I have been practicing median search algorithm, and this is what I wrote-
#include <iostream>
#include <stdlib.h>
using namespace std;
int S1[10] = { 0 };
int S2[1] = { 0 };
int S3[10] = { 0 };
int mediansearch(int A[], int k, int size)
{
int ran = rand() % size;
int i = 0;
int a = 0;
int b = 0;
int c = 0;
for (i = 0; i < size; i++)
{
if (A[ran] > A[i])
{
S1[a] = A[i];
a++;
}
else if (A[ran] == A[i])
{
S2[b] = A[i];
b++;
}
else
{
S3[c] = A[i];
c++;
}
}
if (a <= k)
{
return mediansearch(S1, k, a);
}
else if (a + b <= k)
{
return A[ran];
}
else
{
return mediansearch(S3, k - a - b, c);
}
}
int main()
{
int arr[] = { 6, 5, 4, 8, 99, 74, 23 };
int n = sizeof(arr) / sizeof(arr[0]);
int x = mediansearch(arr, 5, n);
cout << "5th smallest is:" << x << endl;
}
And I have been getting output as-
Process returned -1073741676 (0xC0000094) execution time : 1.704 s
So, what am I doing wrong? Any kind of help will be appreciated.
There are a few issues with this code, the first one being the naming of variables.
I suggest you choose more significative names in the future, because good naming is fundamental when someone else has to understand your code and your ideas.
Another thing is that the arguments of are in a counterintuitive order because the pair related to the array are separated by the index you want to look for.
I'd write int mediansearch(int A[], int size, int k)
Here the comparisons are reversed, k should be less than rather than greater than equal a
if (a <= k) // (k < a)
{
return mediansearch(S1, k, a);
}
else if (a + b <= k) // (k < a + b)
{
return A[ran];
}
else
{
return mediansearch(S3, k - a - b, c);
}
The other thing is that you're sharing S1, S2, and S3 among all the recursive calls and that causes some error that I wasn't able to identify, maybe someone commenting will help me out.
However, I suggest you read this article that explains in detail the procedure you're trying to implement: https://rcoh.me/posts/linear-time-median-finding/
It's python, but it can be easily ported to C/C++, and in fact that's what I did.
#include <iostream>
#include <stdlib.h>
#include <assert.h>
#include <time.h>
using namespace std;
int medianSearch(int A[], int size, int k)
{
int *lows = (int *)calloc(size, sizeof(int));
int lowsLen = 0;
int *highs = (int *)calloc(size, sizeof(int));
int highsLen = 0;
int *pivots = (int *)calloc(size, sizeof(int));
int pivotsLen = 0;
int median;
int pivot;
int i;
if (size == 1)
return A[0];
// Other ways of randomly picking a pivot
// pivot = 0;
// pivot = size-1;
// pivot = size/2;
assert(size > 0);
pivot = rand() % size;
for (i = 0; i < size; ++i)
{
if (A[i] < A[pivot])
{
lows[lowsLen] = A[i];
lowsLen++;
}
else if (A[i] > A[pivot])
{
highs[highsLen] = A[i];
highsLen++;
}
else
{
pivots[pivotsLen] = A[i];
pivotsLen++;
}
}
if (k < lowsLen)
median = medianSearch(lows, lowsLen, k);
else if (k < lowsLen + pivotsLen)
median = A[pivot];
else
median = medianSearch(highs, highsLen, k - lowsLen - pivotsLen);
free(lows);
free(highs);
free(pivots);
return median;
}
int compare(const void *a, const void *b)
{
return ( *(int *)a - *(int *)b );
}
int medianSorted(int A[], int size, int k)
{
qsort(A, size, sizeof(int), compare);
return A[k];
}
#define N 1000
int main()
{
int arr[N];
int brr[N];
int n = sizeof(arr) / sizeof(arr[0]);
int k = 200;
int x;
int y;
for (int i = 0; i < n; ++i)
arr[i] = brr[i] = rand();
x = medianSearch(arr, n, (k-1)%n);
y = medianSorted(brr, n, (k-1)%n);
string suffix;
switch (k % 10)
{
case 1: suffix = "st"; break;
case 2: suffix = "nd"; break;
case 3: suffix = "rd"; break;
case 4:
case 5:
case 6:
case 7:
case 8:
case 9:
case 0: suffix = "th"; break;
}
cout << k << suffix << " smallest is: " << x << endl;
cout << k << suffix << " smallest is: " << y << endl;
}
https://onlinegdb.com/HJc2V6Lbu
Related
So, I am writing a program in C++ that has a function in the Sort class that I wish to call in the Main class. The function has several data members used that are present in that class, that are not present in the Main class and I keep getting a C2660 error, that "Function does not take 0 arguments". Is there a way (short of writing a bunch of getters and setters) to resolve this?
#include "Sort.h"
#include "Timer.h"
using namespace std;
int main
{
Sort *sort = new Sort();
Timer ti;
sort->SetRandomSeed(12345);
sort->InitArray();
cout << "starting InsertionSort" << endl;
ti.Start();
sort->InsertionSort();
ti.End();
cout << "Insertion sort duration: " << ti.DurationInMilliSeconds() << "ms" << endl;
//sort->InitList();
//cout << "starting InsertionSortList()" << endl;
//ti.Start();
//sort->InsertionSortList();
//ti.End();
//cout << "Insertion sort list duration: " << ti.DurationInMilliSeconds() << "ms" << endl;
sort->InitArray();
cout << "starting SelectionSort" << endl;
ti.Start();
sort->SelectionSort();
ti.End();
cout << "SelectionSort duration: " << ti.DurationInMilliSeconds() << "ms" << endl;
sort->InitArray();
cout << "starting MergeSort" << endl;
ti.Start();
sort->MergeSort();
ti.End();
cout << "MergeSort duration: " << ti.DurationInMilliSeconds() << "ms" << endl;
sort->InitArray();
cout << "starting QuickSort" << endl;
ti.Start();
sort->QuickSort();
ti.End();
cout << "QuickSort duration: " << ti.DurationInMilliSeconds() << "ms" << endl;
sort->InitVector();
cout << "starting std::sort() of Vector<int>" << endl;
ti.Start();
sort->VectorSort();
ti.End();
cout << "std::sort() duration: " << ti.DurationInNanoSeconds() << "ns" << endl;
delete sort;
cout << endl <<"Press [Enter] key to exit";
getchar();
}
Sort.cpp
//const int for array
int num = 10000000;
int val = 10000;
//array
int *tmpArray, *qArr, *insArr, *selArr, *mergArr = NULL;
int low, high;
//duration for timer
int duration = 0;
Sort::Sort()
{
}
Sort::~Sort()
{
}
void Sort::InitArray()
{
//int for index
int i = 0;
tmpArray = new int[num];
qArr = new int[num];
insArr = new int[num];
selArr = new int[num];
mergArr = new int[num];
//fill temp array with sequential numbers
for (int i = 0; i < num; i++)
{
tmpArray[i] = 1 + rand() % val;
}
for (i = 0; i < num; i++)
{
qArr[i] = tmpArray[i];
insArr[i] = tmpArray[i];
selArr[i] = tmpArray[i];
mergArr[i] = tmpArray[i];
}
low = qArr[0];
high = qArr[num - 1];
int n = sizeof(tmpArray) / sizeof(tmpArray[0]);
}
void Sort::InitVector()
{
vector<int> v(num);
std::generate(v.begin(), v.end(), std::rand);
}
void Sort::InitList()
{
// A set to store values
std::list<int> l;
// Loop until we get 50 unique random values
while (l.size() < num)
{
l.push_back(1 + rand() % val);
}
for (int n : l) {
std::cout << n << '\n';
}
}
//setting seed
void Sort::SetRandomSeed(unsigned int seed)
{
seed = rand();
}
void Sort::InsertionSort()
{
int i, key, j;
for (i = 1; i < n; i++)
{
key = insArr[i];
j = i - 1;
/* Move elements of arr[0..i-1], that are
greater than key, to one position ahead
of their current position */
while (j >= 0 && insArr[j] > key)
{
insArr[j + 1] = insArr[j];
j = j - 1;
}
insArr[j + 1] = key;
}
delete[] insArr;
insArr = NULL;
}
int Sort::partition(int qArr[], int low, int high)
{
int pivot = qArr[high]; // pivot
int i = (low - 1); // Index of smaller element
for (int j = low; j <= high - 1; j++)
{
// If current element is smaller than or
// equal to pivot
if (qArr[j] <= pivot)
{
i++; // increment index of smaller element
swap(&qArr[i], &qArr[j]);
}
}
swap(&qArr[i + 1], &qArr[high]);
return (i + 1);
}
void Sort::QuickSort(int qArr[], int low, int high)
{
if (low < high)
{
/* pi is partitioning index, arr[p] is now
at right place */
int pi = partition(qArr, low, high);
// Separately sort elements before
// partition and after partition
QuickSort(qArr, low, pi - 1);
QuickSort(qArr, pi + 1, high);
}
delete[] qArr;
qArr = NULL;
}
void Sort::SelectionSort()
{
int i, j, min_idx;
// One by one move boundary of unsorted subarray
for (i = 0; i < n - 1; i++)
{
// Find the minimum element in unsorted array
min_idx = i;
for (j = i + 1; j < n; j++)
if (selArr[j] < selArr[min_idx])
min_idx = j;
// Swap the found minimum element with the first element
swap(&selArr[min_idx], &selArr[i]);
}
delete[] selArr;
selArr = NULL;
}
void Sort::swap(int *xp, int *yp)
{
int temp = *xp;
*xp = *yp;
*yp = temp;
}
void Sort::VectorSort()
{
std::sort(v.begin(), v.end());
}
/* l is for left index and r is right index of the
sub-array of arr to be sorted */
void Sort::merge(int mergArr[], int l, int m, int r)
{
int i, j, k;
int n1 = m - l + 1;
int n2 = r - m;
int* L;
int* R;
/* create temp arrays */
L = new int[n1];
R = new int[n2];
/* Copy data to temp arrays L[] and R[] */
for (i = 0; i < n1; i++)
L[i] = mergArr[l + i];
for (j = 0; j < n2; j++)
R[j] = mergArr[m + 1 + j];
/* Merge the temp arrays back into arr[l..r]*/
i = 0; // Initial index of first subarray
j = 0; // Initial index of second subarray
k = l; // Initial index of merged subarray
while (i < n1 && j < n2)
{
if (L[i] <= R[j])
{
mergArr[k] = L[i];
i++;
}
else
{
mergArr[k] = R[j];
j++;
}
k++;
}
/* Copy the remaining elements of L[], if there
are any */
while (i < n1)
{
mergArr[k] = L[i];
i++;
k++;
}
/* Copy the remaining elements of R[], if there
are any */
while (j < n2)
{
mergArr[k] = R[j];
j++;
k++;
}
}
void Sort::MergeSort(int mergArr[], int l, int r)
{
if (l < r)
{
// Same as (l+r)/2, but avoids overflow for
// large l and h
int m = l + (r - l) / 2;
// Sort first and second halves
MergeSort(mergArr, l, m);
MergeSort(mergArr, m + 1, r);
merge(mergArr, l, m, r);
}
delete[] mergArr;
mergArr = NULL;
}
Sort.h
#include <iomanip>
#include <fstream>
#include <string>
#include <queue>
#include <stack>
#include <vector>
#include<iostream>
#include<cstdio>
#include<sstream>
#include<algorithm>
#include<list>
using namespace std;
#pragma once
class Sort
{
public:
Sort();
~Sort();
void InitArray();
void InitVector();
void InitList();
void SetRandomSeed(unsigned int seed);
int n, right, left, l, r, m;
vector<int> v;
void InsertionSort();
int partition(int qArr[], int low, int high);
void QuickSort(int qArr[], int low, int high);
void swap(int * xp, int * yp);
void VectorSort();
void MergeSort(int arr[], int l, int r);
void merge(int arr[], int l, int m, int r);
void SelectionSort();
};
Ignoring the Timer class (those are all good) here is the rest of the code. The C2660 errors are shown for the sort->MergeSort() and sort->QuickSort() calls in main.
I resolved the issues myself. I created helper functions in the Sort class that have no arguments and call the functions themselves to use in the main. Helper Functions shown below.
Sort.cpp
//method for Main to run to prevent C2660 errors
void Sort::mergeHelper()
{
MergeSort(mergArr, l, r);//call merge sort method
}
//method for Main to run to prevent C2660 errors
void Sort::quickHelper()
{
QuickSort(qArr, low, high);//call quick sort method
}
int Main
{
sort->quickHelper();
sort->mergeHelper();
}
I have the graph with N nodes. I have to create the longest subgraph (with max nodes). One node can be connected with only 2 nodes. So which nodes should I take to create this (max) subgraph?
What I'm doing is:
1: From initial node. I start 2 DFS functions. (from anothers nodes only 1).
2: For some node in DFS I use F() function to check all neighbours and find maximum way that I have to go. Then I'm saving the index of the node in which I have to go in index variable and starting DFS from index.
The problem is that this algorithm is too slow. How can I optimize it? Maybe there is special algorithm to find maximum subgraph?
Here is my code:
#include <stdio.h>
#include <cstring>
#include <algorithm>
#include <iostream>
using namespace std;
int used[20];
int m[20][20];
int c;
int F(int v) {
used[v] = 1;
int maxn = 0, index = -1, t;
for(int i = 0; i < c; ++i) {
if(!used[i] && m[v][i] == 1) {
t = F(i);
if(t > maxn) {
maxn = t;
index = i;
}
}
}
if(index != -1) {
used[v] = 0;
return maxn + 1;
}
else {
used[v] = 0;
return 1;
}
}
int DFS(int v) {
used[v] = 1;
int maxn = 0, index = -1, t;
for(int i = 0; i < c; ++i) {
if(!used[i] && m[v][i] == 1) {
t = F(i);
if(t > maxn) {
maxn = t;
index = i;
}
}
}
if(index != -1) {
return DFS(index) + 1;
}
else {
return 0;
}
}
int main() {
cin >> c;
for(int i = 0; i < c; ++i) {
for(int j = 0; j < c; ++ j)
cin >> m[i][j];
}
int maxn = DFS(0) + DFS(0) + 1;
cout << maxn << endl;
}
I mean like...partial, full or reverse sorted arrays.
I have already tried the following: random, fully sorted, almost sorted, partially sorted, rever sorted and the count of bubble is lesser when it's fully sorted. In all other cases, it's the same.
int selectionSort(int a[], int l, int r) {
int count = 0;
for (int i = l; i < r; i++) {
int min = i;
for (int j = i + 1; j <= r; j++) {
if (a[j] < a[min]) min = j;
count++;
}
if (i != min) swap(a[i], a[min]);
}
return count;
}
int bubbleSort(int a[], int l, int r) {
int count = 0;
bool flag = false;
for (int i = l; i < r; i++) {
for (int j = r; j > i; j--) {
if (a[j-1] > a[j]) {
if (flag == false) flag = true;
swap(a[j - 1], a[j]);
}
count++;
}
if (flag == false) break;
}
return count;
}
The count returns the number of comparisons BTW.
Among simple average-case Θ(n2) algorithms, selection sort almost always outperforms bubble sort.
Source: Wikipedia
I hinted at this already in comments, but here's some updated code for you that counts both comparisons and exchanges/swaps, and illustrates that for some random input the number of exchanges/swaps is where selection sort outperforms bubble sort.
#include <iostream>
#include <vector>
#include <utility>
#include <cassert>
using namespace std;
struct Stats { int swaps_ = 0, compares_ = 0; };
std::ostream& operator<<(std::ostream& os, const Stats& s)
{
return os << "{ swaps " << s.swaps_
<< ", compares " << s.compares_ << " }";
}
Stats selectionSort(std::vector<int>& a, int l, int r) {
Stats stats;
for (int i = l; i < r; i++) {
int min = i;
for (int j = i + 1; j <= r; j++) {
if (a.at(j) < a.at(min)) min = j;
++stats.compares_;
}
if (i != min) {
swap(a.at(i), a.at(min));
++stats.swaps_;
}
}
return stats;
}
Stats bubbleSort(std::vector<int>& a, int l, int r) {
Stats stats;
bool flag = false;
for (int i = l; i < r; i++) {
for (int j = r; j > i; j--) {
if (a.at(j-1) > a.at(j)) {
if (flag == false) flag = true;
swap(a.at(j - 1), a.at(j));
++stats.swaps_;
}
++stats.compares_;
}
if (flag == false) break;
}
return stats;
}
int main()
{
std::vector<int> v1{ 4, 8, 3, 8, 10, -1, 3, 20, 5 };
std::vector<int> v1s = v1;
std::cout << "sel " << selectionSort(v1s, 0, v1s.size() - 1);
std::vector<int> v1b = v1;
std::cout << ", bub " << bubbleSort(v1b, 0, v1b.size() - 1) << '\n';
assert(v1s == v1b);
// always a good idea to check the code's doing what you expect...
for (int i : v1s) std::cout << i << ' ';
std::cout << '\n';
}
Output:
sel { swaps 6, compares 36 }, bub { swaps 15, compares 36 }
-1 3 3 4 5 8 8 10 20
You can observe / copy / fork-and-edit / run the code online here.
Here is some working code that implements a modified version of the Quicksort algorithm that uses Insertion Sort for array size n > 8. My test array isn't sorting exactly right, and I think it must be with my implementation of Insertionsort and Insert.
The general form of the recursive Insertionsort algorithm is:
void Insertionsort(int S[], int n)
{
if(n>1)
Insertionsort(S,n-1);
Insert(S,n-1);
}
void Insert(int *S, int k)
{
int key = S[k];
int j = k-1;
while(j>=0 && S[j] > key)
{
S[j+1] = S[j];
j--;
}
S[j+1] = key;
}
Here is my complete working code that does not sort quite exactly right:
#include <iostream>
#include <string>
#include <stdlib.h>
using namespace std;
int comparisons = 0;
int compare_qs_m3_ins[12];
// Function prototypes
int partition(int *S,int l, int u);
void exchange(int list[], int p, int q);
void Insert(int S[], int k);
void Insertionsort(int S[], int low, int hi);
void Quicksort_Insert_M3(int S[], int n, int p, int r);
int main()
{
srand (time(NULL));
// Declare all arrays used for testing
int S1_500[500];
int S2_500[500];
int S3_500[500];
int S1_300[300];
int S2_300[300];
int S3_300[300];
int S1_100[100];
int S2_100[100];
int S3_100[100];
int S1_8[8];
int S2_8[8];
int S3_8[8];
// Fill arrays with random integers
for(int i=0; i<500; i++)
{
S1_500[i] = rand()%1000;
S2_500[i] = rand()%1000;
S3_500[i] = rand()%1000;
}
for(int i=0; i<300; i++)
{
S1_300[i] = rand()%1000;
S2_300[i] = rand()%1000;
S3_300[i] = rand()%1000;
}
for(int i=0; i<100; i++)
{
S1_100[i] = rand()%500;
S2_100[i] = rand()%500;
S3_100[i] = rand()%500;
}
for(int i=0; i<8; i++)
{
S1_8[i] = rand()%100;
S2_8[i] = rand()%100;
S3_8[i] = rand()%100;
}
Quicksort_Insert_M3(S1_500,500,0,499);
compare_qs_m3_ins[0] = comparisons;
comparisons = 0;
Quicksort_Insert_M3(S2_500,500,0,499);
compare_qs_m3_ins[1] = comparisons;
comparisons = 0;
Quicksort_Insert_M3(S3_500,500,0,499);
compare_qs_m3_ins[2] = comparisons;
comparisons = 0;
Quicksort_Insert_M3(S1_300,300,0,299);
compare_qs_m3_ins[3] = comparisons;
comparisons = 0;
Quicksort_Insert_M3(S2_300,300,0,299);
compare_qs_m3_ins[4] = comparisons;
comparisons = 0;
Quicksort_Insert_M3(S3_300,300,0,299);
compare_qs_m3_ins[5] = comparisons;
comparisons = 0;
Quicksort_Insert_M3(S1_100,100,0,99);
compare_qs_m3_ins[6] = comparisons;
comparisons = 0;
Quicksort_Insert_M3(S2_100,100,0,99);
compare_qs_m3_ins[7] = comparisons;
comparisons = 0;
Quicksort_Insert_M3(S3_100,100,0,99);
compare_qs_m3_ins[8] = comparisons;
comparisons = 0;
Quicksort_Insert_M3(S1_8,8,0,7);
compare_qs_m3_ins[9] = comparisons;
comparisons = 0;
Quicksort_Insert_M3(S2_8,8,0,7);
compare_qs_m3_ins[10] = comparisons;
comparisons = 0;
Quicksort_Insert_M3(S3_8,8,0,7);
compare_qs_m3_ins[11] = comparisons;
comparisons = 0;
//for(int i=0; i<12; i++)
//cout << compare_qs_m3_ins[i] << endl;
for(int i=0;i<499;i++)
cout << S1_500[i] << endl;
}
int partition(int *S,int l, int u)
{
int x = S[l];
int j = l;
for(int i=l+1; i<=u; i++)
{
comparisons++;
if(S[i] < x)
{
j++;
swap(S[i],S[j]);
}
}
int p = j;
swap(S[l],S[p]);
return p;
}
void swap(int &val1, int &val2)
{
int temp = val1;
val1 = val2;
val2 = temp;
}
void exchange(int list[], int p, int q)
{
int temp = list[p];
list[p] = list[q];
list[q] = temp;
}
int Sort3(int list[], int p, int r)
{
int median = (p + r) / 2;
comparisons++;
if(list[p] <= list[median])
{
comparisons++;
if(list[median]>list[r])
{
comparisons++;
if(list[p]<list[r])
{
int temp = list[p];
list[p] = list[r];
list[r] = list[median];
list[median] = temp;
}
else
{
exchange(list,median,r);
}
}
else
;
}
else
{
comparisons++;
if(list[p] > list[r])
{
comparisons++;
if(list[median] < list[r])
{
int temp = list[p];
list[p] = list[median];
list[median] = list[r];
list[r] = temp;
}
else
{
exchange(list,p,r);
}
}
else
{
exchange(list,p,median);
}
}
return list[r];
}
void Insert(int *S, int k)
{
int key = S[k];
int j = k-1;
while(j>=0 && S[j] > key)
{
S[j+1] = S[j];
j--;
comparisons++;
}
comparisons++;
S[j+1] = key;
}
void Insertionsort(int S[], int low, int hi)
{
if((hi-low)+1>1)
Insertionsort(S,low+1,hi);
Insert(S,hi-low);
}
void Quicksort_Insert_M3(int S[], int n, int low, int hi)
{
if((hi-low)<=8)
Insertionsort(S,low,hi);
else
{
if(low < hi)
{
if((low+1) == hi)
{
comparisons++;
if(S[low] > S[hi])
swap(S[low],S[hi]);
}
else
{
Sort3(S,low,hi);
if((low+2)<hi)
{
swap(S[low+1],S[(low+hi)/2]);
int q = partition(S, low+1, hi-1);
Quicksort_Insert_M3(S, n, low, q-1);
Quicksort_Insert_M3(S, n, q+1, hi);
}
}
}
}
}
The function supposed to sort three array elements in ascending order doesn't:
int Sort3(int list[], int p, int r)
{
called only for p + 2 <= r, so
int median = (p + r) / 2;
p < median < r here. Let a = list[p], b = list[median] and c = list[r].
comparisons++;
if(list[p] <= list[median])
{
comparisons++;
if(list[median]>list[r])
{
comparisons++;
if(list[p]<list[r])
{
So here we have a <= b, c < b and a < c, together a < c < b
int temp = list[p];
list[p] = list[r];
list[r] = list[median];
list[median] = temp;
but you place them in order c, a, b. Probably you intended to use if (list[r] < list[p]) there.
}
else
c <= a <= b
{
exchange(list,median,r);
so that arranges them in order a, c, b.
}
}
else
;
}
else
Here, b < a.
{
comparisons++;
if(list[p] > list[r])
{
c < a
comparisons++;
if(list[median] < list[r])
{
Then b < c < a
int temp = list[p];
list[p] = list[median];
list[median] = list[r];
list[r] = temp;
Yup, that's correct.
}
else
c <= b < a
{
exchange(list,p,r);
}
Okedoke.
}
else
{
b < a <= c
exchange(list,p,median);
Okay.
}
}
return list[r];
}
Why does this function return anything? You don't use the return value anyway.
"The general form of the recursive Insertionsort algorithm is" - if you need to have a head-recursive algorithm, yes, otherwise a better version is:
void Insertionsort(int S[], int i, int n)
{
Insert(S, i, n);
if(i < n)
Insertionsort(S, i+1, n);
}
which is much more understandable. Also, you might as well have put the body of Insert into Insertionsort.
I'm not going to try and figure out your overly complicated version of quicksort. A decent quicksort is around 20 lines or less (like this - www.algolist.net/Algorithms/Sorting/Quicksort) (and add another 10 or less for insertion sort). I suggest getting a better understanding by looking at another implementation and rewriting yours.
I believe this could've been asked as an extension of your previous question.
I am currently reading "Programming: Principles and Practice Using C++", in Chapter 4 there is an exercise in which:
I need to make a program to calculate prime numbers between 1 and 100 using the Sieve of Eratosthenes algorithm.
This is the program I came up with:
#include <vector>
#include <iostream>
using namespace std;
//finds prime numbers using Sieve of Eratosthenes algorithm
vector<int> calc_primes(const int max);
int main()
{
const int max = 100;
vector<int> primes = calc_primes(max);
for(int i = 0; i < primes.size(); i++)
{
if(primes[i] != 0)
cout<<primes[i]<<endl;
}
return 0;
}
vector<int> calc_primes(const int max)
{
vector<int> primes;
for(int i = 2; i < max; i++)
{
primes.push_back(i);
}
for(int i = 0; i < primes.size(); i++)
{
if(!(primes[i] % 2) && primes[i] != 2)
primes[i] = 0;
else if(!(primes[i] % 3) && primes[i] != 3)
primes[i]= 0;
else if(!(primes[i] % 5) && primes[i] != 5)
primes[i]= 0;
else if(!(primes[i] % 7) && primes[i] != 7)
primes[i]= 0;
}
return primes;
}
Not the best or fastest, but I am still early in the book and don't know much about C++.
Now the problem, until max is not bigger than 500 all the values print on the console, if max > 500 not everything gets printed.
Am I doing something wrong?
P.S.: Also any constructive criticism would be greatly appreciated.
I have no idea why you're not getting all the output, as it looks like you should get everything. What output are you missing?
The sieve is implemented wrongly. Something like
vector<int> sieve;
vector<int> primes;
for (int i = 1; i < max + 1; ++i)
sieve.push_back(i); // you'll learn more efficient ways to handle this later
sieve[0]=0;
for (int i = 2; i < max + 1; ++i) { // there are lots of brace styles, this is mine
if (sieve[i-1] != 0) {
primes.push_back(sieve[i-1]);
for (int j = 2 * sieve[i-1]; j < max + 1; j += sieve[i-1]) {
sieve[j-1] = 0;
}
}
}
would implement the sieve. (Code above written off the top of my head; not guaranteed to work or even compile. I don't think it's got anything not covered by the end of chapter 4.)
Return primes as usual, and print out the entire contents.
Think of the sieve as a set.
Go through the set in order. For each value in thesive remove all numbers that are divisable by it.
#include <set>
#include <algorithm>
#include <iterator>
#include <iostream>
typedef std::set<int> Sieve;
int main()
{
static int const max = 100;
Sieve sieve;
for(int loop=2;loop < max;++loop)
{
sieve.insert(loop);
}
// A set is ordered.
// So going from beginning to end will give all the values in order.
for(Sieve::iterator loop = sieve.begin();loop != sieve.end();++loop)
{
// prime is the next item in the set
// It has not been deleted so it must be prime.
int prime = *loop;
// deleter will iterate over all the items from
// here to the end of the sieve and remove any
// that are divisable be this prime.
Sieve::iterator deleter = loop;
++deleter;
while(deleter != sieve.end())
{
if (((*deleter) % prime) == 0)
{
// If it is exactly divasable then it is not a prime
// So delete it from the sieve. Note the use of post
// increment here. This increments deleter but returns
// the old value to be used in the erase method.
sieve.erase(deleter++);
}
else
{
// Otherwise just increment the deleter.
++deleter;
}
}
}
// This copies all the values left in the sieve to the output.
// i.e. It prints all the primes.
std::copy(sieve.begin(),sieve.end(),std::ostream_iterator<int>(std::cout,"\n"));
}
From Algorithms and Data Structures:
void runEratosthenesSieve(int upperBound) {
int upperBoundSquareRoot = (int)sqrt((double)upperBound);
bool *isComposite = new bool[upperBound + 1];
memset(isComposite, 0, sizeof(bool) * (upperBound + 1));
for (int m = 2; m <= upperBoundSquareRoot; m++) {
if (!isComposite[m]) {
cout << m << " ";
for (int k = m * m; k <= upperBound; k += m)
isComposite[k] = true;
}
}
for (int m = upperBoundSquareRoot; m <= upperBound; m++)
if (!isComposite[m])
cout << m << " ";
delete [] isComposite;
}
Interestingly, nobody seems to have answered your question about the output problem. I don't see anything in the code that should effect the output depending on the value of max.
For what it's worth, on my Mac, I get all the output. It's wrong of course, since the algorithm isn't correct, but I do get all the output. You don't mention what platform you're running on, which might be useful if you continue to have output problems.
Here's a version of your code, minimally modified to follow the actual Sieve algorithm.
#include <vector>
#include <iostream>
using namespace std;
//finds prime numbers using Sieve of Eratosthenes algorithm
vector<int> calc_primes(const int max);
int main()
{
const int max = 100;
vector<int> primes = calc_primes(max);
for(int i = 0; i < primes.size(); i++)
{
if(primes[i] != 0)
cout<<primes[i]<<endl;
}
return 0;
}
vector<int> calc_primes(const int max)
{
vector<int> primes;
// fill vector with candidates
for(int i = 2; i < max; i++)
{
primes.push_back(i);
}
// for each value in the vector...
for(int i = 0; i < primes.size(); i++)
{
//get the value
int v = primes[i];
if (v!=0) {
//remove all multiples of the value
int x = i+v;
while(x < primes.size()) {
primes[x]=0;
x = x+v;
}
}
}
return primes;
}
In the code fragment below, the numbers are filtered before they are inserted into the vector. The divisors come from the vector.
I'm also passing the vector by reference. This means that the huge vector won't be copied from the function to the caller. (Large chunks of memory take long times to copy)
vector<unsigned int> primes;
void calc_primes(vector<unsigned int>& primes, const unsigned int MAX)
{
// If MAX is less than 2, return an empty vector
// because 2 is the first prime and can't be placed in the vector.
if (MAX < 2)
{
return;
}
// 2 is the initial and unusual prime, so enter it without calculations.
primes.push_back(2);
for (unsigned int number = 3; number < MAX; number += 2)
{
bool is_prime = true;
for (unsigned int index = 0; index < primes.size(); ++index)
{
if ((number % primes[k]) == 0)
{
is_prime = false;
break;
}
}
if (is_prime)
{
primes.push_back(number);
}
}
}
This not the most efficient algorithm, but it follows the Sieve algorithm.
below is my version which basically uses a bit vector of bool and then goes through the odd numbers and a fast add to find multiples to set to false. In the end a vector is constructed and returned to the client of the prime values.
std::vector<int> getSieveOfEratosthenes ( int max )
{
std::vector<bool> primes(max, true);
int sz = primes.size();
for ( int i = 3; i < sz ; i+=2 )
if ( primes[i] )
for ( int j = i * i; j < sz; j+=i)
primes[j] = false;
std::vector<int> ret;
ret.reserve(primes.size());
ret.push_back(2);
for ( int i = 3; i < sz; i+=2 )
if ( primes[i] )
ret.push_back(i);
return ret;
}
Here is a concise, well explained implementation using bool type:
#include <iostream>
#include <cmath>
void find_primes(bool[], unsigned int);
void print_primes(bool [], unsigned int);
//=========================================================================
int main()
{
const unsigned int max = 100;
bool sieve[max];
find_primes(sieve, max);
print_primes(sieve, max);
}
//=========================================================================
/*
Function: find_primes()
Use: find_primes(bool_array, size_of_array);
It marks all the prime numbers till the
number: size_of_array, in the form of the
indexes of the array with value: true.
It implemenets the Sieve of Eratosthenes,
consisted of:
a loop through the first "sqrt(size_of_array)"
numbers starting from the first prime (2).
a loop through all the indexes < size_of_array,
marking the ones satisfying the relation i^2 + n * i
as false, i.e. composite numbers, where i - known prime
number starting from 2.
*/
void find_primes(bool sieve[], unsigned int size)
{
// by definition 0 and 1 are not prime numbers
sieve[0] = false;
sieve[1] = false;
// all numbers <= max are potential candidates for primes
for (unsigned int i = 2; i <= size; ++i)
{
sieve[i] = true;
}
// loop through the first prime numbers < sqrt(max) (suggested by the algorithm)
unsigned int first_prime = 2;
for (unsigned int i = first_prime; i <= std::sqrt(double(size)); ++i)
{
// find multiples of primes till < max
if (sieve[i] = true)
{
// mark as composite: i^2 + n * i
for (unsigned int j = i * i; j <= size; j += i)
{
sieve[j] = false;
}
}
}
}
/*
Function: print_primes()
Use: print_primes(bool_array, size_of_array);
It prints all the prime numbers,
i.e. the indexes with value: true.
*/
void print_primes(bool sieve[], unsigned int size)
{
// all the indexes of the array marked as true are primes
for (unsigned int i = 0; i <= size; ++i)
{
if (sieve[i] == true)
{
std::cout << i <<" ";
}
}
}
covering the array case. A std::vector implementation will include minor changes such as reducing the functions to one parameter, through which the vector is passed by reference and the loops will use the vector size() member function instead of the reduced parameter.
Here is a more efficient version for Sieve of Eratosthenes algorithm that I implemented.
#include <iostream>
#include <cmath>
#include <set>
using namespace std;
void sieve(int n){
set<int> primes;
primes.insert(2);
for(int i=3; i<=n ; i+=2){
primes.insert(i);
}
int p=*primes.begin();
cout<<p<<"\n";
primes.erase(p);
int maxRoot = sqrt(*(primes.rbegin()));
while(primes.size()>0){
if(p>maxRoot){
while(primes.size()>0){
p=*primes.begin();
cout<<p<<"\n";
primes.erase(p);
}
break;
}
int i=p*p;
int temp = (*(primes.rbegin()));
while(i<=temp){
primes.erase(i);
i+=p;
i+=p;
}
p=*primes.begin();
cout<<p<<"\n";
primes.erase(p);
}
}
int main(){
int n;
n = 1000000;
sieve(n);
return 0;
}
Here's my implementation not sure if 100% correct though :
http://pastebin.com/M2R2J72d
#include<iostream>
#include <stdlib.h>
using namespace std;
void listPrimes(int x);
int main() {
listPrimes(5000);
}
void listPrimes(int x) {
bool *not_prime = new bool[x];
unsigned j = 0, i = 0;
for (i = 0; i <= x; i++) {
if (i < 2) {
not_prime[i] = true;
} else if (i % 2 == 0 && i != 2) {
not_prime[i] = true;
}
}
while (j <= x) {
for (i = j; i <= x; i++) {
if (!not_prime[i]) {
j = i;
break;
}
}
for (i = (j * 2); i <= x; i += j) {
not_prime[i] = true;
}
j++;
}
for ( i = 0; i <= x; i++) {
if (!not_prime[i])
cout << i << ' ';
}
return;
}
I am following the same book now. I have come up with the following implementation of the algorithm.
#include<iostream>
#include<string>
#include<vector>
#include<algorithm>
#include<cmath>
using namespace std;
inline void keep_window_open() { char ch; cin>>ch; }
int main ()
{
int max_no = 100;
vector <int> numbers (max_no - 1);
iota(numbers.begin(), numbers.end(), 2);
for (unsigned int ind = 0; ind < numbers.size(); ++ind)
{
for (unsigned int index = ind+1; index < numbers.size(); ++index)
{
if (numbers[index] % numbers[ind] == 0)
{
numbers.erase(numbers.begin() + index);
}
}
}
cout << "The primes are\n";
for (int primes: numbers)
{
cout << primes << '\n';
}
}
Here is my version:
#include "std_lib_facilities.h"
//helper function:check an int prime, x assumed positive.
bool check_prime(int x) {
bool check_result = true;
for (int i = 2; i < x; ++i){
if (x%i == 0){
check_result = false;
break;
}
}
return check_result;
}
//helper function:return the largest prime smaller than n(>=2).
int near_prime(int n) {
for (int i = n; i > 0; --i) {
if (check_prime(i)) { return i; break; }
}
}
vector<int> sieve_primes(int max_limit) {
vector<int> num;
vector<int> primes;
int stop = near_prime(max_limit);
for (int i = 2; i < max_limit+1; ++i) { num.push_back(i); }
int step = 2;
primes.push_back(2);
//stop when finding the last prime
while (step!=stop){
for (int i = step; i < max_limit+1; i+=step) {num[i-2] = 0; }
//the multiples set to 0, the first none zero element is a prime also step
for (int j = step; j < max_limit+1; ++j) {
if (num[j-2] != 0) { step = num[j-2]; break; }
}
primes.push_back(step);
}
return primes;
}
int main() {
int max_limit = 1000000;
vector<int> primes = sieve_primes(max_limit);
for (int i = 0; i < primes.size(); ++i) {
cout << primes[i] << ',';
}
}
Here is a classic method for doing this,
int main()
{
int max = 500;
vector<int> array(max); // vector of max numbers, initialized to default value 0
for (int i = 2; i < array.size(); ++ i) // loop for rang of numbers from 2 to max
{
// initialize j as a composite number; increment in consecutive composite numbers
for (int j = i * i; j < array.size(); j +=i)
array[j] = 1; // assign j to array[index] with value 1
}
for (int i = 2; i < array.size(); ++ i) // loop for rang of numbers from 2 to max
if (array[i] == 0) // array[index] with value 0 is a prime number
cout << i << '\n'; // get array[index] with value 0
return 0;
}
I think im late to this party but im reading the same book as you, this is the solution in came up with! Feel free to make suggestions (you or any!), for what im seeing here a couple of us extracted the operation to know if a number is multiple of another to a function.
#include "../../std_lib_facilities.h"
bool numIsMultipleOf(int n, int m) {
return n%m == 0;
}
int main() {
vector<int> rawCollection = {};
vector<int> numsToCheck = {2,3,5,7};
// Prepare raw collection
for (int i=2;i<=100;++i) {
rawCollection.push_back(i);
}
// Check multiples
for (int m: numsToCheck) {
vector<int> _temp = {};
for (int n: rawCollection) {
if (!numIsMultipleOf(n,m)||n==m) _temp.push_back(n);
}
rawCollection = _temp;
}
for (int p: rawCollection) {
cout<<"N("<<p<<")"<<" is prime.\n";
}
return 0;
}
Try this code it will be useful to you by using java question bank
import java.io.*;
class Sieve
{
public static void main(String[] args) throws IOException
{
int n = 0, primeCounter = 0;
double sqrt = 0;
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
System.out.println(“Enter the n value : ”);
n = Integer.parseInt(br.readLine());
sqrt = Math.sqrt(n);
boolean[] prime = new boolean[n];
System.out.println(“\n\nThe primes upto ” + n + ” are : ”);
for (int i = 2; i<n; i++)
{
prime[i] = true;
}
for (int i = 2; i <= sqrt; i++)
{
for (int j = i * 2; j<n; j += i)
{
prime[j] = false;
}
}
for (int i = 0; i<prime.length; i++)
{
if (prime[i])
{
primeCounter++;
System.out.print(i + ” “);
}
}
prime = new boolean[0];
}
}