#include <iostream>
using namespace std;
int main()
{
int num1 = 0;
int num2 = 1;
int num_temp;
int num_next = 1;
int n;
cin >> n;
for (int i = 0; i < n; i++){
cout << num_next << " ";
num_next = num1 + num2;
num1 = num2;
num_temp = num2;
num2 = num_next - num1;
num1 = num_temp;
}
return 0;
}
EXPECTED: For n=9
0, 1, 1, 2, 3, 5, 8, 13, 21
Actual:
1 1 1 1 1 1 1 1 1
I have to output the first "n" Fibonacci numbers however I think there is some problem in logic.. I can't find out what am I doing wrong. The first 3 or 4 elements are correct but then a problem occurs...
You have to think about what the Fibonacci sequence is.
f(0) == 0
f(1) == 1
f(n>1) = f(n-2) + f(n-1)
A lot of people write this recursively, but of course, that means you end up re-calculating a lot. So then you get into optimizing it. And yes, you can do it in a single loop.
I would keep:
int fibuMinus1 = 1;
int fibuMinus2 = 0;
cout << fibuMinus2 << " " << fibuMinus1;
for (int index = 2; index < n; ++index) {
int thisFibu = fibuMinus1 + fibuMinus2;
fibuMinus2 = fibuMinus1;
fibuMinus1 = thisFibu;
cout << " " << thisFibu;
}
Or something like that. It can definitely be simpler than you're doing.
I will give an additional answer that may help other users.
The basic message is: Any calculation at runtime is not necessary! Everything can be done a compile time. And then, a simple lookup mechanism can be used. That will be the most efficient and fastest solution.
With Binet's formula, we can calculate that there are only very few Fibonacci numbers that will fit in a C++ unsigned long long data type, which has usually 64 bit now in 2021 and is the "biggest" available data type. Roundabout 93. That is nowadays a really low number.
With modern C++ 17 (and above) features, we can easily create a std::array of all Fibonacci numbers for a 64bit data type at compile time. Becuase there are, as mentioned above, only 93 numbers.
So, we will spend only 93*8= 744 BYTE of none-runtime memory for our lookup array. That is really negligible.
We can easily get the Fibonacci number n by writing FIB[n].
And, if we want to know, if a number is Fibonacci, then we use std::binary_search for finding the value. So, the whole function will be:
bool isFib(const unsigned long long numberToBeChecked) {
return std::binary_search(FIB.begin(), FIB.end(), numberToBeChecked);
}
FIB is a compile time, constexpr std::array. So, how to build that array?
We will first define the default approach for calculation a Fibonacci number as a constexpr function:
// Constexpr function to calculate the nth Fibonacci number
constexpr unsigned long long getFibonacciNumber(size_t index) noexcept {
// Initialize first two even numbers
unsigned long long f1{ 0 }, f2{ 1 };
// Calculating Fibonacci value
while (index--) {
// get next value of Fibonacci sequence
unsigned long long f3 = f2 + f1;
// Move to next number
f1 = f2;
f2 = f3;
}
return f2;
}
With that, Fibonacci numbers can easily be calculated at runtime. Then, we fill a std::array with all Fibonacci numbers. We use also a constexpr and make it a template with a variadic parameter pack.
We use std::integer_sequence to create a Fibonacci number for indices 0,1,2,3,4,5, ....
That is straigtforward and not complicated:
template <size_t... ManyIndices>
constexpr auto generateArrayHelper(std::integer_sequence<size_t, ManyIndices...>) noexcept {
return std::array<unsigned long long, sizeof...(ManyIndices)>{ { getFibonacciNumber(ManyIndices)... } };
};
This function will be fed with an integer sequence 0,1,2,3,4,... and return a std::array<unsigned long long, ...> with the corresponding Fibonacci numbers.
We know that we can store maximum 93 values. And therefore we make a next function, that will call the above with the integer sequence 1,2,3,4,...,92,93, like so:
constexpr auto generateArray() noexcept {
return generateArrayHelper(std::make_integer_sequence<size_t, MaxIndexFor64BitValue>());
}
And now, finally,
constexpr auto FIB = generateArray();
will give us a compile-time std::array<unsigned long long, 93> with the name FIB containing all Fibonacci numbers. And if we need the i'th Fibonacci number, then we can simply write FIB[i]. There will be no calculation at runtime.
The whole example program will look like this:
#include <iostream>
#include <array>
#include <utility>
#include <algorithm>
#include <iomanip>
// ----------------------------------------------------------------------
// All the following will be done during compile time
// Constexpr function to calculate the nth Fibonacci number
constexpr unsigned long long getFibonacciNumber(size_t index) noexcept {
// Initialize first two even numbers
unsigned long long f1{ 0 }, f2{ 1 };
// calculating Fibonacci value
while (index--) {
// get next value of Fibonacci sequence
unsigned long long f3 = f2 + f1;
// Move to next number
f1 = f2;
f2 = f3;
}
return f2;
}
// We will automatically build an array of Fibonacci numbers at compile time
// Generate a std::array with n elements
template <size_t... ManyIndices>
constexpr auto generateArrayHelper(std::integer_sequence<size_t, ManyIndices...>) noexcept {
return std::array<unsigned long long, sizeof...(ManyIndices)>{ { getFibonacciNumber(ManyIndices)... } };
};
// Max index for Fibonaccis that for an 64bit unsigned value (Binet's formula)
constexpr size_t MaxIndexFor64BitValue = 93;
// Generate the required number of elements
constexpr auto generateArray()noexcept {
return generateArrayHelper(std::make_integer_sequence<size_t, MaxIndexFor64BitValue>());
}
// This is an constexpr array of all Fibonacci numbers
constexpr auto FIB = generateArray();
// All the above was compile time
// ----------------------------------------------------------------------
// Check, if a number belongs to the Fibonacci series
bool isFib(const unsigned long long numberToBeChecked) {
return std::binary_search(FIB.begin(), FIB.end(), numberToBeChecked);
}
// Test
int main() {
const unsigned long long testValue{ 498454011879264ull };
std::cout << std::boolalpha << "Does '" <<testValue << "' belong to Fibonacci series? --> " << isFib(testValue) << "\n\n";
for (size_t i{}; i < 10; ++i)
std::cout << i << '\t' << FIB[i] << '\n';
return 0;
}
Developed and tested with Microsoft Visual Studio Community 2019, Version 16.8.2
Additionally tested with gcc 10.2 and clang 11.0.1
Language: C++ 17
Related
#include<iostream>
#include<vector>
#include<cstdlib>
#include <cassert>
using namespace std;
long long int LastDigitofSumofFibonacci(int n){long long int first=0;
long long int second=1;
long long int fibOfn;
long long int sum=1;
vector<long long int> V;
V.push_back(first);
V.push_back(second);
if(n==0) return first;
else if(n==1) return second;
else{
for(int i=2;i<60;i++){
fibOfn=first+second;
first=second;
second=fibOfn;
sum=sum+fibOfn;
//cout<<"i "<<i<<" fibOfn "<<fibOfn<<" fibOfnlastdigit "<<fibOfnlastdigit<<" first "<<first<<" second "<<second<<" sum "<<sum;
//cout<<endl;
sum=sum%10;
V.push_back(sum);
}
}
//for(auto element:V)
//cout<<element<<" ";
//cout<<endl;
//cout<<(n)%60<<endl;
return V[(n)%60];
}
int main(){
int n;
cin>>n;
long long int Base=LastDigitofSumofFibonacci(n);
cout<<Base<<endl;
}
In this I am trying to calculate the the last digit of Fibonacci series. I know and also read from net that last digit follow pattern of 60(0-59). from that concept wise I think my code is OK. but still I am unable to get the correct answers for large digit number.
I cleaned up the code a bit and fixed the issue with second not being computed % 10.
Since only the last digit is relevant all variables can be just int, no need for long long int to store a single digit. It would actually save ram to use uint8_t as type for the cache, but 60 bytes or 240 bytes isn't going to make a difference here.
The result repeats every 60 steps, which is the basis for the algorithm. But why compute this every time the function gets called? So lets make a static array so the computation only happens once. Lets go one step further with constinit and compute it at compile time.
As last change I made the argument to LastDigitofSumofFibonacci unsigned int. Unless you want to extend the fibonacci series backwards into the negative and extend the algorithm. unsigned int generates better code for n % 60.
#include <iostream>
#include <array>
int LastDigitofSumofFibonacci(unsigned int n) {
// The last digit of `fib(n)` and their sum repeats every 60 steps.
// https://en.wikipedia.org/wiki/Pisano_period
// Compute the first 60 values as lookup table at compile time.
static constinit std::array<int, 60> cache = []() {
int first = 0, second = 1;
std::array<int, 60> a{0, 1};
for (int i = 2; i < 60; i++) {
int t = first + second;
first = second;
second = t % 10;
a[i] = (a[i - 1] + t) % 10;
}
return a;
}();
// and now just look up the answer at run time.
return cache[n % 60];
}
int main(){
int n;
std::cin >> n;
std::cout << LastDigitofSumofFibonacci(n) << std::endl;
}
Somehow the code got a lot shorter just from eliminating some overhead here and there.
the question can be viewed on : https://www.hackerrank.com/contests/projecteuler/challenges/euler002/problem
when i test against my own input, i find it to be correct but hacker-rank shows all test cases as failed
my code is as follows :
#include<iostream>
using namespace std;
int retevenfib(unsigned long int &a,unsigned long int &b);
int main(){
unsigned long int fib1 = 1,fib2 = 2,hold = 2;
double evensum;
cout<<"enter no of tries:";
int t;
cin>>t;
cout<<"enter items sequentially: ";
long int numarr[20];
for(int i = 0; i < t ; i++)
cin>>numarr[i];
for (int j = 0; j < t; j++)
{
evensum = 0;
hold = 2; fib1 = 1; fib2 = 2;
while(fib2 < numarr[j])
{
evensum += hold;
hold = retevenfib(fib1,fib2);
}
cout<<evensum<<endl;
}
return 0;
}
int retevenfib(unsigned long int &a,unsigned long int &b)
{
for(int i = 0; i < 3; i++)
{
int temp = a + b;
a = b;
b = temp;
}
return b;
}
The very good message is: You still have the chance to go away from all this nonesense pages. I understand that you wonder why it fails, even for numbers below 20.
You need to understand that those pages ask for exact input and exact output. So, by writing:
cout<<"enter no of tries:";
cout<<"enter items sequentially: ";
you already lost the game.
Because that is not the expected output. The output shall just show the sum.
And the input is guaranteed to be correct. So, if you expect an integer, then normally you need to check the input. Because users normal users could enter "abc" and press enter. This will never happen here. So, you will never learn to use basic IO correctly.
You need to understand that there are no human beeings checking your program. Only scripts will run and push in some input and check the output exactly.
And because you do not yet know that, you have a chance to go away from those pages.
Now to the main problem: Your array. You define an array with 20 elements. And you maybe try to read 123 values in that array. This creates an out of bound error (a catastrophy) and the result is at least undefined behaviour or, also very likely, a crash of your program.
My guess would be that, if your configure your compiler for high warning levels, then you would get a corresponding message.
You do not need an array in the first place. You can omit it and simply do the calculation for each test.
Next advise. If you really want to use C++, then do never use C-Style arrays. Always use other containers like for example std::veector or std::array. There is no reason of whatsoever to use C-Style arrays in C++.
Next problem: You need to use the correct data types. For such big numbers as 10^16, an unsigned long is not big enough. It will overflow.
So please use unsigned long long or uint64_t instead.
Basically, in your whole program there is no need for any signed value at all. You should use unsigned everywhere.
Then at last, you could use "speaking" variable names. Then your program could look like the below (without any optimzation):
#include<iostream>
// Calculate the next even Fibonacci Number
// Take advantage of the fact, that every 3rd Fibonacci number will be even
unsigned long long getNextEvenFibonacciNumber(unsigned long long& previousPreviousFibonacciNumber,
unsigned long long& previousFibonacciNumber)
{
// Calculate 3 times the next Fibonacci number to get an even value
for (size_t i{}; i < 3u; ++i)
{
unsigned long long temp = previousPreviousFibonacciNumber + previousFibonacciNumber;
previousPreviousFibonacciNumber = previousFibonacciNumber;
previousFibonacciNumber = temp;
}
// This is now the next even Fibonacci number
return previousFibonacciNumber;
}
int main() {
// Here we store the number of test cases
size_t numberOfTestCases{};
// Get number of test cases from script
std::cin >> numberOfTestCases;
// For all test cases . . .
while (numberOfTestCases--) {
// OK, up to what number shall we perform the check
unsigned long long largestFibonacciNumberToCheck{};
std::cin >> largestFibonacciNumberToCheck;
// Some temporaries for our calculation
unsigned long long previousPreviousFibonacciNumber = 1ull;
unsigned long long previousFibonacciNumber = 2ull;
unsigned long long currentFibonacciNumber = 2ull;
unsigned long long sumOfEvenFibonacciNumbers{};
// Now, get all even Fibonacci numbers and summ them up
while (previousFibonacciNumber < largestFibonacciNumberToCheck)
{
sumOfEvenFibonacciNumbers += currentFibonacciNumber;
currentFibonacciNumber = getNextEvenFibonacciNumber(previousPreviousFibonacciNumber, previousFibonacciNumber);
}
// Show result
std::cout << sumOfEvenFibonacciNumbers << '\n';
}
return 0;
}
Comments will add quality to the code.
Your subfunction should be optimized.
And, if you wanted to win the contest, then you could precalulate all (below 30) Even-Fibonacci-Number-Sums and put them, togehter with an input range, in a compile time constexpr std::array, and just look up the value . . .
See the below example. Short, fast, easy
#include <iostream>
#include <array>
#include <algorithm>
#include <iterator>
struct SumOfEvenFib {
unsigned long long fibNum;
unsigned long long sum;
friend bool operator < (const unsigned long long& v, const SumOfEvenFib& f) { return v < f.fibNum; }
};
constexpr std::array<SumOfEvenFib, 27u> SOEF {{{2, 2}, { 8, 10 }, { 34, 44 }, { 144, 188 }, { 610, 798 }, { 2584, 3382 }, { 10946, 14328 }, { 46368, 60696 }, { 196418, 257114 }, { 832040, 1089154 },
{ 3524578, 4613732 },{ 14930352, 19544084 }, { 63245986, 82790070 }, { 267914296, 350704366 },{ 1134903170, 1485607536 }, { 4807526976, 6293134512 }, { 20365011074, 26658145586 } ,
{ 86267571272, 112925716858 }, { 365435296162, 478361013020 }, { 1548008755920, 2026369768940 }, { 6557470319842, 8583840088782 }, { 27777890035288, 36361730124070 },
{ 117669030460994, 154030760585064 }, { 498454011879264, 652484772464328 }, { 2111485077978050, 2763969850442378 }, { 8944394323791464, 11708364174233842 }, { 37889062373143906, 49597426547377748 } } };
int main() {
// Here we store the number of test cases
size_t numberOfTestCases{};
// Get number of test cases from script
std::cin >> numberOfTestCases;
// For all test cases . . .
while (numberOfTestCases--) {
// OK, up to what number shall we perform the summing up
unsigned long long largestFibonacciNumberToCheck{};
std::cin >> largestFibonacciNumberToCheck;
// Show sum
std::cout << std::prev(std::upper_bound(SOEF.begin(), SOEF.end(), largestFibonacciNumberToCheck))->sum << '\n';
}
return 0;
}
And for Hardcore C++ programmers, we generate the array automatically
#include <iostream>
#include <array>
#include <algorithm>
#include <iterator>
// ----------------------------------------------------------------------
// All the following wioll be done during compile time
// Constexpr function to calculate the nth even Fibonacci number
constexpr unsigned long long getEvenFibonacciNumber(size_t index) {
// Initialize first two even numbers
unsigned long long f1{ 0 }, f2{ 2 };
// calculating Fibonacci value
while (--index) {
// get next even value of Fibonacci sequence
unsigned long long f3 = 4 * f2 + f1;
// Move to next even number
f1 = f2;
f2 = f3;
}
return f2;
}
// Get nth even sum of Fibonacci numbers
constexpr unsigned long long getSumForEvenFibonacci(size_t index) {
// Initialize first two even prime numbers
// and their sum
unsigned long long f1{0}, f2{2}, sum{2};
// calculating sum of even Fibonacci value
while (--index) {
// get next even value of Fibonacci sequence
unsigned long long f3 = 4 * f2 + f1;
// Move to next even number and update sum
f1 = f2;
f2 = f3;
sum += f2;
}
return sum;
}
// Here we will store ven Fibonacci numbers and their respective sums
struct SumOfEvenFib {
unsigned long long fibNum;
unsigned long long sum;
friend bool operator < (const unsigned long long& v, const SumOfEvenFib& f) { return v < f.fibNum; }
};
// We will automatically build an array of even numbers and sums during compile time
// Generate a std::array with n elements
template <size_t... ManyIndices>
constexpr auto generateArrayHelper(std::integer_sequence<size_t, ManyIndices...>) noexcept {
return std::array<SumOfEvenFib, sizeof...(ManyIndices)>{ { {getEvenFibonacciNumber(ManyIndices + 1), getSumForEvenFibonacci(ManyIndices + 1)}...}};
};
// You may check with Binets formula
constexpr size_t MaxIndexFor64BitValue = 30u;
// Generate the required number of items
constexpr auto generateArray()noexcept {
return generateArrayHelper(std::make_integer_sequence<size_t, MaxIndexFor64BitValue >());
}
// This is an constexpr array of even Fibonacci numbers and its sums
constexpr auto SOEF = generateArray();
// ----------------------------------------------------------------------
int main() {
// Here we store the number of test cases
size_t numberOfTestCases{};
// Get number of test cases from script
std::cin >> numberOfTestCases;
// For all test cases . . .
while (numberOfTestCases--) {
// OK, up to what number shall we perform the summing up
unsigned long long largestFibonacciNumberToCheck{};
std::cin >> largestFibonacciNumberToCheck;
// Show sum
std::cout << std::prev(std::upper_bound(SOEF.begin(), SOEF.end(), largestFibonacciNumberToCheck))->sum << '\n';
}
return 0;
}
Tested with MSVC 19, Clang 11 and gcc 10
Compiled with C++17
I'm struggling a bit with dynamic programming. To be more specific, implementing an algorithm for finding Fibonacci numbers of n.
I have a naive algorithm that works:
int fib(int n) {
if(n <= 1)
return n;
return fib(n-1) + fib(n-2);
}
But when i try to do it with memoization the function always returns 0:
int fib_mem(int n) {
if(lookup_table[n] == NIL) {
if(n <= 1)
lookup_table[n] = n;
else
lookup_table[n] = fib_mem(n-1) + fib_mem(n-2);
}
return lookup_table[n];
}
I've defined the lookup_table and initially stored NIL in all elements.
Any ideas what could be wrong?
Here's the whole program as requested:
#include <iostream>
#define NIL -1
#define MAX 100
long int lookup_table[MAX];
using namespace std;
int fib(int n);
int fib_mem(int n);
void initialize() {
for(int i = 0; i < MAX; i++) {
lookup_table[i] == NIL;
}
}
int main() {
int n;
long int fibonnaci, fibonacci_mem;
cin >> n;
// naive solution
fibonnaci = fib(n);
// memoized solution
initialize();
fibonacci_mem = fib_mem(n);
cout << fibonnaci << endl << fibonacci_mem << endl;
return 0;
}
int fib(int n) {
if(n <= 1)
return n;
return fib(n-1) + fib(n-2);
}
int fib_mem(int n) {
if(lookup_table[n] == NIL) {
if(n <= 1)
lookup_table[n] = n;
else
lookup_table[n] = fib_mem(n-1) + fib_mem(n-2);
}
return lookup_table[n];
}
I tend to find the easiest way to write memoization by mixing the naive implementation with the memoization:
int fib_mem(int n);
int fib(int n) { return n <= 1 ? n : fib_mem(n-1) + fib_mem(n-2); }
int fib_mem(int n)
{
if (lookup_table[n] == NIL) {
lookup_table[n] = fib(n);
}
return lookup_table[n];
}
#include <iostream>
#define N 100
using namespace std;
const int NIL = -1;
int lookup_table[N];
void init()
{
for(int i=0; i<N; i++)
lookup_table[i] = NIL;
}
int fib_mem(int n) {
if(lookup_table[n] == NIL) {
if(n <= 1)
lookup_table[n] = n;
else
lookup_table[n] = fib_mem(n-1) + fib_mem(n-2);
}
return lookup_table[n];
}
int main()
{
init();
cout<<fib_mem(5);
cout<<fib_mem(7);
}
Using the exactly same function, and this is working fine.
You have done something wrong in initialisation of lookup_table.
Since the issue is initialization, the C++ standard library allows you to initialize sequences without having to write for loops and thus will prevent you from making mistakes such as using == instead of =.
The std::fill_n function does this:
#include <algorithm>
//...
void initialize()
{
std::fill_n(lookup_table, MAX, NIL);
}
Interesting concept. Speeding up by memoization.
There is a different concept. You could call it compile time memoization. But in reality it is a compile time pre calculation of all Fibonacci numbers that fit into a 64 bit value.
One important property of the Fibonacci series is that the values grow strongly exponential. So, all existing build in integer data types will overflow rather quick.
With Binet's formula you can calculate that the 93rd Fibonacci number is the last that will fit in a 64bit unsigned value.
And calculating 93 values during compilation is a really simple task.
We will first define the default approach for calculation a Fibonacci number as a constexpr function:
// Constexpr function to calculate the nth Fibonacci number
constexpr unsigned long long getFibonacciNumber(size_t index) noexcept {
// Initialize first two even numbers
unsigned long long f1{ 0 }, f2{ 1 };
// calculating Fibonacci value
while (index--) {
// get next value of Fibonacci sequence
unsigned long long f3 = f2 + f1;
// Move to next number
f1 = f2;
f2 = f3;
}
return f2;
}
With that, Fibonacci numbers can easily be calculated at runtime. Then, we fill a std::array with all Fibonacci numbers. We use also a constexpr and make it a template with a variadic parameter pack.
We use std::integer_sequence to create a Fibonacci number for indices 0,1,2,3,4,5, ....
That is straigtforward and not complicated:
template <size_t... ManyIndices>
constexpr auto generateArrayHelper(std::integer_sequence<size_t, ManyIndices...>) noexcept {
return std::array<unsigned long long, sizeof...(ManyIndices)>{ { getFibonacciNumber(ManyIndices)... } };
};
This function will be fed with an integer sequence 0,1,2,3,4,... and return a std::array<unsigned long long, ...> with the corresponding Fibonacci numbers.
We know that we can store maximum 93 values. And therefore we make a next function, that will call the above with the integer sequence 1,2,3,4,...,92,93, like so:
constexpr auto generateArray() noexcept {
return generateArrayHelper(std::make_integer_sequence<size_t, MaxIndexFor64BitValue>());
}
And now, finally,
constexpr auto FIB = generateArray();
will give us a compile-time std::array<unsigned long long, 93> with the name FIB containing all Fibonacci numbers. And if we need the i'th Fibonacci number, then we can simply write FIB[i]. There will be no calculation at runtime.
I do not think that there is a faster way to calculate the n'th Fibonacci number.
Please see the complete program below:
#include <iostream>
#include <array>
#include <utility>
// ----------------------------------------------------------------------
// All the following will be done during compile time
// Constexpr function to calculate the nth Fibonacci number
constexpr unsigned long long getFibonacciNumber(size_t index) {
// Initialize first two even numbers
unsigned long long f1{ 0 }, f2{ 1 };
// calculating Fibonacci value
while (index--) {
// get next value of Fibonacci sequence
unsigned long long f3 = f2 + f1;
// Move to next number
f1 = f2;
f2 = f3;
}
return f2;
}
// We will automatically build an array of Fibonacci numberscompile time
// Generate a std::array with n elements
template <size_t... ManyIndices>
constexpr auto generateArrayHelper(std::integer_sequence<size_t, ManyIndices...>) noexcept {
return std::array<unsigned long long, sizeof...(ManyIndices)>{ { getFibonacciNumber(ManyIndices)... } };
};
// Max index for Fibonaccis that for in an 64bit unsigned value (Binets formula)
constexpr size_t MaxIndexFor64BitValue = 93;
// Generate the required number of elements
constexpr auto generateArray()noexcept {
return generateArrayHelper(std::make_integer_sequence<size_t, MaxIndexFor64BitValue>());
}
// This is an constexpr array of all Fibonacci numbers
constexpr auto FIB = generateArray();
// ----------------------------------------------------------------------
// Test
int main() {
// Print all possible Fibonacci numbers
for (size_t i{}; i < MaxIndexFor64BitValue; ++i)
std::cout << i << "\t--> " << FIB[i] << '\n';
return 0;
}
Developed and tested with Microsoft Visual Studio Community 2019, Version 16.8.2.
Additionally compiled and tested with clang11.0 and gcc10.2
Language: C++17
There's a mistake in your initialize() function:
void initialize() {
for(int i = 0; i < MAX; i++) {
lookup_table[i] == NIL; // <- mistake
}
}
In the line pointed you compare lookup_table[i] and NIL (and don't use the result) instead of assigning NIL to lookup_table[i].
For assignment, you should use = instead of ==.
Also, in such situations the most right thing to do is compilation of your program with all warnings enabled. For example, MS VC++ shows the following warning:
warning C4553: '==': operator has no effect; did you intend '='?
The error is on initialize function (you've used comparison operator '==' where you want a attribution operator '='). But, on semantics, you don't need initialize look_table with -1 (NIL) because Fibonacci results never will be 0 (zero); so, you can initialize it all with zero.
Look below the final solution:
#include <iostream>
#define NIL 0
#define MAX 1000
long int lookup_table[MAX] = {};
using namespace std;
long int fib(int n) {
if(n <= 1)
return n;
return fib(n-1) + fib(n-2);
}
long int fib_mem(int n) {
assert(n < MAX);
if(lookup_table[n] == NIL) {
if(n <= 1)
lookup_table[n] = n;
else
lookup_table[n] = fib_mem(n-1) + fib_mem(n-2);
}
return lookup_table[n];
}
int main() {
int n;
long int fibonnaci, fibonacci_mem;
cout << " n = "; cin >> n;
// naive solution
fibonnaci = fib(n);
// memoized solution
// initialize();
fibonacci_mem = fib_mem(n);
cout << fibonnaci << endl << fibonacci_mem << endl;
return 0;
}
I am getting negative output when adding large numbers in Fibonacci sequence despite using long int. How to fix that?
#include <iostream>
using namespace std;
void main() {
long int sum = 2;
long int f1 = 1, f2 = 2, f3;
for (unsigned int i = 2; i < 4000000; i++) {
f3 = f2 + f1;
if (!(f3 % 2)) {
sum += f3;
}
swap(f1, f2);
swap(f2, f3);
}
cout << sum << endl;
}
The output is -1833689714
As you can see here the 47th Fibonacci Number exceeds the range of a 32Bit/4Byte integer. Everything after that will become negative.
For your program you used a long int which may or may not be 32 or 64 bits wide, the C++ standard does not guarantee that (for good reasons). If I see your result it seems like 32 Bit for me.
First, to prevent negativeness, you could use unsigned long int which makes all your results positive and gives the ability to model "slightly" bigger numbers.
However you will still get the wrong results if you pass the 47th Fibonacci number since your data type is still too small. To fix this you could use unsigned long long or uint64_t.
Remember even for such big datatypes that can represent numbers up to approx. 18 trillion/quintillion (10^18) the Fibonacci numbers exceed this at the 89th iteration.
Try with this code:
#include<iostream>
using namespace std;
int main()
{
cout<<"Enter Number:";
unsigned long long int x;
cin>>x;
unsigned long long int a=0,b=1,c;
cout<<a<<"\t"<<b;
for(int i=0;i<x;i++)
{
c=a+b;
cout<<"\t"<<c;
a=b;
b=c;
return 0;
}
}
I am looking for an efficient algorithm to reverse a number, e.g.
Input: 3456789
Output: 9876543
In C++ there are plenty of options with shifting and bit masks but what would be the most efficient way ?
My platform: x86_64
Numbers range: XXX - XXXXXXXXXX (3 - 9 digits)
EDIT
Last digit of my input will never be a zero so there is no leading zeros problem.
Something like this will work:
#include <iostream>
int main()
{
long in = 3456789;
long out = 0;
while(in)
{
out *= 10;
out += in % 10;
in /= 10;
}
std::cout << out << std::endl;
return 0;
}
#include <stdio.h>
unsigned int reverse(unsigned int val)
{
unsigned int retval = 0;
while( val > 0)
{
retval = 10*retval + val%10;
val /= 10;
}
printf("returning - %d", retval);
return retval;
}
int main()
{
reverse(123);
}
You may convert the number to string and then reverse the string with STL algorithms. Code below should work:
long number = 123456789;
stringstream ss;
ss << number;
string numberToStr = ss.str();
std::reverse(numberToStr.begin(), numberToStr.end());
cout << atol(numberToStr.c_str());
You may need to include those relevant header files. I am not sure whether it is the most efficient way, but STL algorithms are generally very efficient.
static public int getReverseInt(int value) {
int resultNumber = 0;
for (int i = value; i != 0;) {
int d = i / 10;
resultNumber = (resultNumber - d) * 10 + i;
i = d;
}
return resultNumber;
}
I think this will be the fastest possible method without using asm. Note that d*10 + i is equivalent to i%10 but much faster since modulo is around 10 times slower than multiplication.
I tested it and it is about 25 % faster than other answers.
int ans=0;
int rev(int n)
{
ans=(ans+(n%10))*10; // using recursive function to reverse a number;
if(n>9)
rev(n/10);
}
int main()
{
int m=rev(456123); // m=32
return 0;
}
//Recursive method to find the reverse of a number
#include <bits/stdc++.h>
using namespace std;
int reversDigits(int num)
{
static int rev_num = 0;
static int base_pos = 1;
if(num > 0)
{
reversDigits(num/10);
rev_num += (num%10)*base_pos;
base_pos *= 10;
}
return rev_num;
}
int main()
{
int num = 4562;
cout << "Reverse " << reversDigits(num);
} ``
// recursive method to reverse number. lang = java
static void reverseNumber(int number){
// number == 0 is the base case
if(number !=0 ){
//recursive case
System.out.print(number %10);
reverseNumber(number /10);
}
}
This solution is not as efficient but it does solve the problem and can be useful.
It returns long long for any signed integer(int, long, long long, etc) and unsigned long long for any unsigned integer (unsigned int, unsigned long, unsigned long long, etc).
The char type depends of compiler implementation can be signed or unsigned.
#include <iostream>
#include <string>
#include <algorithm>
template <bool B>
struct SignedNumber
{
};
template <>
struct SignedNumber<true>
{
typedef long long type;
};
template <>
struct SignedNumber<false>
{
typedef unsigned long long type;
};
template <typename TNumber = int,
typename TResult = typename SignedNumber<std::is_signed<TNumber>::value>::type,
typename = typename std::void_t<std::enable_if_t<std::numeric_limits<TNumber>::is_integer>>>
TResult ReverseNumber(TNumber value)
{
bool isSigned = std::is_signed_v<TNumber>;
int sign = 1;
if (value < 0)
{
value *= -1;
sign = -1;
}
std::string str = std::to_string(value);
std::reverse(str.begin(), str.end());
return isSigned ? std::stoll(str) * sign : std::stoull(str) * sign;
}
int main()
{
std::cout << ReverseNumber(true) << std::endl; //bool -> unsigned long long
std::cout << ReverseNumber(false) << std::endl; //bool -> unsigned long long
std::cout << ReverseNumber('#') << std::endl; //char -> long long or unsigned long long
std::cout << ReverseNumber(46) << std::endl; //int -> long long
std::cout << ReverseNumber(-46) << std::endl; //int -> long long
std::cout << ReverseNumber(46U) << std::endl; //unsigned int -> unsigned long long
std::cout << ReverseNumber(46L) << std::endl; //long -> long long
std::cout << ReverseNumber(-46LL) << std::endl; //long long -> long long
std::cout << ReverseNumber(46UL) << std::endl; //unsigned long -> unsigned long long
std::cout << ReverseNumber(4600ULL) << std::endl; //unsigned long long -> unsigned long long
}
Output
1
0
64
64
-64
64
64
-64
64
64
Test this code
https://repl.it/#JomaCorpFX/IntegerToStr#main.cpp
If it is 32-bit unsigned integer (987,654,321 being max input) and if you have 4GB free memory(by efficiency, did you mean memory too?),
result=table[value]; // index 12345 has 54321, index 123 has 321
should be fast enough. Assuming memory is accessed at 100 ns time or 200 cycles and integer is 7 digits on average, other solutions have these:
7 multiplications,
7 adds,
7 modulo,
7 divisions,
7 loop iterations with 7 comparisons
if these make more than 100 nanoseconds / 200 cycles, then table would be faster. For example, 1 integer division can be as high as 40 cycles, so I guess this can be fast enough. If inputs are repeated, then data will coming from cache will have even less latency.
But if there are millions of reversing operations in parallel, then computing by CPU is absolutely the better choice (probably 30x-100x speedup using vectorized compute loop + multithreading) than accessing table. It has multiple pipelines per core and multiple cores. You can even choose CUDA/OpenCL with a GPU for extra throughput and this reversing solution from other answers look like perfectly embarrassingly parallelizable since 1 input computes independently of other inputs.
This is the easiest one:
#include<iostream>
using namespace std;
int main()
{
int number, reversed=0;
cout<<"Input a number to Reverse: ";
cin>>number;
while(number!=0)
{
reversed= reversed*10;
reversed=reversed+number%10;
number=number/10;
}
cout<<"Reversed number is: "<<reversed<<endl;
}