Related
I'm new to F# and I'm trying to write a method split that splits a list into 2 pieces. It takes a tuple with the first element being the number of elements to split and the second element is the list . For example, split (2, [1;2;3;4;5;6]) should return ([1;2], [3;4;5;6]),
This is what I have so far, but for some reason it is returning the second element of the tuple as the original list without the head. I don't understand this because I thought that x::xs automatically makes x the head element and xs the rest of the list, which would mean that each recursive call is taking the tail of the previous list and chopping off the first term.
let rec split = function
|(n, []) -> ([], [])
|(0, xs) -> ([], xs)
|(n, x::xs) -> let temp = x :: fst (split(n-1, xs))
(temp, xs);;
The problem is on this line:
(temp,xs);;
here in your example, xs will always be [2;3;4;5;6] as long as n>0
You need to get the second element of the list with something like
|(n,x::xs) ->
let a,b = split (n-1,xs)
(x::a,b)
I have a problem with writing a function which result is as shown below:
split([7;1;4;3;6;8;2], 4) = ([1;3;2;4], [7;6;8])
my current code i managed to write:
let split(list, number)=
let split1(list, number, lesser, greater)=
if list = [] then lesser::greater
else if List.hd list <= element then (List.hd list)::(lesser)
else (List.hd list)::(greater)
in
(List.tl lista, element, [], []);;
Thanks in advance for your help.
For the future, it helps to be more specific when asking a question on SO. What exactly is your problem? SO users will be skeptical of someone who wants others to help them, but won't help themselves.
Your code has nearly the correct structure, but there are a few errors in there that seem to be getting in your way.
Firstly lesser::greater is wrong, since the left hand side of a cons operator must be a list itself, but what you really want is a list where both of these are elements. So instead try [lesser;greater].
Secondly, if you think through your code, you will notice that it suddenly stops. You checked the first element, but you didn't look at the rest of the list. Since you want to keep splitting the list, you need your code to keep executing till the end of the list. To achieve this, we use recursion. Recursion mean that your function split1 will call itself again. It can be very confusing the first time you see it - each time split1 runs it will take the first element off, and then split the remainder of the list.
What does (List.hd list)::(lesser) actually mean? The lesser here really means all of the lesser elements in the rest of the list. You need to keep taking an element out of the list and putting it in either lesser or greater.
Finally avoid using List.hd excessively - it is neater to find the head and tail using pattern matching.
Here's a working version of the code:
let split(list, number)=
let rec split1(list, number, lesser, greater)=
match list with
| [] -> [List.rev lesser;List.rev greater]
| head::tail ->
match (head <= number) with
true -> split1(tail,number,head::lesser,greater)
| false -> split1(tail,number,lesser,head::greater)
in split1(list, number, [], []);;
split([1;2;3;4;5],3);;
The split1 function takes the elements off one at a time, and adds them to the lists.
Maybe my comments on the following code snippet would help:
let split list num =
let rec loop lesser greater list =
match list with
| [] -> (lesser, greater)
(* when your initial list is empty, you have to return the accumulators *)
| x :: xs ->
if x <= num then
(* x is lesser than num, so add x in the lesser list and
call loop on the tail of the list (xs) *)
else
(* x is greater than num, so add x in the greater list and
call loop on the tail of the list (xs) *)
in
(* here you make the first call to loop by initializing
your accumulators with empty list*)
loop [] [] list
I am new to OCaml and functional programming as a whole. I am working on a part of an assignment where I must simply return the first n elements of a list. I am not allowed to use List.Length.
I feel that what I have written is probably overly complicated for what I'm trying to accomplish. What my code attempts to do is concatenate the front of the list to the end until n is decremented to 1. At which point the head moves a further n-1 spots to that the tail of the list and then return the tail. Again, I realize that there is probably a much simpler way to do this, but I am stumped and probably showing my inability to grasp functional programming.
let rec take n l =
let stopNum = 0 - (n - 1) in
let rec subList n lst =
match lst with
| hd::tl -> if n = stopNum then (tl)
else if (0 - n) = 0 then (subList (n - 1 ) tl )
else subList (n - 1) (tl # [hd])
| [] -> [] ;;
My compiler tells me that I have a syntax error on the last line. I get the same result regardless of whether "| [] -> []" is the last line or the one above it. The syntax error does not exist when I take out the nested subList let. Clearly there is something about nested lets that I am just not understanding.
Thanks.
let rec firstk k xs = match xs with
| [] -> failwith "firstk"
| x::xs -> if k=1 then [x] else x::firstk (k-1) xs;;
You might have been looking for this one.
What you have to do here, is to iterate on your initial list l and then add elements of this list in an accumulator until n is 0.
let take n l =
let rec sub_list n accu l =
match l with
| [] -> accu (* here the list is now empty, return the partial result *)
| hd :: tl ->
if n = 0 then accu (* if you reach your limit, return your result *)
else (* make the call to the recursive sub_list function:
- decrement n,
- add hd to the accumulator,
- call with the rest of the list (tl)*)
in
sub_list n [] l
Since you're just starting with FP, I suggest you look for the simplest and most elegant solution. What you're looking for is a way to solve the problem for n by building it up from a solution for a smaller problem.
So the key question is: how could you produce the first n elements of your list if you already had a function that could produce the first (n - 1) elements of a list?
Then you need to solve the "base" cases, the cases that are so simple that the answer is obvious. For this problem I'd say there are two base cases: when n is 0, the answer is obvious; when the list is empty, the answer is obvious.
If you work this through you get a fairly elegant definition.
Hello All I am trying to flatten a list in Ocaml. I am a newbie so please pardon me if my mistake is dumb
So for example, if input is [[1];[2;3];[4]] I should end up with [1;2;3;4].
The idea I am trying to use is as follows
Iterate through the list from the right (Using fold_right) with accumaltor = []
The pseudo code is as follows
func flatten(list, accumalator)
For each item from right to left in list
If Item is a scalar then n :: accumalator
Else fi Item is a list of form head :: tail then
head :: flatten (tail, accumalator).
I think that theoretically the algorithm is correct, but please let me know if you disagree.
Now to my OCaml code to implement this algorithm
let rec flatten acc x =
match x with
n -> n :: acc
| [x] -> x :: acc
| head :: remainder ->
head :: ( my_flat acc remainder )
and my_flat = List.fold_right flatten
;;
my_flat [] [[1];[2;3];[4]]
The Error I get is the following
Error: This expression has type 'a but an expression was expected of type
'a list
The error occurs on the line that reads head :: ( my_flat acc remainder ) in the last pattern in the match statement
Any help is appreciated.
In OCaml, all the elements of a list must be the same type. Thus the value [1; [2; 3]; 4] is invalid all by itself. It contains two elements that are of type int and one element of type int list. In essence, your statement of the problem to be solved is impossible.
$ ocaml312
Objective Caml version 3.12.0
# [1; [2; 3]; 4];;
Characters 4-10:
[1; [2; 3]; 4];;
^^^^^^
Error: This expression has type 'a list
but an expression was expected of type int
This sounds like a homework problem, so I'll just say that restricting yourself to lists that are valid in OCaml may make it easier to solve.
Edit
OK, the problem can now be solved!
The essence of the reported type error is something like this. You have your accumulated result acc (of type int list in the example). You want to add the list x (also of type int list) to it. You've broken x into head (an int) and remainder (an int list). As you can see, remainder is not a suitable argument for your my_flat function. It wants an int list list, i.e., a list of lists of ints. In fact, your recursive call should almost certainly go to flatten and not to my_flat.
Another problem I see: the arguments of List.fold_right are: a function, a list, and a starting value. In your test call to my_flat, you're supplying the last two in the other order. The empty list [] is your starting value.
I hope this is enough to get you going. Since you're just starting out with OCaml there will probably be another problem or two before it works.
Edit 2
Here are a couple more comments, which might be spoilers if you're still working on your own solution....
A tidier version of your function my_flat is in the OCaml standard library under the name List.flatten. It's interesting to look at the implementation:
let rec flatten = function
[] -> []
| l::r -> l # flatten r
I'd call this a very elegant solution, but unfortunately it's not tail recursive. So it will consume some (linear) amount of stack space, and might even crash for a very long list.
Here's one based on the same idea, using the standard FP accumulator trick to get tail recursive behavior (as noted by Thomas):
let flatten2 ll =
let rec go acc = function
| [] -> List.rev acc
| l :: r -> go (List.rev_append l acc) r
in
go [] ll
As is often the case, the tail recursive version accumulates the result in reverse order, and reverses it at the end.
You can start by writing directly your algorithm, by decomposing the base cases of your input value, ie. the input list is either empty, or the head of the input list is empty, or the head of the input list has a head and a tail:
let rec flatten = function
| [] -> []
| [] :: t -> flatten t
| (x::y) :: t -> x :: (flatten (y::t))
You can then optimize the function, because this code is not tail-recursive and thus will crash when lists become too big. So you can rewrite this by using the usual technique:
let flatten list =
let rec aux accu = function
| [] -> accu
| [] :: t -> aux accu t
| (x::y) :: t -> aux (x::accu) (y::t) in
List.rev (aux [] list)
So my advice is: start by decomposing your problem based on the input types, and then later use accumulators to optimize your code.
I like this one, where the auxiliary function takes the accumulator, the first element of the list of lists, and the rest of the list of lists, it is clearer for me :
let flatten list =
let rec aux acc list1 list2 =
match list1 with
| x :: tail -> aux (x :: acc) tail list2
| [] ->
match list2 with
| [] -> List.rev acc
| x :: tail -> aux acc x tail
in
aux [] [] list
Thanks for all your help
Here is the code I used to solve this problem
let flatten list =
let rec flatten_each acc x =
match x with
[] -> acc
| head :: remainder -> head :: ( flatten_each acc remainder )
in
List.fold_right flatten_each ( List.rev list ) []
;;
Edit: as pointed out by Thomas this solution is not tail recursive. Tail recursive version is below
let flatten list =
let rec flatten_each acc x =
match x with
[] -> acc
| head :: remainder -> (flatten_each (acc # [head]) remainder )
in
List.fold_right flatten_each list []
;;
I'm really new to F#, and I need a bit of help with an F# problem.
I need to implement a cut function that splits a list in half so that the output would be...
cut [1;2;3;4;5;6];;
val it : int list * int list = ([1; 2; 3], [4; 5; 6])
I can assume that the length of the list is even.
I'm also expected to define an auxiliary function gencut(n, xs) that cuts xs into two pieces, where n gives the size of the first piece:
gencut(2, [1;3;4;2;7;0;9]);;
val it : int list * int list = ([1; 3], [4; 2; 7; 0; 9])
I wouldn't normally ask for exercise help here, but I'm really at a loss as to where to even start. Any help, even if it's just a nudge in the right direction, would help.
Thanks!
Since your list has an even length, and you're cutting it cleanly in half, I recommend the following (psuedocode first):
Start with two pointers: slow and fast.
slow steps through the list one element at a time, fast steps two elements at a time.
slow adds each element to an accumulator variable, while fast moves foward.
When the fast pointer reaches the end of the list, the slow pointer will have only stepped half the number of elements, so its in the middle of the array.
Return the elements slow stepped over + the elements remaining. This should be two lists cut neatly in half.
The process above requires one traversal over the list and runs in O(n) time.
Since this is homework, I won't give a complete answer, but just to get you partway started, here's what it takes to cut the list cleanly in half:
let cut l =
let rec cut = function
| xs, ([] | [_]) -> xs
| [], _ -> []
| x::xs, y::y'::ys -> cut (xs, ys)
cut (l, l)
Note x::xs steps 1 element, y::y'::ys steps two.
This function returns the second half of the list. It is very easy to modify it so it returns the first half of the list as well.
You are looking for list slicing in F#. There was a great answer by #Juliet in this SO Thread: Slice like functionality from a List in F#
Basically it comes down to - this is not built in since there is no constant time index access in F# lists, but you can work around this as detailed. Her approach applied to your problem would yield a (not so efficient but working) solution:
let gencut(n, list) =
let firstList = list |> Seq.take n |> Seq.toList
let secondList = list |> Seq.skip n |> Seq.toList
(firstList, secondList)
(I didn't like my previous answer so I deleted it)
The first place to start when attacking list problems is to look at the List module which is filled with higher order functions which generalize many common problems and can give you succinct solutions. If you can't find anything suitable there, then you can look at the Seq module for solutions like #BrokenGlass demonstrated (but you can run into performance issues there). Next you'll want to consider recursion and pattern matching. There are two kinds of recursion you'll have to consider when processing lists: tail and non-tail. There are trade-offs. Tail-recursive solutions involve using an accumulator to pass state around, allowing you to place the recursive call in the tail position and avoid stack-overflows with large lists. But then you'll typically end up with a reversed list! For example,
Tail-recursive gencut solution:
let gencutTailRecursive n input =
let rec gencut cur acc = function
| hd::tl when cur < n ->
gencut (cur+1) (hd::acc) tl
| rest -> (List.rev acc), rest //need to reverse accumulator!
gencut 0 [] input
Non-tail-recursive gencut solution:
let gencutNonTailRecursive n input =
let rec gencut cur = function
| hd::tl when cur < n ->
let x, y = gencut (cur+1) tl //stackoverflow with big lists!
hd::x, y
| rest -> [], rest
gencut 0 input
Once you have your gencut solution, it's really easy to define cut:
let cut input = gencut ((List.length input)/2) input
Here's yet another way to do it using inbuilt library functions, which may or may not be easier to understand than some of the other answers. This solution also only requires one traversal across the input. My first thought after I looked at your problem was that you want something along the lines of List.partition, which splits a list into two lists based on a given predicate. However, in your case this predicate would be based on the index of the current element, which partition cannot handle, short of looking up the index for each element.
We can accomplish creating our own equivalent of this behavior using a fold or foldBack. I will use foldBack here as it means you won't have to reverse the lists afterward (see Stephens excellent answer). What we are going to do here is use the fold to provide our own index, along with the two output lists, all as the accumulator. Here is the generic function that will split your list into two lists based on n index:
let gencut n input =
//calculate the length of the list first so we can work out the index
let inputLength = input |> List.length
let results =
List.foldBack( fun elem acc->
let a,b,index = acc //decompose accumulator
if (inputLength - index) <= n then (elem::a,b,index+1)
else (a,elem::b,index+1) ) input ([],[],0)
let a,b,c = results
(a,b) //dump the index, leaving the two lists as output.
So here you see we start the foldBack with an initial accumulator value of ([],[],0). However, because we are starting at the end of the list, the 0 representing the current index needs to be subtracted from the total length of the list to get the actual index of the current element.
Then we simply check if the current index falls within the range of n. If it does, we update the accumulator by adding the current element to list a, leave list b alone, and increase the index by 1 : (elem::a,b,index+1). In all other cases, we do exactly the same but add the element to list b instead: (a,elem::b,index+1).
Now you can easily create your function that splits a list in half by creating another function over this one like so:
let cut input =
let half = (input |> List.length) / 2
input |> gencut half
I hope that can help you somewhat!
> cut data;;
val it : int list * int list = ([1; 2; 3], [4; 5; 6])
> gencut 5 data;;
val it : int list * int list = ([1; 2; 3; 4; 5], [6])
EDIT: you could avoid the index negation by supplying the length as the initial accumulator value and negating it on each cycle instead of increasing it - probably simpler that way :)
let gencut n input =
let results =
List.foldBack( fun elem acc->
let a,b,index = acc //decompose accumulator
if index <= n then (elem::a,b,index-1)
else (a,elem::b,index-1) ) input ([],[],List.length input)
let a,b,c = results
(a,b) //dump the index, leaving the two lists as output.
I have the same Homework, this was my solution. I'm just a student and new in F#
let rec gencut(n, listb) =
let rec cut n (lista : int list) (listb : int list) =
match (n , listb ) with
| 0, _ -> lista, listb
| _, [] -> lista, listb
| _, b :: listb -> cut (n - 1) (List.rev (b :: lista )) listb
cut n [] listb
let cut xs = gencut((List.length xs) / 2, xs)
Probably is not the best recursive solution, but it works. I think
You can use List.nth for random access and list comprehensions to generate a helper function:
let Sublist x y data = [ for z in x..(y - 1) -> List.nth data z ]
This will return items [x..y] from data. Using this you can easily generate gencut and cut functions (remember to check bounds on x and y) :)
check this one out:
let gencut s xs =
([for i in 0 .. s - 1 -> List.nth xs i], [for i in s .. (List.length xs) - 1 -> List.nth xs i])
the you just call
let cut xs =
gencut ((List.length xs) / 2) xs
with n durationn only one iteration split in two