List combinations in Haskell with booleans - list

So, I recently started learning Haskell and I came across a question where I need to calculate all possible outcomes(2^n) if n number of coins are flipped. For example, if 2 coins are flipped, the output should be [[H, H], [H, T], [T, H], [T, T]]. Similarly, for 3 coins it should be [[H, H, H], [H, H, T], [H, T, H], [T, H, H], [H, T, T], [T, T, H], [T, H, T], [T, T, T]]. My function does not work for arbitrary values of n. It only works if I know n from before. I'm thinking of using recursion but I'm not sure about the syntax.
This is my code:
outcomes(x:xs) = [[a, b] | a <- states x, b <- states (head xs)]
Where, the function states is:
states _ = [True, False]
This function works for n = 2. Please let me know how to make it work for any input n.

You can make use of recursion here. We can construct a function that takes a list of elements [a] and an Int, so:
outcomes :: [a] -> Int -> [[a]]
in case the integer is less than or equal to zero, then there is only one possible outcome an empty list. So we return a list that contains one empty list:
outcomes _ n | n <= 0 = [[]]
as for the recursive case, we can take an element from the list, and then recurse with the same list of values, but we create outcomes with one element less, then we prepend the element we took to these outcomes.
outcomes ls n = [ … | x < ls, xs <- … ]
here I leave the … parts as an exercise. In the first … fragment, you need to prepend xs with x. In the second one, you need to make the recursive call.
So putting this together, we implement outcomes as:
outcomes :: [a] -> Int -> [[a]]
outcomes _ n | n <= 0 = [[]]
outcomes ls n = [ … | x < ls, xs <- … ]

Since you want your function to work for any number of flips n, it should probably accept an Int parameter: how else will you get an Int? And since, as suggested in the comments, recursion is the way to do loop-like things in Haskell, you will need a base case and a recursive case. For counting things, 0 is a natural base case, and the best one to use here, but using 1 as the base case is a little easier to understand for a beginner, so we'll just let the function break for n=0 for now.
So, you need a function with two patterns:
outcomes :: Int -> [[Bool]]
outcomes 1 = _
outcomes n = _
What should be the result for 1, i.e. one flip? Once you have that, can you implement outcomes n in terms of outcomes (n - 1)? If so, you'll be done. If not, you'll have better material for a new Question, because you'll have gotten partway to your solution.
For extra credit, once this is done, see if you can understand the recursion well enough to choose a good value for outcomes 0 that can replace outcomes 1 as your base case.

Related

Write a predicate called rlen(X,N) to be true when N counts the total number of occurrences of atoms in the list X

I want to get this solution for my question. For example, ?- rlen([a,[a,b],c],X). returns X = 4. I tried the following code but it returns answer 3. Maybe, it's taking [a,b] as one element. I am new to prolog and learning, any help would be really appreciated.
rlen([],0).
rlen([_|T],N) :- rlen(T,N1),N is N1+1.
The code you wrote returns the number of elements in a list and [a,[a,b],c] has exactly 3 elements: a, [a,b] and c. If you want to do a nested count, I would suggest using the build-in predicate flatten/2 to flatten the list.
example (tested with SWISH):
?- rlen([a,[a,b],c],X).
X = 3.
?- flatten([a,[a,b],c],L).
L = [a, a, b, c].
?- flatten([a,[a,b],c],L), rlen(L,N).
L = [a, a, b, c],
N = 4.
However not using inbuild predicates is a bit more challenging, because you have to go through your list like in any normal length predicate, and for every Head element you have to distinguish between the case that the head element is a list or is not a list. If A is a list, count the elements of A, otherwise just add 1. (a -> b ; c ) is an if-then else: if a, then b, else c. Tested with SWISH:
rlen([],0).
rlen([A|T],N) :-
( is_list(A)
-> rlen(A,NA)
; NA is 1
),
rlen(T,NT),
N is NA+NT.
?- rlen([a,[a,b],c],X).
X = 4.

Compare list in prolog

I just started learning prolog and i don't understand why this returning false. I tried find solutions, but i not found. Can someone tell me why this return false?
[[A],B,C]=[[a,b,c],[d,e,f],1].
Short answer: [A] is a singleton list, but the corresponding element [a,b,c] has three elements.
You aim to match [[A], B, C] with [[a,b,c], [d,e,f], 1]. This thus means that you want to match a list with three elements with [[a,b,c], [d,e,f], 1]. Furthermore it means that you want to match [A] = [a,b,c], B = [d,e,f] and C = 1. The [A] can however not match with [a,b,c], since [A] means a singleton list.
You probably want to match this with [A,B,C] instead:
?- [[A],B,C]=[[a,b,c],[d,e,f],1].
false.
?- [A,B,C]=[[a,b,c],[d,e,f],1].
A = [a, b, c],
B = [d, e, f],
C = 1.
If you want to match with a non-empty list, with A the first element, you can match this with [A|_] instead:
?- [[A|_],B,C]=[[a,b,c],[d,e,f],1].
A = a,
B = [d, e, f],
C = 1.
Here is another way to answer why your query fails using library(diadem):
?- [[A],B,C]=[[a,b,c],[d,e,f],1].
false.
?- [[A],B,C]=[[a,b,c],[d,e,f],1].?X.
X = ([[A]|_]=[[_,_|_]|_]) /* 1 */
; X = (dif(A100,B100),[[A|A100]|_]=[[_|B100]|_]) /* 2 */
; X = (dif(A100,B100),[A100|_]=[B100|_]) /* 3 */
; X = (dif(A100,B100),A100=B100) /* 4 */
; ... .
Here the system generates most general generalizations that still fail.
The first generalization removes all irrelevant parts, what remains is this [A] and [_,_|_].
The second generalization insists that the tail of both lists is just different (instead of insisting that they are [] and [_|_] as stated in the first generalization).
The third and fourth are just more general views of it.

Prolog - How to remove N number of members from a list

So I'm making a predicate called removeN(List1, N, List2). It should basically function like this:
removeN([o, o, o, o], 3, List2).
List2 = [o].
The first argument is a list with a number of the same members ([o, o, o] or [x, x, x]). The second argument is the number of members you wanna remove, and the third argument is the list with the removed members.
How should I go about this, I was thinking about using length of some sort.
Thanks in advance.
Another approach would be to use append/3 and length/2:
remove_n(List, N, ShorterList) :-
length(Prefix, N),
append(Prefix, ShorterList, List).
Think about what the predicate should describe. It's a relation between a list, a number and a list that is either equal to the first or is missing the specified number of the first elements. Let's pick a descriptive name for it, say list_n_removed/3. Since you want a number of identical elements to be removed, let's keep the head of the list for comparison reasons, so list_n_removed/3 is just the calling predicate and another predicate with and additional argument, let's call it list_n_removed_head/4, describes the actual relation:
list_n_removed([X|Xs],N,R) :-
list_n_removed_head([X|Xs],N,R,X).
The predicate list_n_removed_head/4 has to deal with two distinct cases: either N=0, then the first and the third argument are the same list or N>0, then the head of the first list has to be equal to the reference element (4th argument) and the relation has to hold for the tail as well:
list_n_removed_head(L,0,L,_X).
list_n_removed_head([X|Xs],N,R,X) :-
N>0,
N0 is N-1,
list_n_removed_head(Xs,N0,R,X).
Now let's see how it works. Your example query yields the desired result:
?- list_n_removed([o,o,o,o],3,R).
R = [o] ;
false.
If the first three elements are not equal the predicate fails:
?- list_n_removed([o,b,o,o],3,R).
false.
If the length of the list equals N the result is the empty list:
?- list_n_removed([o,o,o],3,R).
R = [].
If the length of the list is smaller than N the predicate fails:
?- list_n_removed([o,o],3,R).
false.
If N=0 the two lists are identical:
?- list_n_removed([o,o,o,o],0,R).
R = [o, o, o, o] ;
false.
If N<0 the predicate fails:
?- list_n_removed([o,o,o,o],-1,R).
false.
The predicate can be used in the other direction as well:
?- list_n_removed(L,0,[o]).
L = [o] ;
false.
?- list_n_removed(L,3,[o]).
L = [_G275, _G275, _G275, o] ;
false.
However, if the second argument is variable:
?- list_n_removed([o,o,o,o],N,[o]).
ERROR: >/2: Arguments are not sufficiently instantiated
This can be avoided by using CLP(FD). Consider the following changes:
:- use_module(library(clpfd)). % <- new
list_n_removed([X|Xs],N,R) :-
list_n_removed_head([X|Xs],N,R,X).
list_n_removed_head(L,0,L,_X).
list_n_removed_head([X|Xs],N,R,X) :-
N #> 0, % <- change
N0 #= N-1, % <- change
list_n_removed_head(Xs,N0,R,X).
Now the above query delivers the expected result:
?- list_n_removed([o,o,o,o],N,[o]).
N = 3 ;
false.
As does the most general query:
?- list_n_removed(L,N,R).
L = R, R = [_G653|_G654],
N = 0 ;
L = [_G653|R],
N = 1 ;
L = [_G26, _G26|R],
N = 2 ;
L = [_G26, _G26, _G26|R],
N = 3 ;
.
.
.
The other queries above yield the same answers with the CLP(FD) version.
Alternative solution using foldl/4:
remove_step(N, _Item, Idx:Tail, IdxPlusOne:Tail) :-
Idx < N, succ(Idx, IdxPlusOne).
remove_step(N, Item, Idx:Tail, IdxPlusOne:NewTail) :-
Idx >= N, succ(Idx, IdxPlusOne),
Tail = [Item|NewTail].
remove_n(List1, N, List2) :-
foldl(remove_step(N), List1, 0:List2, _:[]).
The idea here is to go through the list while tracking index of current element. While element index is below specified number N we essentially do nothing. After index becomes equal to N, we start building output list by appending all remaining elements from source list.
Not effective, but you still might be interested in the solution, as it demonstrates usage of a very powerful foldl predicate, which can be used to solve wide range of list processing problems.
Counting down should work fine
removeN([],K,[]) :- K>=0.
removeN(X,0,X).
removeN([_|R],K,Y) :- K2 is K-1, removeN(R,K2,Y).
This works for me.
I think this is the easiest way to do this.
trim(L,N,L2). L is the list and N is number of elements.
trim(_,0,[]).
trim([H|T],N,[H|T1]):-N1 is N-1,trim(T,N1,T1).

Excluding all occurrences of the minimum number in a list

As a Prolog newbie, I try to define a predicate filter_min/2 which takes two lists to determine if the second list is the same as the first, but with all occurrences of the minimum number removed.
Sample queries with expected results:
?- filter_min([3,2,7,8], N).
N = [3,7,8].
?- filter_min([3,2,7,8], [3,7,8]).
true.
I tried but I always get the same result: false. I don't know what the problem is. I need help!
Here is my code:
filter_min(X,Y) :-
X == [],
write("ERROR: List parameter is empty!"),
!;
min_list(X,Z),
filter(X,Y,Z).
filter([],[],0).
filter([H1|T1],[H2|T2],Z) :-
\+ number(H1),
write("ERROR: List parameter contains a non-number element"),
!;
H1 \= Z -> H2 is H1, filter(T1,T2,Z);
filter(T1,T2,Z).
There are a couple of problems with your code:
filter([],[],0). will not unify when working with any list that does not have 0 as its minimum value, which is not what you want. You want it to unify regardless of the minimum value to end your recursion.
The way you wrote filter([H1|T1],[H2|T2],Z) and its body will make it so that the two lists always have the same number of elements, when in fact the second one should have at least one less.
A correct implementation of filter/3 would be the following:
filter([],[],_).
filter([H1|T1],L2,Z):-
\+ number(H1),
write("ERROR: List parameter contains a non-number element"),
!;
H1 \= Z -> filter(T1,T2,Z), L2 = [H1|T2];
filter(T1,L2,Z).
A bounty was offered...
... for a pure solution that terminates for (certain) cases where neither the length of the first nor of the second argument is known.
Here's a candidate implementation handling integer values, built on clpfd:
:- use_module(library(clpfd)).
filter_min(Xs,Ys) :-
filter_min_picked_gt(Xs,_,false,Ys).
filter_min_picked_gt([] ,_,true ,[]).
filter_min_picked_gt([Z|Xs],M,Picked,[Z|Zs]) :-
Z #> M,
filter_min_picked_gt(Xs,M,Picked,Zs).
filter_min_picked_gt([M|Xs],M,_,Zs) :-
filter_min_picked_gt(Xs,M,true,Zs).
Some sample queries:
?- filter_min([3,2,7,8],[3,7,8]).
true ; false. % correct, but leaves choicepoint
?- filter_min([3,2,7,8],Zs).
Zs = [3,7,8] ; false. % correct, but leaves choicepoint
Now, some queries terminate even though both list lengths are unknown:
?- filter_min([2,1|_],[1|_]).
false. % terminates
?- filter_min([1,2|_],[3,2|_]).
false. % terminates
Note that the implementation doesn't always finitely fail (terminate) in cases that are logically false:
?- filter_min([1,2|_],[2,1|_]). % does _not_ terminate
For a Prolog newbie, better start with the basics. The following works when first argument is fully instantiated, and the second is an uninstantiated variable, computing the result in one pass over the input list.
% remmin( +From, -Result).
% remmin([],[]). % no min elem to remove from empty list
remmin([A|B], R):-
remmin(B, A, [A], [], R). % remove A from B to get R, keeping [A]
% in case a smaller elem will be found
remmin([C|B], A, Rev, Rem, R):-
C > A -> remmin(B, A, [C|Rev], [C|Rem], R) ;
C==A -> remmin(B, A, [C|Rev], Rem, R) ;
C < A -> remmin(B, C, [C|Rev], Rev, R).
remmin([], _, _, Rem, R) :- reverse(Rem, R).
First, we can get the minimum number using the predicate list_minnum/2:
?- list_minnum([3,2,7,8],M).
M = 2.
We can define list_minnum/2 like this:
list_minnum([E|Es],M) :-
V is E,
list_minnum0_minnum(Es,V,M).
list_minnum0_minnum([],M,M).
list_minnum0_minnum([E|Es],M0,M) :-
M1 is min(E,M0),
list_minnum0_minnum(Es,M1,M).
For the sake of completeness, here's the super-similar list_maxnum/2:
list_maxnum([E|Es],M) :-
V is E,
list_maxnum0_maxnum(Es,V,M).
list_maxnum0_maxnum([],M,M).
list_maxnum0_maxnum([E|Es],M0,M) :-
M1 is max(E,M0),
list_maxnum0_maxnum(Es,M1,M).
Next, we use meta-predicate tfilter/3 in tandem with dif/3 to exclude all occurrences of M:
?- M=2, tfilter(dif(M),[2,3,2,7,2,8,2],Xs).
Xs = [3,7,8].
Put the two steps together and define min_excluded/2:
min_excluded(Xs,Ys) :-
list_minnum(Xs,M),
tfilter(dif(M),Xs,Ys).
Let's run some queries!
?- min_excluded([3,2,7,8],Xs).
Xs = [3,7,8].
?- min_excluded([3,2,7,8,2],Xs).
Xs = [3,7,8].

Add two more occurrences using prolog

I have a list [a, b, a, a, a, c, c]
and I need to add two more occurrences of each element.
The end result should look like this:
[a, a, a, b, b, b, a, a, a, a, a, c, c, c, c]
If I have an item on the list that is the same as the next item, then it keeps going until there is a new item, when it finds the new item, it adds two occurrences of the previous item then moves on.
This is my code so far, but I can't figure out how to add two...
dbl([], []).
dbl([X], [X,X]).
dbl([H|T], [H,H|T], [H,H|R]) :- dbl(T, R).
Your code looks a bit strange because the last rule takes three parameters. You only call the binary version, so no recursion will ever try to derive it.
You already had a good idea to look at the parts of the list, where elements change. So there are 4 cases:
1) Your list is empty.
2) You have exactly one element.
3) Your list starts with two equal elements.
4) Your list starts with two different elements.
Case 1 is not specified, so you might need to find a sensible choice for that. Case 2 is somehow similar to case 4, since the end of the list can be seen as a change in elements, where you need to append two copies, but then you are done. Case 3 is quite simple, we can just keep the element and recurse on the rest. Case 4 is where you need to insert the two copies again.
This means your code will look something like this:
% Case 1
dbl([],[]).
% Case 2
dbl([X],[X,X,X]).
% Case 3
dbl([X,X|Xs], [X|Ys]) :-
% [...] recursion skipping the leading X
% Case 4
dbl([X,Y|Xs], [X,X,X|Ys]) :-
dif(X,Y),
% [...] we inserted the copies, so recursion on [Y|Xs] and Ys
Case 3 should be easy to finish, we just drop the first X from both lists and recurse on dbl([X|Xs],Ys). Note that we implicitly made the first two elements equal (i.e. we unified them) by writing the same variable twice.
If you look at the head of case 4, you can directly imitate the pattern you described: supposed the list starts with X, then Y and they are different (dif(X,Y)), the X is repeated 3 times instead of just copied and we then continue with the recursion on the rest starting with Y: dbl([Y|Xs],Ys).
So let's try out the predicate:
?- dbl([a,b,a,a,a,c,c],[a,a,a,b,b,b,a,a,a,a,a,c,c,c,c]).
true ;
false.
Our test case is accepted (true) and we don't find more than one solution (false).
Let's see if we find a wrong solution:
?- dif(Xs,[a,a,a,b,b,b,a,a,a,a,a,c,c,c,c]), dbl([a,b,a,a,a,c,c],Xs).
false.
No, that's also good. What happens, if we have variables in our list?
?- dbl([a,X,a],Ys).
X = a,
Ys = [a, a, a, a, a] ;
Ys = [a, a, a, X, X, X, a, a, a],
dif(X, a),
dif(X, a) ;
false.
Either X = a, then Ys is single run of 5 as; or X is not equal to a, then we need to append the copies in all three runs. Looks also fine. (*)
Now lets see, what happens if we only specify the solution:
?- dbl(X,[a,a,a,b,b]).
false.
Right, a list with a run of only two bs can not be a result of our specification. So lets try to add one:
?- dbl(X,[a,a,a,b,b,b]).
X = [a, b] ;
false.
Hooray, it worked! So lets as a last test look what happens, if we just call our predicate with two variables:
?- dbl(Xs,Ys).
Xs = Ys, Ys = [] ;
Xs = [_G15],
Ys = [_G15, _G15, _G15] ;
Xs = [_G15, _G15],
Ys = [_G15, _G15, _G15, _G15] ;
Xs = [_G15, _G15, _G15],
Ys = [_G15, _G15, _G15, _G15, _G15] ;
Xs = [_G15, _G15, _G15, _G15],
Ys = [_G15, _G15, _G15, _G15, _G15, _G15] ;
[...]
It seems we get the correct answers, but we see only cases for a single run. This is a result of prolog's search strategy(which i will not explain in here). But if we look at shorter lists before we generate longer ones, we can see all the solutions:
?- length(Xs,_), dbl(Xs,Ys).
Xs = Ys, Ys = [] ;
Xs = [_G16],
Ys = [_G16, _G16, _G16] ;
Xs = [_G16, _G16],
Ys = [_G16, _G16, _G16, _G16] ;
Xs = [_G86, _G89],
Ys = [_G86, _G86, _G86, _G89, _G89, _G89],
dif(_G86, _G89) ;
Xs = [_G16, _G16, _G16],
Ys = [_G16, _G16, _G16, _G16, _G16] ;
Xs = [_G188, _G188, _G194],
Ys = [_G188, _G188, _G188, _G188, _G194, _G194, _G194],
dif(_G188, _G194) ;
[...]
So it seems we have a working predicate (**), supposed you filled in the missing goals from the text :)
(*) A remark here: this case only works because we are using dif. The first predicates with equality, one usually encounters are =, == and their respective negations \= and \==. The = stands for unifyability (substituting variables in the arguments s.t. they become equal) and the == stands for syntactic equality (terms being exactly equal). E.g.:
?- f(X) = f(a).
X = a.
?- f(X) \= f(a).
false.
?- f(X) == f(a).
false.
?- f(X) \== f(a).
true.
This means, we can make f(X) equal to f(a), if we substitute X by a. This means if we ask if they can not be made equal (\=), we get the answer false. On the other hand, the two terms are not equal, so == returns false, and its negation \== answers true.
What this also means is that X \== Y is always true, so we can not use \== in our code. In contrast to that, dif waits until it can decide wether its arguments are equal or not. If this is still undecided after finding an answer, the "dif(X,a)" statements are printed.
(**) One last remark here: There is also a solution with the if-then-else construct (test -> goals_if_true; goals_if_false, which merges cases 3 and 4. Since i prefer this solution, you might need to look into the other version yourself.
TL;DR:
From a declarative point of view, the code sketched by #lambda.xy.x is perfect.
Its determinacy can be improved without sacrificing logical-purity.
Code variant #0: #lambda.xy.x's code
Here's the code we want to improve:
dbl0([], []).
dbl0([X], [X,X,X]).
dbl0([X,X|Xs], [X|Ys]) :-
dbl0([X|Xs], Ys).
dbl0([X,Y|Xs], [X,X,X|Ys]) :-
dif(X, Y),
dbl0([Y|Xs], Ys).
Consider the following query and the answer SWI-Prolog gives us:
?- dbl0([a],Xs).
Xs = [a,a,a] ;
false.
With ; false the SWI prolog-toplevel
indicates a choicepoint was left when proving the goal.
For the first answer, Prolog did not search the entire proof tree.
Instead, it replied "here's an answer, there may be more".
Then, when asked for more solutions, Prolog traversed the remaining branches of the proof tree but finds no more answers.
In other words: Prolog needs to think twice to prove something we knew all along!
So, how can we give determinacy hints to Prolog?
By utilizing:
control constructs !/0 and / or (->)/2 (potentially impure)
first argument indexing on the principal functor (never impure)
The code presented in the earlier answer by #CapelliC—which is based on !/0, (->)/2, and the meta-logical predicate (\=)/2—runs well if all arguments are sufficiently instantiated. If not, erratic answers may result—as #lambda.xy.x's comment shows.
Code variant #1: indexing
Indexing can improve determinacy without ever rendering the code non-monotonic. While different Prolog processors have distinct advanced indexing capabilities, the "first-argument principal-functor" indexing variant is widely available.
Principal? This is why executing the goal dbl0([a],Xs) leaves a choicepoint behind: Yes, the goal only matches one clause—dbl0([X],[X,X,X]).—but looking no deeper than the principal functor Prolog assumes that any of the last three clauses could eventually get used. Of course, we know better...
To tell Prolog we utilize principal-functor first-argument indexing:
dbl1([], []).
dbl1([E|Es], Xs) :-
dbl1_(Es, Xs, E).
dbl1_([], [E,E,E], E).
dbl1_([E|Es], [E|Xs], E) :-
dbl1_(Es, Xs, E).
dbl1_([E|Es], [E0,E0,E0|Xs], E0) :-
dif(E0, E),
dbl1_(Es, Xs, E).
Better? Somewhat, but determinacy could be better still...
Code variant #2: indexing on reified term equality
To make Prolog see that the two recursive clauses of dbl1_/3 are mutually exclusive (in certain cases), we reify the truth value of
term equality and then index on that value:
This is where reified term equality (=)/3 comes into play:
dbl2([], []).
dbl2([E|Es], Xs) :-
dbl2_(Es, Xs, E).
dbl2_([], [E,E,E], E).
dbl2_([E|Es], Xs, E0) :-
=(E0, E, T),
t_dbl2_(T, Xs, E0, E, Es).
t_dbl2_(true, [E|Xs], _, E, Es) :-
dbl2_(Es, Xs, E).
t_dbl2_(false, [E0,E0,E0|Xs], E0, E, Es) :-
dbl2_(Es, Xs, E).
Sample queries using SWI-Prolog:
?- dbl0([a],Xs).
Xs = [a, a, a] ;
false.
?- dbl1([a],Xs).
Xs = [a, a, a].
?- dbl2([a],Xs).
Xs = [a, a, a].
?- dbl0([a,b,b],Xs).
Xs = [a, a, a, b, b, b, b] ;
false.
?- dbl1([a,b,b],Xs).
Xs = [a, a, a, b, b, b, b] ;
false.
?- dbl2([a,b,b],Xs).
Xs = [a, a, a, b, b, b, b].
To make above code more compact, use control construct if_/3 .
I was just about to throw this version with if_/3 and (=)/3 in the hat when I saw #repeat already suggested it. So this is essentially the more compact version as outlined by #repeat:
list_dbl([],[]).
list_dbl([X],[X,X,X]).
list_dbl([A,B|Xs],DBL) :-
if_(A=B,DBL=[A,B|Ys],DBL=[A,A,A,B|Ys]),
list_dbl([B|Xs],[B|Ys]).
It yields the same results as dbl2/2 by #repeat:
?- list_dbl([a],DBL).
DBL = [a,a,a]
?- list_dbl([a,b,b],DBL).
DBL = [a,a,a,b,b,b,b]
The example query by the OP works as expected:
?- list_dbl([a,b,a,a,a,c,c],DBL).
DBL = [a,a,a,b,b,b,a,a,a,a,a,c,c,c,c]
Plus here are some of the example queries provided by #lambda.xy.x. They yield the same results as #repeat's dbl/2 and #lambda.xy.x's dbl/2:
?- dif(Xs,[a,a,a,b,b,b,a,a,a,a,a,c,c,c,c]), list_dbl([a,b,a,a,a,c,c],Xs).
no
?- list_dbl(X,[a,a,a,b,b]).
no
?- list_dbl(L,[a,a,a,b,b,b]).
L = [a,b] ? ;
no
?- list_dbl(L,DBL).
DBL = L = [] ? ;
DBL = [_A,_A,_A],
L = [_A] ? ;
DBL = [_A,_A,_A,_A],
L = [_A,_A] ? ;
DBL = [_A,_A,_A,_A,_A],
L = [_A,_A,_A] ? ;
...
?- list_dbl([a,X,a],DBL).
DBL = [a,a,a,a,a],
X = a ? ;
DBL = [a,a,a,X,X,X,a,a,a],
dif(X,a),
dif(a,X)
?- length(L,_), list_dbl(L,DBL).
DBL = L = [] ? ;
DBL = [_A,_A,_A],
L = [_A] ? ;
DBL = [_A,_A,_A,_A],
L = [_A,_A] ? ;
DBL = [_A,_A,_A,_B,_B,_B],
L = [_A,_B],
dif(_A,_B) ? ;
DBL = [_A,_A,_A,_A,_A],
L = [_A,_A,_A] ?
dbl([X,Y|T], [X,X,X|R]) :- X \= Y, !, dbl([Y|T], R).
dbl([H|T], R) :-
T = []
-> R = [H,H,H]
; R = [H|Q], dbl(T, Q).
The first clause handles the basic requirement, adding two elements on sequence change.
The second one handles list termination as a sequence change, otherwise, does a plain copy.