DynamoDB Many-to-Many relations - amazon-web-services

I have a problem modeling my data in DynamoDB. My APP creates notes with the possibility to share a note with other user and allow the other user to update the Note (as done by https://keep.google.com/).
As I need to share notes between users, I decide that my primary table key will be the identifier of a Note.
Then I come with the following data-model for my DynamoDB tables:
Primary Table :(PK = NoteId, SK = Type)
Secondary Table: (GSK = userId, SK = noteId )
The "Type" will indicate if it is the BODY of the note (where information regarding the note will be save) or an identifier that indicate if the note has been shared with other user.
But I do have a problem: I use the secondary global key to retrieve all the notes for a user.
Once I have the list of noteId(s), I will enquiry my primary table to get all shared-notes for the user (as the notes for the user are already present in the SGK).
However, for doing this I need to use the function: "BatchGetItem".
The problem is that it is only allow to get 100 items and 16MB data.
In case of more than 100 shared-notes I have to call this functions several times. Moreover in case the data exceeds 16MB I need to implement a mechanism to read the rest of the requested data.
This operation could get really slow depending on the data size and number of shareId.
As you can imagine this is easily solved using a RDB and "join".
But the idea here is to use DynamoDB.
Data Access patterns:
Get all Notes by userId (own and shared)
Add a shared by userId and sharedId.
Get rights by noteId and userId.
Update a note by Id
Delete a note by Id
Any ideas of how I can change my data-model to improve the access pattern to read all notes?

Modelling your schema to utilise item collections will allow you to use the Query API which does not have a limit of items returned except a 1MB limit that still needs to be paged through.

Related

Is this a reasonable way to design this DynamoDB table? Alternatives?

Our team has started to use AWS and one of our projects will require storing approval statuses of various recommendations in a table.
There are various things that identify a single recommendation, let's say they're : State, ApplicationDate, LocationID, and Phase. And then a bunch of attributes corresponding to the recommendation (title, volume, etc. etc.)
The use case will often require grabbing all entries for a given State and ApplicationDate (and then we will look at all the LocationId and Phase items that correspond to it) for review from a UI. Items are added to the table one at a time for a given Station, ApplicationDate, LocationId, Phase and updated frequently.
A dev with a little more AWS experience mentioned we should probably use State+ApplicationDate as the partition key, and LocationId+Phase as the sort key. These two pieces combined would make the primary key. I generally understand this, but how does that work if we start getting multiple recommendations for the same primary key? I figure we either are ok with just overwriting what was previously there, OR we have to add some other attribute so we can write a recommendation for the State+ApplicationDate/LocationId+Phase multiple times and get all previous values if we need to... but that would require adding something to the primary key right? Would that be like adding some kind of unique value to the sort key? Or for example, if we need to do status and want to record different values at different statuses, would we just need to add status to the sort key?
Does this sound like a reasonable approach or should I be exploring a different NAWS offering for storing this data?
Use a time-based id property, such as a ULID or KSID. This will provide randomness to avoid overwriting data, but also provide a time-based sorting of your data when used as part of a sort key
Because the id value is random, you will want to add it to your sort key for the table or index where you perform your list operations, and reserve the pk for known values that can be specified exactly.
It sounds like the 'State' is a value that can change. You can't update an item's key attributes on the table, so it is more common to use these attributes in a key for a GSI if they are needed to list data.
Given the above, an alternative design is to use the LocationId as the pk, the random id value as the sk, and a GSI with the GSI with 'State' as the pk and the random id as the sk. Or, if you want to list the items by State -> Phase -> date, the GSI sk could be a concatenation of the Phase and id property. The above pattern gives you another list mechanism using the LocationId + timestamp of the recommendation create time.

DynamoDB 1 big table or multiple small tables?

I'm currently facing some questions regarding my database design. Currently i'm developing an api which lets users do the following:
Create an Account ( 1 User owns 1 Account)
Create a Profile ( 1 Account owns 1-n Profiles)
Let a profile upload 2 types of items ( 1 Profile owns 0-n Items ; the items differ in type and purpose)
Calling the API methods triggers AWS Lambda to perform the requested operations in the DynamoDB tables.
My current plan looks like this:
It should be possible to query items by specifying a time frame and the Profile ID. But i think my design completely defeats the purpose of DynamoDB. AWS documentation says that a well designed product only requires one table.
What would be a good way to realise this architecture in one table?
Are there any drawbacks on using the current design?
What would you specify as Primary/Partition/sort key/secondary indexes in both the current design and a one-table-approach?
I’m going to give this answer assuming that you need to be able to do the following queries.
Given an Account, find all profiles
Given a Profile, find all Items
Given a Profile and a specific ItemType, find all Items
Given an Item, find the owning Profile
Given a Profile, find the owning account
One of the beauties of DynamoDB (and also a bane, perhaps) is that it is mostly schema-less. You need to have the mandatory Primary Key attributes for every item in the table, but all of the other attributes can be anything you like. In order to have a DynamoDB design with only one table, you usually need to get used to the idea of having mixed types of objects in the same table.
That being said, here’s a possible schema for your use case. My suggestion assumes that you are using something like UUIDs for your identifiers.
The partition key is a field that is simply called pkey (or whatever you want). We’ll also call the sort key skey (but again, it doesn’t really matter). Now, for an Account, the value of pkey is Account-{{uuid}} and the value of skey would be the same. For a Profile, the pkey value is also Account-{{uuid}}, but the skey value is Profile-{{uuid}}. Finally, for an Item, the pkey is Profile-{{uuid}} and the skey is Item-{{type}}-{{uuid}}. For all of the attributes of an item, don’t worry about it, just use whatever attributes you want to use.
Since the “parent” object is always the partition key, you can get any of the “child” objects simply by querying for the ID of the of the parent. For example, your key condition expression to get all the ‘ItemType2’s for a Profile would be
pkey = “Profile-{{uuid}}” AND begins_with(skey, “Item-Type2”)
In this schema, your GSI has the same keys as the table, but reversed. You can query the GSI for ‘Item-{{type}}-{{uuid}}’ to get the owning Profile, and similarly with a Profile is to get the owning account.
What I have illustrated here is the adjacency list pattern. DynamoDB also has an article describing how to use composite sort keys for hierarchical data, which would also be suitable for your data, and depending on your expected queries, it might be more suitable than using the adjacency list.
You don’t have to put everything in a single table. Yes, DynamoDB recommends it, but it is far more important to make sure that your application is correct and maintainable. If having multiple tables means it’s easier to write a defect free application, then use multiple tables.

DynamoDB record size increasing with time

I have a customer table in DynamoDB with basic attributes like name, dob, zipcode, email, etc. I want to add another attribute to it which will keep increasing with time. For example, each time the user clicks on a product (item), I want to add that to the record so that I have the full snapshot of the customer's profile in a single value indexed by the customerId. So, my new attribute would be called viewedItems and would be a list of itemIds viewed (along with the timestamp).
However, given the 4KB size limit for DynamoDB value, it is going to be surpassed with time as I keep adding the clicked products to the customer profile.
How can I best define my objects so as to perform the following?
Access the full profile of the customer by customerId, including the views.
Access time filtered profile of the customer (like all interactions since last N days), in which case the viewed items should be filtered by the given time range.
Scan the entire table with a time filter on viewedItems.
The query needs to be performant as the profile could be pulled at request time.
Ability to update individual customer record (via a batch job, for example, that updates each customer's record if need be).
One way to do this would be to create a different table (say customer_viewed_items) with hash key customerId and a range key timestamp with value being the itemId that the customer viewed. But this looks like an increasingly complicated schema - not to mention twice the cost involved in accessing the item. If I have to create another attribute based on (say) "bought" items, then I'll need to create another table. So, the solution I have in mind does not seem good to me.
Would really appreciate if you could help suggest a better schema/approach.
As soon as you really don't know how many items will be viewed by user (edge case - user opens all items sequentially, multiple times) - you cannot store this information in single dynamodb record.
The only solution is to normalize your database and create separate table like you've described.
Now, next question - how to minimize retrieval cost in such scheme? Usually you don't need to fetch all viewed items, probably you want to display some of them, then you need to fetch only last X.
You can cache such items in main table customer, ie - create field "lastXviewedItems" and updated it, so it contains only limited number of items without breaking size limit, of course for BI analysis - you will have to store them in 2nd table too.

DynamoDb database design

I'm new to DynamoDb and noSql in general.
I have a users table and a notes table. A user can create notes and I want to be able to retrieve all notes associated with a user.
One solution I've thought of is every time a note is saved the note id is stored inside a 'notes' attribute inside the user table. This will allow me to query the users table for all note id's and then query notes using those id's:
UserTable:
UserId: 123456789
notes: ['note-id-1', note-id-2]
NotesTable
id: note-id-1
text: "Some note"
Is this the correct approach? The only other way I can think is to have the notes table have a userId attribute so I can then query the notes table based on that userId. Obviously this is the sort of approach is more relational.
I would take the approach at the end of your question: each note should have a userId attribute. Then create a global secondary index with userId as primary key and noteId as sort key. This way you can also query on userId, by doing a query on that index.
If you do it the way you suggested, you always need two queries to get the notes of a user (first get the notes from the user table and then query on the notes table). Also, when someone has N notes you would need to do N queries, this is going to be expensive if N is large.
If you do it the way in this answer, you need one query to get all notes of a user (I'm assuming no pagination) and one to get the user information. Will never be more than 2.
General rule of thumb:
SQL: storage = expensive, computation = cheap
NoSQL: storage = cheap, computation = expensive
So always try to need as little queries as possible.

Indexing notifications table in DynamoDB

I am going to implement a notification system, and I am trying to figure out a good way to store notifications within a database. I have a web application that uses a PostgreSQL database, but a relational database does not seem ideal for this use case; I want to support various types of notifications, each including different data, though a subset of the data is common for all types of notifications. Therefore I was thinking that a NoSQL database is probably better than trying to normalize a schema in a relational database, as this would be quite tricky.
My application is hosted in Amazon Web Services (AWS), and I have been looking a bit at DynamoDB for storing the notifications. This is because it is managed, so I do not have to deal with the operations of it. Ideally, I'd like to have used MongoDB, but I'd really prefer not having to deal with the operations of the database myself. I have been trying to come up with a way to do what I want in DynamoDB, but I have been struggling, and therefore I have a few questions.
Suppose that I want to store the following data for each notification:
An ID
User ID of the receiver of the notification
Notification type
Timestamp
Whether or not it has been read/seen
Meta data about the notification/event (no querying necessary for this)
Now, I would like to be able to query for the most recent X notifications for a given user. Also, in another query, I'd like to fetch the number of unread notifications for a particular user. I am trying to figure out a way that I can index my table to be able to do this efficiently.
I can rule out simply having a hash primary key, as I would not be doing lookups by simply a hash key. I don't know if a "hash and range primary key" would help me here, as I don't know which attribute to put as the range key. Could I have a unique notification ID as the hash key and the user ID as the range key? Would that allow me to do lookups only by the range key, i.e. without providing the hash key? Then perhaps a secondary index could help me to sort by the timestamp, if this is even possible.
I also looked at global secondary indexes, but the problem with these are that when querying the index, DynamoDB can only return attributes that are projected into the index - and since I would want all attributes to be returned, then I would effectively have to duplicate all of my data, which seems rather ridiculous.
How can I index my notifications table to support my use case? Is it even possible, or do you have any other recommendations?
Motivation Note: When using a Cloud Storage like DynamoDB we have to be aware of the Storage Model because that will directly impact
your performance, scalability, and financial costs. It is different
than working with a local database because you pay not only for the
data that you store but also the operations that you perform against
the data. Deleting a record is a WRITE operation for example, so if
you don't have an efficient plan for clean up (and your case being
Time Series Data specially needs one), you will pay the price. Your
Data Model will not show problems when dealing with small data volume
but can definitely ruin your plans when you need to scale. That being
said, decisions like creating (or not) an index, defining proper
attributes for your keys, creating table segmentation, and etc will
make the entire difference down the road. Choosing DynamoDB (or more
generically speaking, a Key-Value store) as any other architectural
decision comes with a trade-off, you need to clearly understand
certain concepts about the Storage Model to be able to use the tool
efficiently, choosing the right keys is indeed important but only the
tip of the iceberg. For example, if you overlook the fact that you are
dealing with Time Series Data, no matter what primary keys or index
you define, your provisioned throughput will not be optimized because
it is spread throughout your entire table (and its partitions) and NOT
ONLY THE DATA THAT IS FREQUENTLY ACCESSED, meaning that unused data is
directly impacting your throughput just because it is part of the same
table. This leads to cases where the
ProvisionedThroughputExceededException is thrown "unexpectedly" when
you know for sure that your provisioned throughput should be enough for your
demand, however, the TABLE PARTITION that is being unevenly accessed
has reached its limits (more details here).
The post below has more details, but I wanted to give you some motivation to read through it and understand that although you can certainly find an easier solution for now, it might mean starting from the scratch in the near future when you hit a wall (the "wall" might come as high financial costs, limitations on performance and scalability, or a combination of all).
Q: Could I have a unique notification ID as the hash key and the user ID as the range key? Would that allow me to do lookups only by the range key, i.e. without providing the hash key?
A: DynamoDB is a Key-Value storage meaning that the most efficient queries use the entire Key (Hash or Hash-Range). Using the Scan operation to actually perform a query just because you don't have your Key is definitely a sign of deficiency in your Data Model in regards to your requirements. There are a few things to consider and many options to avoid this problem (more details below).
Now before moving on, I would suggest you reading this quick post to clearly understand the difference between Hash Key and Hash+Range Key:
DynamoDB: When to use what PK type?
Your case is a typical Time Series Data scenario where your records become obsolete as the time goes by. There are two main factors you need to be careful about:
Make sure your tables have even access patterns
If you put all your notifications in a single table and the most recent ones are accessed more frequently, your provisioned throughput will not be used efficiently.
You should group the most accessed items in a single table so the provisioned throughput can be properly adjusted for the required access. Additionally, make sure you properly define a Hash Key that will allow even distribution of your data across multiple partitions.
The obsolete data is deleted with the most efficient way (effort, performance and cost wise)
The documentation suggests segmenting the data in different tables so you can delete or backup the entire table once the records become obsolete (see more details below).
Here is the section from the documentation that explains best practices related to Time Series Data:
Understand Access Patterns for Time Series Data
For each table that you create, you specify the throughput
requirements. DynamoDB allocates and reserves resources to handle your
throughput requirements with sustained low latency. When you design
your application and tables, you should consider your application's
access pattern to make the most efficient use of your table's
resources.
Suppose you design a table to track customer behavior on your site,
such as URLs that they click. You might design the table with hash and
range type primary key with Customer ID as the hash attribute and
date/time as the range attribute. In this application, customer data
grows indefinitely over time; however, the applications might show
uneven access pattern across all the items in the table where the
latest customer data is more relevant and your application might
access the latest items more frequently and as time passes these items
are less accessed, eventually the older items are rarely accessed. If
this is a known access pattern, you could take it into consideration
when designing your table schema. Instead of storing all items in a
single table, you could use multiple tables to store these items. For
example, you could create tables to store monthly or weekly data. For
the table storing data from the latest month or week, where data
access rate is high, request higher throughput and for tables storing
older data, you could dial down the throughput and save on resources.
You can save on resources by storing "hot" items in one table with
higher throughput settings, and "cold" items in another table with
lower throughput settings. You can remove old items by simply deleting
the tables. You can optionally backup these tables to other storage
options such as Amazon Simple Storage Service (Amazon S3). Deleting an
entire table is significantly more efficient than removing items
one-by-one, which essentially doubles the write throughput as you do
as many delete operations as put operations.
Source:
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/GuidelinesForTables.html#GuidelinesForTables.TimeSeriesDataAccessPatterns
For example, You could have your tables segmented by month:
Notifications_April, Notifications_May, etc
Q: I would like to be able to query for the most recent X notifications for a given user.
A: I would suggest using the Query operation and querying using only the Hash Key (UserId) having the Range Key to sort the notifications by the Timestamp (Date and Time).
Hash Key: UserId
Range Key: Timestamp
Note: A better solution would be the Hash Key to not only have the UserId but also another concatenated information that you could calculate before querying to make sure your Hash Key grants you even access patterns to your data. For example, you can start to have hot partitions if notifications from specific users are more accessed than others... having an additional information in the Hash Key would mitigate this risk.
Q: I'd like to fetch the number of unread notifications for a particular user.
A: Create a Global Secondary Index as a Sparse Index having the UserId as the Hash Key and Unread as the Range Key.
Example:
Index Name: Notifications_April_Unread
Hash Key: UserId
Range Key : Unuread
When you query this index by Hash Key (UserId) you would automatically have all unread notifications with no unnecessary scans through notifications which are not relevant to this case. Keep in mind that the original Primary Key from the table is automatically projected into the index, so in case you need to get more information about the notification you can always resort to those attributes to perform a GetItem or BatchGetItem on the original table.
Note: You can explore the idea of using different attributes other than the 'Unread' flag, the important thing is to keep in mind that a Sparse Index can help you on this Use Case (more details below).
Detailed Explanation:
I would have a sparse index to make sure that you can query a reduced dataset to do the count. In your case you can have an attribute "unread" to flag if the notification was read or not, and use that attribute to create the Sparse Index. When the user reads the notification you simply remove that attribute from the notification so it doesn't show up in the index anymore. Here are some guidelines from the documentation that clearly apply to your scenario:
Take Advantage of Sparse Indexes
For any item in a table, DynamoDB will only write a corresponding
index entry if the index range key
attribute value is present in the item. If the range key attribute
does not appear in every table item, the index is said to be sparse.
[...]
To track open orders, you can create an index on CustomerId (hash) and
IsOpen (range). Only those orders in the table with IsOpen defined
will appear in the index. Your application can then quickly and
efficiently find the orders that are still open by querying the index.
If you had thousands of orders, for example, but only a small number
that are open, the application can query the index and return the
OrderId of each open order. Your application will perform
significantly fewer reads than it would take to scan the entire
CustomerOrders table. [...]
Instead of writing an arbitrary value into the IsOpen attribute, you
can use a different attribute that will result in a useful sort order
in the index. To do this, you can create an OrderOpenDate attribute
and set it to the date on which the order was placed (and still delete
the attribute once the order is fulfilled), and create the OpenOrders
index with the schema CustomerId (hash) and OrderOpenDate (range).
This way when you query your index, the items will be returned in a
more useful sort order.[...]
Such a query can be very efficient, because the number of items in the
index will be significantly fewer than the number of items in the
table. In addition, the fewer table attributes you project into the
index, the fewer read capacity units you will consume from the index.
Source:
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/GuidelinesForGSI.html#GuidelinesForGSI.SparseIndexes
Find below some references to the operations that you will need to programmatically create and delete tables:
Create Table
http://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_CreateTable.html
Delete Table
http://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_DeleteTable.html
I'm an active user of DynamoDB and here is what I would do... Firstly, I'm assuming that you need to access notifications individually (e.g. to mark them as read/seen), in addition to getting the latest notifications by user_id.
Table design:
NotificationsTable
id - Hash key
user_id
timestamp
...
UserNotificationsIndex (Global Secondary Index)
user_id - Hash key
timestamp - Range key
id
When you query the UserNotificationsIndex, you set the user_id of the user whose notifications you want and ScanIndexForward to false, and DynamoDB will return the notification ids for that user in reverse chronological order. You can optionally set a limit on how many results you want returned, or get a max of 1 MB.
With regards to projecting attributes, you'll either have to project the attributes you need into the index, or you can simply project the id and then write "hydrate" functionality in your code that does a look up on each ID and returns the specific fields that you need.
If you really don't like that, here is an alternate solution for you... Set your id as your timestamp. For example, I would use the # of milliseconds since a custom epoch (e.g. Jan 1, 2015). Here is an alternate table design:
NotificationsTable
user_id - Hash key
id/timestamp - Range key
Now you can query the NotificationsTable directly, setting the user_id appropriately and setting ScanIndexForward to false on the sort of the Range key. Of course, this assumes that you won't have a collision where a user gets 2 notifications in the same millisecond. This should be unlikely, but I don't know the scale of your system.