What is the best way to constrain any value from -pi to pi ?
I currently have:
if (fAngle > XM_PI) {
fAngle = fAngle - XM_2PI;
}
else if (fAngle < -XM_PI) {
fAngle = fAngle - -XM_2PI;
}
However, I fear those if's should instead be while's
For reference, under the Exploit Symmetrical Functions section:
https://developer.arm.com/solutions/graphics-and-gaming/developer-guides/learn-the-basics/understanding-numerical-precision/mitigating-loss-of-precision
Extra bit of precision!
Adding or subtracting XM_2PI cannot restore any accuracy that has been lost. In fact, it adds noise, generally losing more accuracy, because XM_2PI is necessarily only an approximation of 2π. It has some error itself, so adding or subtracting it adds or subtracts the error in the approximation.
What it can do is keep you from losing more accuracy by ensuring that future results remain low in magnitude, thus remaining in a region where the floating-point format has more precision than if the number grew beyond 4, 8, 16, or other points where the exponent changes and the absolute precision becomes worse.
If you already have some value x outside [−π, π] and want its sine or cosine, you should get the best result by using sin(x) or cos(x) directly. Good implementations of sin and cos will reduce the argument using a high-precision value for 2π, so you will get a better result than using sin(x-XM_PI) or cos(x-XM_PI) (unless, by chance, the various errors in these happen to cancel).
So your task with trigonometric functions is not to reduce values you already have but to design your algorithms to keep values from growing. Adding or subtracting 2π is a reasonable way to do this. However, when you do it, add or subtract an extended-precision version of 2π, not just XM_2PI. You can do this by representing 2π as XM_2PI (which should be the value representable in floating-point that is closest to 2π) plus some residue r. r should be the value representable in floating-point that is closest to 2π−XM_2PI. You can calculate that with extended-precision software such as GMP or Maple and can likely find it online. (I do not have it handy or I would paste it here; anybody else is welcome to edit it in.) Then you would update your angle with fAngle = fAngle - XM_2PI - r; or fAngle = fAngle + XM_2PI + r;.
An exception is if you have the angle measured in some unit that you can represent or reduce exactly, such as in degrees (which you can reduce by 360º with no error as long as the number of degrees itself is represented with no error) or in time (such as number of seconds for some function with a period of a day or other rational number of seconds, so you can again reduce with no error). In that case, you can let the angle grow as long as you can represent it exactly, and you would reduce it modulo the period prior to converting it to radians.
The simplest coding way is to use the math library function remainder, as in
fAngle = remainder( fangle, XM_2PI);
STATIC_INLINE_PURE float const __vectorcall constrain(float const fAngle)
{
static constexpr double const
dPI(std::numbers::pi),
d2PI(2.0 * std::numbers::pi),
dResidue(-1.74845553146951715461909770965576171875e-07); // abs difference between d2PI(double precision) and XM_2PI(float precision)
double dAngle(fAngle);
dAngle = std::remainder(dAngle, d2PI);
if (dAngle > dPI) {
dAngle = dAngle - d2PI - dResidue;
}
else if (dAngle < -dPI) {
dAngle = dAngle + d2PI + dResidue;
}
return((float)dAngle);
}
Related
I've written a simple program to calculate the first and second derivative of a function, using function pointers. My program computes the correct answers (more or less), but for some functions, the accuracy is less than I would like.
This is the function I am differentiating:
float f1(float x) {
return (x * x);
}
These are the derivative functions, using the central finite difference method:
// Function for calculating the first derivative.
float first_dx(float (*fx)(float), float x) {
float h = 0.001;
float dfdx;
dfdx = (fx(x + h) - fx(x - h)) / (2 * h);
return dfdx;
}
// Function for calculating the second derivative.
float second_dx(float (*fx)(float), float x) {
float h = 0.001;
float d2fdx2;
d2fdx2 = (fx(x - h) - 2 * fx(x) + fx(x + h)) / (h * h);
return d2fdx2;
}
Main function:
int main() {
pc.baud(9600);
float x = 2.0;
pc.printf("**** Function Pointers ****\r\n");
pc.printf("Value of f(%f): %f\r\n", x, f1(x));
pc.printf("First derivative: %f\r\n", first_dx(f1, x));
pc.printf("Second derivative: %f\r\n\r\n", second_dx(f1, x));
}
This is the output from the program:
**** Function Pointers ****
Value of f(2.000000): 4.000000
First derivative: 3.999948
Second derivative: 1.430511
I'm happy with the accuracy of the first derivative, but I believe the second derivative is too far off (it should be equal to ~2.0).
I have a basic understanding of how floating point numbers are represented and why they are sometimes inaccurate, but how can I make this second derivative result more accurate? Could I be using something better than the central finite difference method, or is there a way I can get better results with the current method?
The accuracy can be increased by choosing a type which has more precision. float is currently defined as an IEEE-754 32-bit number, giving you a precision of ~7.225 decimal places.
What you want is the 64-bit counterpart: double with ~15.955 decimal places accuracy.
That should be sufficient for your calculation, however worth mentioning is boosts implementation which offers a quadruple-precision floating point number (128-bit).
Finally The GNU Multiple Precision Arithmetic Library offers types with an arbitrary number of decimal places for precision.
Go analytical. ;-) probably not an option given "with the current
method".
Use double instead of float.
Vary the epsilon (h), and combine the results in some way. For example you could try 0.00001, 0.000001, 0.0000001 and average them. In fact, you'd want the result with the smallest h that doesn't overflow/underflow. But it's not clear how to detect overflow and underflow.
I have a scientific code that uses both sine and cosine of the same argument (I basically need the complex exponential of that argument). I was wondering if it were possible to do this faster than calling sine and cosine functions separately.
Also I only need about 0.1% precision. So is there any way I can find the default trig functions and truncate the power series for speed?
One other thing I have in mind is, is there any way to perform the remainder operation such that the result is always positive? In my own algorithm I used x=fmod(x,2*pi); but then I would need to add 2pi if x is negative (smaller domain means I can use a shorter power series)
EDIT: LUT turned out to be the best approach for this, however I am glad I learned about other approximation techniques. I will also advise using an explicit midpoint approximation. This is what I ended up doing:
const int N = 10000;//about 3e-4 error for 1000//3e-5 for 10 000//3e-6 for 100 000
double *cs = new double[N];
double *sn = new double[N];
for(int i =0;i<N;i++){
double A= (i+0.5)*2*pi/N;
cs[i]=cos(A);
sn[i]=sin(A);
}
The following part approximates (midpoint) sincos(2*pi*(wc2+t[j]*(cotp*t[j]-wc)))
double A=(wc2+t[j]*(cotp*t[j]-wc));
int B =(int)N*(A-floor(A));
re += cs[B]*f[j];
im += sn[B]*f[j];
Another approach could have been using the chebyshev decomposition. You can use the orthogonality property to find the coefficients. Optimized for exponential, it looks like this:
double fastsin(double x){
x=x-floor(x/2/pi)*2*pi-pi;//this line can be improved, both inside this
//function and before you input it into the function
double x2 = x*x;
return (((0.00015025063885163012*x2-
0.008034350857376128)*x2+ 0.1659789684145034)*x2-0.9995812174943602)*x;} //7th order chebyshev approx
If you seek fast evaluation with good (but not high) accuracy with powerseries you should use an expansion in Chebyshev polynomials: tabulate the coefficients (you'll need VERY few for 0.1% accuracy) and evaluate the expansion with the recursion relations for these polynomials (it's really very easy).
References:
Tabulated coefficients: http://www.ams.org/mcom/1980-34-149/S0025-5718-1980-0551302-5/S0025-5718-1980-0551302-5.pdf
Evaluation of chebyshev expansion: https://en.wikipedia.org/wiki/Chebyshev_polynomials
You'll need to (a) get the "reduced" argument in the range -pi/2..+pi/2 and consequently then (b) handle the sign in your results when the argument actually should have been in the "other" half of the full elementary interval -pi..+pi. These aspects should not pose a major problem:
determine (and "remember" as an integer 1 or -1) the sign in the original angle and proceed with the absolute value.
use a modulo function to reduce to the interval 0..2PI
Determine (and "remember" as an integer 1 or -1) whether it is in the "second" half and, if so, subtract pi*3/2, otherwise subtract pi/2. Note: this effectively interchanges sine and cosine (apart from signs); take this into account in the final evaluation.
This completes the step to get an angle in -pi/2..+pi/2
After evaluating sine and cosine with the Cheb-expansions, apply the "flags" of steps 1 and 3 above to get the right signs in the values.
Just create a lookup table. The following will let you lookup the sin and cos of any radian value between -2PI and 2PI.
// LOOK UP TABLE
var LUT_SIN_COS = [];
var N = 14400;
var HALF_N = N >> 1;
var STEP = 4 * Math.PI / N;
var INV_STEP = 1 / STEP;
// BUILD LUT
for(var i=0, r = -2*Math.PI; i < N; i++, r += STEP) {
LUT_SIN_COS[2*i] = Math.sin(r);
LUT_SIN_COS[2*i + 1] = Math.cos(r);
}
You index into the lookup table by:
var index = ((r * INV_STEP) + HALF_N) << 1;
var sin = LUT_SIN_COS[index];
var cos = LUT_SIN_COS[index + 1];
Here's a fiddle that displays the % error you can expect from different sized LUTS http://jsfiddle.net/77h6tvhj/
EDIT Here's an ideone (c++) with a ~benchmark~ vs the float sin and cos. http://ideone.com/SGrFVG For whatever a benchmark on ideone.com is worth the LUT is 5 times faster.
One way to go would be to learn how to implement the CORDIC algorithm. It is not difficult and pretty interesting intelectually. This gives you both the cosine and the sine. Wikipedia gives a MATLAB example that should be easy to adapt in C++.
Note that you can augment speed and reduce precision simply by lowering the parameter n.
About your second question, it has already been asked here (in C). It seems that there is no simple way.
You can also calculate sine using a square root, given the angle and the cosine.
The example below assumes the angle ranges from 0 to 2π:
double c = cos(angle);
double s = sqrt(1.0-c*c);
if(angle>pi)s=-s;
For single-precision floats, Microsoft uses 11-degree polynomial approximation for sine, 10-degree for cosine: XMScalarSinCos.
They also have faster version, XMScalarSinCosEst, that uses lower-degree polynomials.
If you aren’t on Windows, you’ll find same code + coefficients on geometrictools.com under Boost license.
as i said, i want implement my own double precision cos() function in a compute shader with GLSL, because there is just a built-in version for float.
This is my code:
double faculty[41];//values are calculated at the beginning of main()
double myCOS(double x)
{
double sum,tempExp,sign;
sum = 1.0;
tempExp = 1.0;
sign = -1.0;
for(int i = 1; i <= 30; i++)
{
tempExp *= x;
if(i % 2 == 0){
sum = sum + (sign * (tempExp / faculty[i]));
sign *= -1.0;
}
}
return sum;
}
The result of this code is, that the sum turns out to be NaN on the shader, but on the CPU the algorithm is working well.
I tried to debug this code too and I got the following information:
faculty[i] is positive and not zero for all entries
tempExp is positive in each step
none of the other variables are NaN during each step
the first time sum is NaN is at the step with i=4
and now my question: What exactly can go wrong if each variable is a number and nothing is divided by zero especially when the algorithm works on the CPU?
Let me guess:
First you determined the problem is in the loop, and you use only the following operations: +, *, /.
The rules for generating NaN from these operations are:
The divisions 0/0 and ±∞/±∞
The multiplications 0×±∞ and ±∞×0
The additions ∞ + (−∞), (−∞) + ∞ and equivalent subtractions
You ruled out the possibility for 0/0 and ±∞/±∞ by stating that faculty[] is correctly initialized.
The variable sign is always 1.0 or -1.0 so it cannot generate the NaN through the * operation.
What remains is the + operation if tempExp ever become ±∞.
So probably tempExp is too high on entry of your function and becomes ±∞, this will make sum to be ±∞ too. At the next iteration you will trigger the NaN generating operation through: ∞ + (−∞). This is because you multiply one side of the addition by sign and sign switches between positive and negative at each iteration.
You're trying to approximate cos(x) around 0.0. So you should use the properties of the cos() function to reduce your input value to a value near 0.0. Ideally in the range [0, pi/4]. For instance, remove multiples of 2*pi, and get the values of cos() in [pi/4, pi/2] by computing sin(x) around 0.0 and so on.
What can go dramatically wrong is a loss of precision. cos(x) usually is implemented by range reduction followed by a dedicated implementation for the range [0, pi/2]. Range reduction uses cos(x+2*pi) = cos(x). But this range reduction isn't perfect. For starters, pi cannot be exactly represented in finite math.
Now what happens if you try something as absurd as cos(1<<30) ? It's quite possible that the range reduction algorithm introduces an error in x that's larger than 2*pi, in which case the outcome is meaningless. Returning NaN in such cases is reasonable.
Basically I have two variables:
double halfWidth = Width / 2;
double halfHeight = Height / 2;
As they are being divided by 2, they will either be a whole number or a decimal. How can I check whether they are a whole number or a .5?
You can use modf, this should be sufficient:
double intpart;
if( modf( halfWidth, &intpart) == 0 )
{
// your code here
}
First, you need to make sure that you're using double-precision floating-point math:
double halfWidth = Width / 2.0;
double halfHeight = Height / 2.0;
Because one of the operands is a double (namely, 2.0), this will force the compiler to convert Width and Height to doubles before doing the math (assuming they're not already doubles). Once converted, the division will be done in double-precision floating-point. So it will have a decimal, where appropriate.
The next step is to simply check it with modf.
double temp;
if(modf(halfWidth, &temp) != 0)
{
//Has fractional part.
}
else
{
//No fractional part.
}
You may discard a fractional part and compare the result with the original value using floor():
if (floor(halfWidth) == halfWidth) {
// halfWidth is a whole number
} else {
// halfWidth has a non-zero fractional part
}
As rightly pointed out by #Dávid Laczkó, it's a better solution than modf() because there's no need for an additional variable.
And according to my benchmarks (Linux, gcc 8.3.0, optimizations -O0...-O3), the floor() call consumes less CPU time than modf() on the modern notebook and server processors. The difference even growing with compiler optimizations enabled. Probably it's because the modf() has two arguments when the floor() has only one argument.
Here is my problem, I have several parameters that I need to increment by 0.1.
But my UI only renders x.x , x.xx, x.xxx for floats so since 0.1f is not really 0.1 but something like 0.10000000149011612 on the long run my ui will render -0.00 and that doesn't make much sense. How to prevent that for all the possible cases of UI.
Thank you.
Use integers and divide by 10 (or 1000 etc...) just before displaying. Your parameters will store an integer number of tenths, and you'll increment them by 1 tenth.
If you know that your floating point value will always be a multiple of 0.1, you can round it after every increment to make sure it maintains a sensible value. It still won't be exact (because it physically can't be), but at least the errors won't accumulate and it will display properly.
Instead of:
x += delta;
Do:
x = floor((x + delta) / precision + 0.5) * precision;
Edit: It's useful to turn the rounding into a stand-alone function and decouple it from the increment:
inline double round(double value, double precision = 1.0)
{
return floor(value / precision + 0.5) * precision;
}
x = round(x + 0.1, 0.1);