GL_ARB_uniform_buffer_object - ARB functions not defined - opengl

The following document doesn't contain ARB functions, for example GetUniformBlockIndexARB, there is defined non-ARB function GetUniformBlockIndex. I expect to find there ARB functions. Is it an error? In the other hand this document contains ARB functions, for example DrawArraysInstancedARB. The documentation is not consistent. Could you explain it ?

When the extension is the same as a new feature in a later OpenGL version, they keep the function names the same (no suffix) for consistency.
See this question about ARB_framebuffer_object, and this note in ARB_uniform_buffer_object (which you linked to):
(v62, 2009-03-26, jon)
- Remove ARB suffixes for consistency with other extensions
simultaneously introduced with new GL core features, intended
to enable those features in older drivers.
ARB_uniform_buffer_object is "an extension simultaneously introduced with new GL core features, intended to enable those features in older drivers".
Uniform Buffer Objects are available in OpenGL 3.1, but if your driver only supports 3.0 but not 3.1, but it can support uniform buffer objects, it may use the ARB_uniform_buffer_object extension. The functions are exactly the same, no matter whether you are using the extension, or whether you are using OpenGL 3.1.

Related

glActiveTexture or glActiveTextureARB?

When I should load one or another in my own loader code? On Xorg + Mesa-based systems there is no guarantee of zero pointer returned if feature is not supported in current context, which results in catastrophic function calls, Khronos recommends to look up extension name with result of glGetString(GL_EXTENSIONS).
Different sources associate both of those with "ARB_multitexture"
The way OpenGL code typically works with a loader is that it has some baseline version of OpenGL functionality. If the implementation cannot provide even that version of GL, then the program simply cannot execute and shuts down. If it has some optional features that it can work with, then it uses extensions to test if those are available.
So you would load core OpenGL functions up to and including that version, but you would then rely on extensions for everything else.
Since glActiveTexture comes from OpenGL 1.2, if your minimum GL version is 2.1, then you would use glActiveTexture and not care about the extension version of the function. If the minimum version is 1.1, you could use glActiveTextureARB and ignore the core version even if the implementation supports it.
The problem you may eventually face is that some core functionality doesn't have an exact extension equivalent, or an extension equivalent at all. For example, the ARB extensions that provide access to GLSL via ARB_shader_objects and the rest. These APIs are very different from the core GL 2.0 functions. Not just by the ARB suffix, but even by the type of the shader objects. You can't transparently write code that works with both.

OpenGL extension availability on newer contexts

I need some clarification on OpenGL extension model.
For example, I use basic transform feedback functionality, which is core since 3.0, but may be available on earlier contexts via EXT_transform_feedback.
Does the specification guarantee that even a 4.6 context will expose EXT_transform_feedback in it's extension list? Or the extension may be omitted, as the functionality was added to core many versions ago?
In other words, is it sufficient to check EXT_transform_feedback, or I should also check if context > 3.0?
Does the specification guarantee that even a 4.6 context will expose EXT_transform_feedback in it's extension list?
No. The specification never guarantees that an implementation will implement any extension. Furthermore, EXT_transform_feedback isn't even the same functionality as the core version. They're very similar, but different (there is no core glBindBufferOffsetEXT equivalent, for example).

Performance gain when using newer Versions over extensions?

For my Application I need a renderer. The renderer uses the OpenGL 3.3 core profile as a basic. In newer OpenGL versions, there are some neat features, which are also available via extensions. If available I want to use newer features, based on the newest OpenGL version. Since it's a mess to test for available versions and adjust the loader, I decided to remain at core 3.3 and use extensions where available (as this are extensions for, right?).
Are Extensions as fast as the same funcionality in newer OpenGL versions?
Let's take the GL_ARB_direct_state_access-extension. It's available in core since 4.5 via Direct State Access. Is the latter faster than the former? I.e. are the functions implemented in newer versions faster than extensions? Or do driver link to the same function anyway?
E: This is not a question about software design rather than about how extensions are handled (mostly?) and about performance.
Actually, the OpenGL API spec XML description has the nice property of alias. A GL function aliasing another one is basically both syntactically and semantically identical to the function it is aliasing - and this feature is used a lot when extension function become promoted to core functionality and have their names changed.
There are GL Loaders out there which actually use that information. Two examples I know of are:
libepoxy
glad2 (glad2 is current in-development branch of the glad loader generator - but I'm using it since 2 years without any issue). You'll have to explicitely enable the aliasing feature. There is also a web service which lets you generate the needed files (note the "aliasing" button on the bottom). Also have a look at the GLAD documentation.
With such a loader, you do not have to care about whether a particular function comes from an extension or from the GL core functionality, you can just use them if they are available somehow.
Also note that with newer extensions, the OpenGL ARB more often is creating ARB extensions without the ARB suffix on the function and enum names, which means that it is describing the exact same entities in any case. This is basically done for extensions which were created after the features were incorporated into the core standard. They just create an extension for it so that a vendor, who might not be able to fulfill some other requirement of the new standard version, is still available to provide the isoltated feature.
One of the first examples of this was the GL_ARB_sync extension, which itself relates to this fact in issue #13:
13) Why don't the entry points/enums have ARB appended?
This functionality is going directly into the OpenGL 3.2 core
and also being defined as an extension for older > platforms at
the same time, so it does not use ARB suffixes, like other such
new features going directly into the GL core.
You wrote :
Let's take the GL_ARB_direct_state_access-extension. It's available in core since 4.5 via Direct State Access. Is the latter faster than the former? I.e. are the functions implemented in newer versions faster than extensions? Or do driver link to the same function anyway?
GL_ARB_direct_state_access falls into the same category as GL_ARB_sync. The GL functions are identified by name, and two entities having the same name means that they are referencing the very same thing. (You can't export two different functions with the same name in a library, and *glGetProcAddress also takes only the name string as input, so it can't decide which version you wanted if there were more than one).
However, it will still depend on your GL loading meachanism how this situation is dealt with, because it might not attempt on loading functions which are not implied by the GL version you got. glad2 for example will just work if you choose it to generate a >= 4.5 loader or to support the GL_ARB_direct_state_access extension.
Since it's a mess to test for available versions and adjust the loader, [...]
Well. That will greatly depend on the loader you are using. As I have shown, there are already options which will basically jsut work, not only in the case of absolute identical function names, but also with aliased functions.
Are Extensions as fast as the same funcionality in newer OpenGL
versions
An extension is sort of a preview of the feature. Many (most?) extensions are included in the standard when a new version arrives, so performance will be equal.
You should look at your target platform(s).
When I run OpenGL Extensions Viewer it tells that my HD3000 supports all features up to 3.1, 70% of 3.2 / 3.3 and 21% of 4.0.
So you can check in advance if the feature you need is implemented on your target platform(s) with the hardware and drivers you want to use. Most recent hardware will support 4.4 / 4.5 because it's been around for years. It's up to you how much you value backwards compatibility.
When I look at Intel graphics since Skylake and beyond it supports 4.4, Skylake is around since 08/2015. All AMD/NVidia hardware will also support 4.4 / 4.5. Note that the support level may very between OS and driver versions.

ARB_shader_image_load_store - what version of OpenGL and what hardware is required?

I'm a bit confused about new OpenGL extensions, what hardware they require and what OpenGL version they require.
In particular it's about the ARB_shader_image_load_store now.
http://www.opengl.org/registry/specs/ARB/shader_image_load_store.txt
As I understand, this is a feature of OpenGL 4.2 but in the OpenGL dependencies it's written:
This extension is written against the OpenGL 3.2 specification
(Compatibility Profile).
This extension is written against version 1.50 (revision 09) of the OpenGL
Shading Language Specification.
OpenGL 3.0 and GLSL 1.30 are required.
and further down stuff like
This extension interacts trivially with OpenGL 4.0 and ARB_sample_shading.
What do these things mean? What Hardware and what OpenGL version is necessary to use such Extensions?
What do these things mean?
Well, let's take them one by one.
Before we begin, some basic information. OpenGL specifications, whether core or extension, do not care about what hardware something runs on. They're not interested in that. They don't define hardware. You can't look at an extension spec and know a priori what hardware it will function on. If you want to find that information out, you're looking in the wrong place.
Furthermore, you have to understand something about extension specifications. An OpenGL extension is like a diff; you can't read it in isolation. An OpenGL extension is a document that modifies the OpenGL specification.
This extension is written against the OpenGL 3.2 specification
(Compatibility Profile).
This extension is written against version 1.50 (revision 09) of the OpenGL
Shading Language Specification.
A diff file is utterly useless unless you know exactly what file to patch it into, yes? That's the same thing with OpenGL. The extension specification will make references to section and paragraph numbers in the OpenGL specification. But... there are many versions of the OpenGL specification. Which one is it talking about?
Therefore, every extension must state which physical document it is referring to. So when this extension says, "Add a new subsection after Section 2.14.5, Samplers, p. 106", it means page 106, section 2.14.5 of the OpenGL 3.2 specification, compatibility profile.
Same goes for the GLSL language specification.
OpenGL 3.0 and GLSL 1.30 are required.
Now, just because an extension is written against a particular version does not mean that this is the minimum version where support for the extension is possible. An implementation could theoretically support it in an earlier version.
This statement says what the minimum version that can possibly support it is.
This is not a matter of hardware; it is a matter of language. The reason 3.0 is the minimum is because this extension refers to concepts that are simply not available in 2.1. Such as integer image formats and so forth. We'll talk a bit more about this in the next part.
This extension interacts with X.
The "interacts with" statement speaks to optional parts of the specification. What it means is that if "X" and this extension are both supported, then certain paragraphs in this specification also exist.
For example, ARB_shader_image_load_store states, "This extension interacts with ARB_separate_shader_objects". If you look towards the bottom, you will find a section titled "Dependencies on ARB_separate_shader_objects". That lists the specific language that changes when ARB_separate_shader_objects is available.
The "interacts trivially with X" statement simply means that the interaction is generally a "remove references to X" statement. For example, the section on ARB_tessellation_shader/4.0 dependencies state, "If OpenGL 4.0 and ARB_tessellation_shader are not supported, references to tessellation control and evaluation shaders should be removed."
The "trivially" language is just the extension's way of saying, "if X isn't supported, then obviously any references to the stuff X implements should be ignored."
The interaction with ARB_separate_shader_objects isn't trivial because it involves redefining how early depth test works.
The "interacts with" is an alternative to the "are required" wording. The ARB could have simply written it against 4.1 and firmly stated that 4.1 is required. Then there wouldn't have been nearly as many "interacts with" clauses, since none of those things are optional.
However, the ARB wanted to allow for the possibility of hardware that could support GL 3.0 concepts but not others. For example, in the mobile space, shader_image_load_store support could come before tessellation_shaders. That's why this extension has a lot of "interacts with" clauses and a fairly low "required" GL version. Despite the fact that on desktops, you will not find any implementation of ARB_shader_image_load_store paired with a version number less than 4.0.
What Hardware and what OpenGL version is necessary to use such Extensions?
None of these documents will tell you that. ARB_shader_image_load_store could be available on any implementation version 3.0 or greater.
The easiest and simplest way to find out what hardware supports what extensions is to use the OpenGL Viewer. It has a pretty up-to-date database of this information.
Alternatively, you can use some common sense. ARB_separate_shader_objects allows you to mix and match programs on the fly. This is something D3D has been doing since Direct3D 8. Obviously hardware could do it since shaders came into being; OpenGL simply didn't let you. Until now.
Obviously ARB_separate_shader_objects is not hardware-based.
Similarly ARB_shading_language_pack420 contains many features that D3D has had since forever. Again, there's clearly nothing there that requires specialized hardware support.
ARB_tessellation_shader is obviously something that does require specialized hardware support. It introduces two new shaders stages. ARB_shader_image_load_store is the same way: it introduces a fundamental new hardware ability. Now, it is certainly possible that earlier hardware could have done it. But that seems unlikely.
This isn't always the case for every extension. But it is mostly true.
The other thing you should know about is OpenGL version numbers. Since 3.0, the ARB has been good about keeping to a strict version numbering scheme.
Major versions represent fundamental hardware changes. 3.x to 4.x is directly equivalent to D3D10 to D3D11. Minor versions are either making the API nicer (see ARB_texture_storage, something we were long overdue for) or exposing previously unexposed hardware features for the same hardware level (ARB_shader_image_load_store could have been implemented on any 4.0 implementation, but the ARB just took until 4.2 to write the extension).
So if you have hardware that can run 3.0, it can also run 3.3; if it doesn't have drivers for it, then your driver maker isn't doing their job. Same goes for 4.0 to 4.2.
These things mean how to correctly read extension specification. To read specification you must know how extension interacts with other OpenGL features. And by saying "extension interacts trivially with OpenGL 4.0", it means you must thing of core OpenGL 4.0 feature ARB_sample_shading, and how this extension changes its behaviour.
Because it is in OpenGL Core 4.2 specification, ARB_shader_image_load_store should be supported on all Shader Model 5 / Direct3D11 hardware (Radeon HD5xxx and up, GeForce 400 and up).
So you can check if your OpenGL version is >=4.2 or check ARB_shader_image_load_store extension presence.

Should I use EXT methods/constants in OpenGL <2.0

I'm coding a 3D game for PC with pretty low minimum system requirements in mind (anything better than Pentium II 400MHz and GeForce3 should be ok). I read in docs that this or that function started as EXT and ended up being included into OpenGL core in version 1.3 or 1.4.
In dglOpenGL headers there are both glBindFramebuffer and glBindFramebufferEXT methods with GL_FRAMEBUFFER and GL_FRAMEBUFFER_EXT constants. My question is - which version should I be using EXT or noEXT?
Is it possible that some Intel built-in GPU whose drivers meet only version 1.3 will accept glMethodExt and will crash upon the same glMethod (without EXT in the end)?
You should use what is available on that implementation. A core feature will be denoted by a version number. If you're expecting core FBO support, you would need to get a version 3.0 or greater.
Extension support is denoted by the extension string. You should check for available extensions at startup and you should not use any extension that isn't there.
Now, there are some ARB extensions which are "core extensions". This means that the #defines and functions do not have the ARB suffix. So ARB_framebuffer object is an extension, but it defines glBindFramebuffer, without a suffix. This means that you can check for version 3.0 or the extension, and in either case, you use the same functions and #defines.
Core extensions almost always mean the exact same thing as the core equivalent. Non-core extensions can have changes. For example, ARB_geometry_shader4 is not a core extension, and the core geometry shader functionality from 3.2 is vastly different in terms of specification and API.
You generally should have some minimum OpenGL version that you accept, and then run different codepaths based on the presence of higher GL versions and/or extensions.