mentioned, is circular and follows the shape of the can. But even though I lack any certain knowledge in image processing, that sounds slow. Better yet, why not deduce this by for once checking around the sides of the logo to ensure there is nothing of the same silver colour there? Ah, but what if there's the same shade of silver behind a can? Then, we do indeed have to pay more attention to shapes, looking at the top and bottom of the can again.
Depending on how flawless this all needs to be, it could be very slow, but I guess my basic concept is to check the easiest and closest things first. Go by colour differences around the already matched shape (which seems the most trivial part of this anyway) before going to the effort of working out the shape of the other elements. To list it, it goes:
Find the main attraction (red logo background, and possibly the logo itself for orientation, though in case the can is turned away, you need to concentrate on the red alone)
Verify the shape and orientation, yet again via the very distinctive redness
Check colours around the shape (since it's quick and painless)
Finally, if needed, verify the shape of those colours around the main attraction for the right roundness.
In the event you can't do this, it probably means the top and bottom of the can are covered, and the only possible things that a human could have used to reliably make a distinction between the can and the bottle is the occlusion and reflection of the can, which would be a much harder battle to process. However, to go even further, you could follow the angle of the can/bottle to check for more bottle-like traits, using the semi-transparent scanning techniques mentioned in the other answers.
Interesting additional nightmares might include a can conveniently sitting behind the bottle at such a distance that the metal of it just so happens to show above and below the label, which would still fail as long as you're scanning along the entire length of the red label - which is actually more of a problem because you're not detecting a can where you could have, as opposed to considering that you're actually detecting a bottle, including the can by accident. The glass is half empty, in that case!
As a disclaimer, I have no experience in nor have ever thought about image processing outside of this question, but it is so interesting that it got me thinking pretty deeply about it, and after reading all the other answers, I consider this to possibly be the easiest and most efficient way to get it done. Personally, I'm just glad I don't actually have to think about programming this!
EDIT
Additionally, look at this drawing I did in MS Paint... It's absolutely awful and quite incomplete, but based on the shape and colours alone, you can guess what it's probably going to be. In essence, these are the only things that one needs to bother scanning for. When you look at that very distinctive shape and combination of colours so close, what else could it possibly be? The bit I didn't paint, the white background, should be considered "anything inconsistent". If it had a transparent background, it could go over almost any other image and you could still see it.
Am a few years late in answering this question. With the state of the art pushed to its limits by CNNs in the last 5 years I wouldn't use OpenCV to do this task now! (I know you specifically wanted OpenCv features in the question) I feel object detection algorithms such as Faster-RCNNs, YOLO, SSD etc would ace this problem with a significant margin compared to OpenCV features. If I were to tackle this problem now (after 6 years !!) I would definitely use Faster-RCNN.
I'm not aware of OpenCV but looking at the problem logically I think you could differentiate between bottle and can by changing the image which you are looking for i.e. Coca Cola. You should incorporate till top portion of can as in case of can there is silver lining at top of coca cola and in case of bottle there will be no such silver lining.
But obviously this algorithm will fail in cases where top of can is hidden, but in such case even human will not be able to differentiate between the two (if only coca cola portion of bottle/can is visible)
I like the challenge and wanted to give an answer, which solves the issue, I think.
Extract features (keypoints, descriptors such as SIFT, SURF) of the logo
Match the points with a model image of the logo (using Matcher such as Brute Force )
Estimate the coordinates of the rigid body (PnP problem - SolvePnP)
Estimate the cap position according to the rigid body
Do back-projection and calculate the image pixel position (ROI) of the cap of the bottle (I assume you have the intrinsic parameters of the camera)
Check with a method whether the cap is there or not. If there, then this is the bottle
Detection of the cap is another issue. It can be either complicated or simple. If I were you, I would simply check the color histogram in the ROI for a simple decision.
Please, give the feedback if I am wrong. Thanks.
I like your question, regardless of whether it's off topic or not :P
An interesting aside; I've just completed a subject in my degree where we covered robotics and computer vision. Our project for the semester was incredibly similar to the one you describe.
We had to develop a robot that used an Xbox Kinect to detect coke bottles and cans on any orientation in a variety of lighting and environmental conditions. Our solution involved using a band pass filter on the Hue channel in combination with the hough circle transform. We were able to constrain the environment a bit (we could chose where and how to position the robot and Kinect sensor), otherwise we were going to use the SIFT or SURF transforms.
You can read about our approach on my blog post on the topic :)
Deep Learning
Gather at least a few hundred images containing cola cans, annotate the bounding box around them as positive classes, include cola bottles and other cola products label them negative classes as well as random objects.
Unless you collect a very large dataset, perform the trick of using deep learning features for small dataset. Ideally using a combination of Support Vector Machines(SVM) with deep neural nets.
Once you feed the images to a previously trained deep learning model(e.g. GoogleNet), instead of using neural network's decision (final) layer to do classifications, use previous layer(s)' data as features to train your classifier.
OpenCV and Google Net:
http://docs.opencv.org/trunk/d5/de7/tutorial_dnn_googlenet.html
OpenCV and SVM:
http://docs.opencv.org/2.4/doc/tutorials/ml/introduction_to_svm/introduction_to_svm.html
There are a bunch of color descriptors used to recognise objects, the paper below compares a lot of them. They are specially powerful when combined with SIFT or SURF. SURF or SIFT alone are not very useful in a coca cola can image because they don't recognise a lot of interest points, you need the color information to help. I use BIC (Border/Interior Pixel Classification) with SURF in a project and it worked great to recognise objects.
Color descriptors for Web image retrieval: a comparative study
You need a program that learns and improves classification accuracy organically from experience.
I'll suggest deep learning, with deep learning this becomes a trivial problem.
You can retrain the inception v3 model on Tensorflow:
How to Retrain Inception's Final Layer for New Categories.
In this case, you will be training a convolutional neural network to classify an object as either a coca-cola can or not.
As alternative to all these nice solutions, you can train your own classifier and make your application robust to errors. As example, you can use Haar Training, providing a good number of positive and negative images of your target.
It can be useful to extract only cans and can be combined with the detection of transparent objects.
There is a computer vision package called HALCON from MVTec whose demos could give you good algorithm ideas. There is plenty of examples similar to your problem that you could run in demo mode and then look at the operators in the code and see how to implement them from existing OpenCV operators.
I have used this package to quickly prototype complex algorithms for problems like this and then find how to implement them using existing OpenCV features. In particular for your case you could try to implement in OpenCV the functionality embedded in the operator find_scaled_shape_model. Some operators point to the scientific paper regarding algorithm implementation which can help to find out how to do something similar in OpenCV.
Maybe too many years late, but nevertheless a theory to try.
The ratio of bounding rectangle of red logo region to the overall dimension of the bottle/can is different. In the case of Can, should be 1:1, whereas will be different in that of bottle (with or without cap).
This should make it easy to distinguish between the two.
Update:
The horizontal curvature of the logo region will be different between the Can and Bottle due their respective size difference. This could be specifically useful if your robot needs to pick up can/bottle, and you decide the grip accordingly.
If you are interested in it being realtime, then what you need is to add in a pre-processing filter to determine what gets scanned with the heavy-duty stuff. A good fast, very real time, pre-processing filter that will allow you to scan things that are more likely to be a coca-cola can than not before moving onto more iffy things is something like this: search the image for the biggest patches of color that are a certain tolerance away from the sqrt(pow(red,2) + pow(blue,2) + pow(green,2)) of your coca-cola can. Start with a very strict color tolerance, and work your way down to more lenient color tolerances. Then, when your robot runs out of an allotted time to process the current frame, it uses the currently found bottles for your purposes. Please note that you will have to tweak the RGB colors in the sqrt(pow(red,2) + pow(blue,2) + pow(green,2)) to get them just right.
Also, this is gona seem really dumb, but did you make sure to turn on -oFast compiler optimizations when you compiled your C code?
The first things I would look for are color - like RED , when doing Red eye detection in an image - there is a certain color range to detect , some characteristics about it considering the surrounding area and such as distance apart from the other eye if it is indeed visible in the image.
1: First characteristic is color and Red is very dominant. After detecting the Coca Cola Red there are several items of interest
1A: How big is this red area (is it of sufficient quantity to make a determination of a true can or not - 10 pixels is probably not enough),
1B: Does it contain the color of the Label - "Coca-Cola" or wave.
1B1: Is there enough to consider a high probability that it is a label.
Item 1 is kind of a short cut - pre-process if that doe snot exist in the image - move on.
So if that is the case I can then utilize that segment of my image and start looking more zoom out of the area in question a little bit - basically look at the surrounding region / edges...
2: Given the above image area ID'd in 1 - verify the surrounding points [edges] of the item in question.
A: Is there what appears to be a can top or bottom - silver?
B: A bottle might appear transparent , but so might a glass table - so is there a glass table/shelf or a transparent area - if so there are multiple possible out comes. A Bottle MIGHT have a red cap, it might not, but it should have either the shape of the bottle top / thread screws, or a cap.
C: Even if this fails A and B it still can be a can - partial..
This is more complex when it is partial because a partial bottle / partial can might look the same , so some more processing of measurement of the Red region edge to edge.. small bottle might be similar in size ..
3: After the above analysis that is when I would look at the lettering and the wave logo - because I can orient my search for some of the letters in the words As you might not have all of the text due to not having all of the can, the wave would align at certain points to the text (distance wise) so I could search for that probability and know which letters should exist at that point of the wave at distance x.