What's the problem in gap algorithm code ? (Code available below) - c++

I studied the gap algorithm(merging without extra space) but after coding, it looks ok to me but it is not giving a correct answer or maybe an error, please check out my code and it would be very helpful if you guys can tell me what's wrong.
arr1 and arr2 are sorted arrays of n and m sizes respectively, I excluded the driver code.
main() function is just taking input of sorted arrays arr1 and arr2 and then after implementing the merge function it is printing the values of arr1 and arr2 which expected to be sorted as merged array
This is the algorithm - https://www.geeksforgeeks.org/efficiently-merging-two-sorted-arrays-with-o1-extra-space/
Example - arr1 = {1, 3, 5, 7}
arr2 = {0 , 2 , 6, 8, 9}
expected output - arr1 = {0,1,2,3}
arr2 = {5,6,7,8,9}
observed output - Nothing it just crashes.
void merge(int arr1[], int arr2[], int n, int m) {
int soa = (n+m);
int gap;
if(soa%2 == 0){
gap = soa/2;
}
else{
gap = (soa+1)/2;
}
for(int g = gap; g >= 1; g/2){
for(int i = 0; i < soa; i++){
int j = i + g;
if(j >= soa){
break;
}
if(j < n){
if(arr1[i] > arr1[j]){
swap(arr1[i],arr1[j]);
}
}
else if(j >= n && i < n){
if(arr1[i] > arr2[j - n]){
swap(arr1[i],arr2[j-n]);
}
}
else if(i >= n && j >= n){
if(arr2[i - n] > arr2[j - n]){
swap(arr2[i - n], arr2[j - n]);
}
}
}
}
}

Related

Count All Sub sequences having Product less than K

Given a non-negative array, find the number of subsequences having a product smaller than K.
Examples:
Input : [1, 2, 3, 4]
k = 10
Output :11
Input : [4, 8, 7, 2]
k = 50
Output : 9
So, We want to count the number of subsequences whose product is less than K.
There are sub-problems, and it can be solved using Dynamic Programming
However, I tried to write down the recursive code for better understanding.
Note: I am getting an answer as 6, which is wrong.
Can someone help me, How to foresee the correct Logic?
#include <bits/stdc++.h>
using namespace std;
vector<int> A{1, 2, 3, 4};
int countSubsequence(int i, int prod, int K)
{
if(prod > 1 && prod <= K)
return 1;
if(i >= A.size() || prod > K)
return 0;
return countSubsequence(i + 1, prod, K) + countSubsequence(i + 1, prod*A[i], K);
}
int main()
{
int K = 10;
cout << countSubsequence(0, 1, K);
return 0;
}
The condition
if(prod > 1 && prod <= K)
return 1;
will have it return from the function (for example) when [1, 2] is selected from [1, 2, 3, 4] and prevent it from searching for [1, 2, 3].
Also:
The condition prod <= K is wrong becasue you want the product smaller than K, not K or smaller.
You cannot distinguish "nothing is multiplied" and "only the number 1 is multiplied" when you use 1 as the initial value.
Try this:
#include <bits/stdc++.h>
using namespace std;
vector<int> A{1, 2, 3, 4};
int countSubsequence(int i, int prod, int K)
{
if(i >= A.size() && 0 <= prod && prod < K)
return 1;
if(i >= A.size() || prod >= K)
return 0;
return countSubsequence(i + 1, prod, K) + countSubsequence(i + 1, prod < 0 ? A[i] : prod*A[i], K);
}
int main()
{
int K = 10;
cout << countSubsequence(0, -1, K);
return 0;
}

Problem: Shortest path in a grid between multiple point with a constraint

Problem description:
I'm trying to solve a problem on the internet and I wasn't able to pass all testcases, well, because my logic is flawed and incorrect. The flaw: I assumed starting to the closest 'F' point will get me to the shortest paths always, at all cases.
Thinks I thought of:
Turning this into a graph problem and solve it based on it. > don't think this would work because of the constraint?
Try to obtain all possible solution combinations > does not scale, if !8 combination exist.
#include <iostream>
#include <utility>
#include <string>
#include <vector>
#include <queue>
using namespace std;
#define N 4
#define M 4
int SearchingChallenge(string strArr[], int arrLength) {
int n = arrLength, m = n, steps = 0, food = 0;
// initial position of charlie
int init_j = 0;
int init_i = 0;
queue<pair<int,int>> q;
// directions
vector<int> offsets = {0,-1,0,1,0};
vector<pair<int,int>> food_nodes;
//store visited nodes, no need for extra work to be done.
int visited_nodes[4][4] = {{0}};
// get number of food pieces
for(int i = 0; i < m; i++){
for(int j = 0; j < n ; j++){
if(strArr[i][j] == 'F')
{
food++;
}
if(strArr[i][j] == 'C')
{
strArr[i][j] = 'O';
food_nodes.push_back({i,j});
}
}
}
while(food_nodes.size()>0){
food_nodes.erase(food_nodes.begin());
int break_flag=0;
q.push(food_nodes[0]);
while(!q.empty()){
int size = q.size();
while(size-->0){
pair<int,int> p = q.front();
q.pop();
for(int k = 0; k < 4; k++){
int ii = p.first + offsets[k], jj = p.second + offsets[k+1];
/* if(ii == 0 && jj == 3)
printf("HI"); */
if(jj >= 0 && jj < 4 && ii < 4 && ii >=0){
if(strArr[ii][jj] == 'F'){
strArr[ii][jj] = 'O';
while(!q.empty())
q.pop();
break_flag=1;
food--;
food_nodes.push_back({ii,jj});
break;
}
if(strArr[ii][jj] == 'O')
q.push({ii,jj});
if(strArr[ii][jj] == 'H' && food == 0)
return ++steps;
}
}
if(break_flag==1)
break;
}
steps++;
if(break_flag==1)
break;
}
}
return 0;
}
int main(void) {
// keep this function call here
/* Note: In C++ you first have to initialize an array and set
it equal to the stdin to test your code with arrays. */
//passing testcase
//string A[4] = {"OOOO", "OOFF", "OCHO", "OFOO"};
//failing testcase
string A[4] = {"FOOF", "OCOO", "OOOH", "FOOO"}
int arrLength = sizeof(A) / sizeof(*A);
cout << SearchingChallenge(A, arrLength);
return 0;
}
Your help is appreciated.
I have wrote the javascript solution for the mentioned problem..
function SearchingChallenge(strArr) {
// create coordinate array
const matrix = [
[0, 0], [0, 1], [0, 2], [0, 3],
[1, 0], [1, 1], [1, 2], [1, 3],
[2, 0], [2, 1], [2, 2], [2, 3],
[3, 0], [3, 1], [3, 2], [3, 3]
]
// flatten the strArr
const flattenArray = flatten(strArr)
// segreagate and map flattenArray with matrix to get coordinate of food,charlie and home
const segregatedCoordinates = flattenArray.reduce((obj, char, index) => {
if (char === 'F') obj['food'].push(matrix[index])
else if (char === 'C') obj['dog'] = matrix[index]
else if (char === 'H') obj['home'] = matrix[index]
return obj
}, { "food": [], dog: null, home: null })
// construct possible routes by permutating food coordinates
let possibleRoutes = permuate(segregatedCoordinates['food'])
// push dog and home in possibleRoutes at start and end positions
possibleRoutes = possibleRoutes.map((route) => {
return [segregatedCoordinates['dog'], ...route, segregatedCoordinates['home']]
})
// Calculate distances from every possible route
const distances = possibleRoutes.reduce((distances, route) => {
let moveLength = 0
for (let i = 0; i < route.length - 1; i++) {
let current = route[i], next = route[i + 1]
let xCoordinatePath = current[0] > next[0] ? (current[0] - next[0]) : (next[0] - current[0])
let yCoordinatePath = current[1] > next[1] ? (current[1] - next[1]) : (next[1] - current[1])
moveLength += xCoordinatePath + yCoordinatePath
}
distances.push(moveLength)
return distances
}, [])
return Math.min(...distances);
}
function permuate(arr) {
if (arr.length <= 2) return (arr.length === 2 ? [arr, [arr[1], arr[0]]] : arr)
return arr.reduce((res, ele, index) => {
res = [...res, ...permuate([...arr.slice(0, index), ...arr.slice(index + 1)]).map(val => [ele, ...val])]
return res
}, [])
}
function flatten(inputtedArr) {
return inputtedArr.reduce((arr, row) => {
arr = [...arr, ...row]
return arr
}, [])
}
console.log(SearchingChallenge(['FOOF', 'OCOO', 'OOOH', 'FOOO']));
You can write a DP solution where you have a 4x4x8 grid. The first two axis represent the x and y coordinate. The third one represent the binary encoding of which food item you picked already.
Each cell in the grid stores the best number of moves to get at this cell having eaten the specified foods. So for example, grid[2][2][2] is the cost of getting to cell (2,2) after having eaten the second piece of food only.
Then you set the value of the start cell, at third index 0 to 0, all the other cells to -1. You keep a list of the cells to propagate (sorted by least cost), and you add the start cell to it.
Then you repeatedly take the next cell to propagate, remove it and push the neighboring cell with cost +1 and updated food consume. Once you reach the destination cell with all food consumed, you're done.
That should take no more than 4x4x8 updates, with about the same order of priority queue insertion. O(n log(n)) where n is xy2^f. As long as you have few food items this will be almost instant.
C++ solution
I used both dfs and bfs for this problem
TIME COMPLEXITY - (4^(N×M))+NO_OF_FOODS×N×M
#include <bits/stdc++.h>
using namespace std;
//It is a dfs function it will find and store all the possible steps to eat all food in toHome map
void distAfterEatingAllFood(vector<vector<char>> &m, int countOfFood, int i, int j, int steps, map<pair<int,int>,int>&toHome){
if(i<0 || j<0 || i>=4 || j>=4 || m[i][j]=='*') return;
if(m[i][j]=='F') countOfFood--;
if(countOfFood==0){
if(!toHome.count({i,j}))
toHome[{i,j}] = steps;
else if(toHome[{i,j}]>steps)
toHome[{i,j}] = steps;
return;
}
char temp = m[i][j];
m[i][j] = '*';
distAfterEatingAllFood(m, countOfFood, i+1, j, steps+1, toHome);
distAfterEatingAllFood(m, countOfFood, i-1, j, steps+1, toHome);
distAfterEatingAllFood(m, countOfFood, i, j+1, steps+1, toHome);
distAfterEatingAllFood(m, countOfFood, i, j-1, steps+1, toHome);
m[i][j] = temp;
return;
}
//It is a bfs function it will iterate over the toHome map and find the shortest distance between the last food position to home
int lastFoodToHome(vector<vector<char>> &m, int i, int j, int steps){
queue<pair<pair<int, int>,int>>q;
vector<vector<int>> vis(4, vector<int>(4, 0));
q.push({{i, j}, steps});
vis[i][j] = 1;
int dirX[] = {0, 1, 0, -1};
int dirY[] = {1, 0, -1, 0};
while (!q.empty())
{
int x = q.front().first.first;
int y = q.front().first.second;
int steps = q.front().second;
q.pop();
if (m[x][y] == 'H')
return steps;
for (int k = 0; k < 4; k++)
{
int ni = x + dirX[k];
int nj = y + dirY[k];
if (ni >= 0 && nj >= 0 && ni < 4 && nj < 4 && !vis[ni][nj])
{
if(m[ni][nj] == 'H') return steps + 1;
q.push({{ni, nj}, steps + 1});
vis[i][j] = 1;
}
}
}
return INT_MAX;
}
int main()
{
vector<vector<char>> m(4, vector<char>(4));
int countOfFood = 0, x, y;
for (int i = 0; i < 4; i++){
for (int j = 0; j < 4; j++){
cin >> m[i][j];
if (m[i][j] == 'C'){
x = i;
y = j;
}
if (m[i][j] == 'F')
countOfFood++;
}
}
map<pair<int,int>,int>toHome;
distAfterEatingAllFood(m, countOfFood, x, y, 0, toHome);
int ans = INT_MAX;
for(auto &i:toHome){
ans = min(ans, lastFoodToHome(m, i.first.first, i.first.second, i.second));
}
cout<<ans;
return 0;
}

Find the minimum sum of 'P' elements in an array of N elements such that no more than 'k' consecutive elements are selected together

Suppose the array is 1 2 3 4 5
Here N = 5 and we have to select 3 elements and we cannot select more than 2 consecutive elements, so P = 3 and k = 2. So the output here will be 1 + 2 + 4 = 7.
I came up with a recursive solution, but it has an exponential time complexity. Here is the code.
#include<iostream>
using namespace std;
void mincost_hoarding (int *arr, int max_size, int P, int k, int iter, int& min_val, int sum_sofar, int orig_k)
{
if (P == 0)
{
if (sum_sofar < min_val)
min_val = sum_sofar;
return;
}
if (iter == max_size)
return;
if (k!=0)
{
mincost_hoarding (arr, max_size, P - 1, k - 1, iter + 1, min_val, sum_sofar + arr[iter], orig_k);
mincost_hoarding (arr, max_size, P, orig_k, iter + 1, min_val, sum_sofar, orig_k);
}
else
{
mincost_hoarding (arr, max_size, P, orig_k, iter + 1, min_val, sum_sofar, orig_k);
}
}
int main()
{
int a[] = {10, 5, 13, 8, 2, 11, 6, 4};
int N = sizeof(a)/sizeof(a[0]);
int P = 2;
int k = 1;
int min_val = INT_MAX;
mincost_hoarding (a, N, P, k, 0, min_val, 0, k);
cout<<min_val;
}
Also, if supposedly P elements cannot be selected following the constraint, then we return INT_MAX.
I was asked this question in an interview. After proposing this solution, the interviewer was expecting something faster. Maybe, a DP approach towards the problem. Can someone propose a DP algorithm if there exists one, or a faster algorithm.
I have tried various tests cases and got correct answers. If you find some test cases that are giving incorrect response, please point that out too.
Below is a Java Dynamic Programming algorithm.
(the C++ version should look very similar)
It basically works as follows:
Have a 3D array of [pos][consecutive length][length]
Here length index = actual length - 1), so [0] would be length 1, similarly for consecutive length. This was done since there's no point to having length 0 anywhere.
At every position:
If at length 0 and consecutive length 0, just use the value at pos.
Otherwise, if consecutive length 0, look around for the minimum in all the previous positions (except pos - 1) with length - 1 and use that plus the value at pos.
For everything else, if pos > 0 && consecutive length > 0 && length > 0,
use [pos-1][consecutive length-1][length-1] plus the value at pos.
If one of those are 0, initialize it to an invalid value.
Initially it felt like one only needs 2 dimensions for this problem, however, as soon as I tried to figure it out, I realized I needed a 3rd.
Code:
int[] arr = {1, 2, 3, 4, 5};
int k = 2, P = 3;
int[][][] A = new int[arr.length][P][k];
for (int pos = 0; pos < arr.length; pos++)
for (int len = 0; len < P; len++)
{
int min = 1000000;
if (len > 0)
{
for (int pos2 = 0; pos2 < pos-1; pos2++)
for (int con = 0; con < k; con++)
min = Math.min(min, A[pos2][len-1][con]);
A[pos][len][0] = min + arr[pos];
}
else
A[pos][0][0] = arr[pos];
for (int con = 1; con < k; con++)
if (pos > 0 && len > 0)
A[pos][len][con] = A[pos-1][len-1][con-1] + arr[pos];
else
A[pos][len][con] = 1000000;
}
// Determine the minimum sum
int min = 100000;
for (int pos = 0; pos < arr.length; pos++)
for (int con = 0; con < k; con++)
min = Math.min(A[pos][P-1][con], min);
System.out.println(min);
Here we get 7 as output, as expected.
Running time: O(N2k + NPk)

Merge Sort Implementation using C++

I am having trouble with trying to implement the merge sort algorithm. I would appreciate it if someone can help me out. Here is what I have.
#include <iostream>
#include <deque>
using size_type = std::deque<int>::size_type;
void print(std::deque<int> &v)
{
for(const auto &ref:v)
std::cout << ref << " ";
std::cout << std::endl;
}
void merge(std::deque<int> &vec, size_type p, size_type q, size_type r)
{
int n_1 = q - p;
int n_2 = r - q;
std::deque<int> left, right;
for(auto i = 0; i != n_1; i++)
left.push_back(vec[p + i]);
for(auto j = 0; j != n_2; j++)
right.push_back(vec[q + j]);
int i = 0, j = 0;
std::cout << "left = ";
print(left);
std::cout << "right = ";
print(right);
for(auto k = p; k != r; k++) {
if(i < n_1 && left[i] <= right[j]) {
vec[k] = left[i];
i++;
}
else if(j < n_2){
vec[k] = right[j];
j++;
}
}
}
void merge_sort(std::deque<int> &A, size_type p, size_type r)
{
int q;
if(p < r) {
q = (p + r)/2;
merge_sort(A, p, q);
merge_sort(A, q + 1, r);
merge(A, p, q, r);
}
}
int main()
{
std::deque<int> small_vec = {1, 6, 2, 10, 5, 2, 12, 6};
std::deque<int> samp_vec = {2, 9, 482, 72, 42, 3, 4, 9, 8, 73, 8, 0, 98, 72, 473, 72, 3, 4, 9, 7, 6, 5, 6953, 583};
print(small_vec);
merge_sort(small_vec, 0, small_vec.size());
print(small_vec);
return 0;
}
The output from the program is:
left =
right = 1
left = 1
right = 6
left =
right = 10
left = 1 6
right = 2 10
left =
right = 2
left =
right = 6
left = 2
right = 12 6
left = 1 2 6 10
right = 5 2 12 6
1 2 5 2 6 10 12 6
There are a few issues with your sort. Firstly the merge step is wrong. Second how you call merge is wrong. Ill suggest a few steps to improve the implementation to a correct solution, and maybe itll help you.
First my code for merge:
void merge(std::deque<int> &vec, size_type p, size_type q, size_type r)
{
std::deque<int> left, right;
int i = p, j = q+1;
while(i <= q) //change 1: to a while loop. expresses it a little simpler but
//you weren't inserting the correct left elements here
left.push_back(vec[i++]);
while(j <= r) //change 2: same thing, lets get the correct right values
right.push_back(vec[j++]);
i = 0; j = 0;
for(auto k = p; k <= r; k++) {
//change 3: alter this case to include the left over left elements! this is the main error
if(i < left.size() && left[i] <= right[j] || j >= right.size())
vec[k] = left[i++];
else if(j < right.size())
vec[k] = right[j++];
}
}
Then to change how you call merge_sort to:
merge_sort(small_vec, 0, small_vec.size()-1); //change 4: initialized r wrong
This made the sort work for me. As a review of the problems I found: 1) not grabbing the correct subarrays of left and right. 2) didn't handle merge correctly - forgot to grab all the left elements after right is gone. 3) didn't call merg_sort correctly, initializing the r parameter incorrectly.

fastest algorithm count number of 3 length AP in array

I want to solve this CodeChef challenge:
Suppose We are given an array A of N(of range 100,000) elements. We are to find the count of all pairs of 3 such elements 1<=Ai,Aj,Ak<=30,000 such that
Aj-Ai = Ak- Aj and i < j < k
In other words Ai,Aj,Ak are in Arithmetic Progression. For instance for Array :
9 4 2 3 6 10 3 3 10
so The AP are:
{2,6,10},{9,6,3},{9,6,3},{3,3,3},{2,6,10}
So the required answer is 5.
My Approach
What I tried is take 30,000 long arrays named past and right. Initially right contains the count of each 1-30,000 element.
If we are at ith position past stores the count of array value before i and right stores the count of array after i. I simply loop for all possible common difference in the array. Here is the code :
right[arr[1]]--;
for(i=2;i<=n-1;i++)
{
past[arr[i-1]]++;
right[arr[i]]--;
k=30000 - arr[i];
if(arr[i] <= 15000)
k=arr[i];
for(d=1;d<=k;d++)
{
ans+= right[arr[i] + d]*past[arr[i]-d] + past[arr[i] + d]*right[arr[i]-d];
}
ans+=past[arr[i]]*right[arr[i]];
}
But this gets me Time Limit Exceeded. Please help with a better algorithm.
You can greatly cut execution time if you make a first pass over the list and only extract number pairs that it is possible to have an 3 term AP between (difference is 0 mod 2). And then iterating between such pairs.
Pseudo C++-y code:
// Contains information about each beginning point
struct BeginNode {
int value;
size_t offset;
SortedList<EndNode> ends; //sorted by EndNode.value
};
// Contains information about each class of end point
struct EndNode {
int value;
List<size_t> offsets; // will be sorted without effort due to how we collect offsets
};
struct Result {
size_t begin;
size_t middle;
size_t end;
};
SortedList<BeginNode> nodeList;
foreach (auto i : baseList) {
BeginNode begin;
node.value = i;
node.offset = i's offset; //you'll need to use old school for (i=0;etc;i++) with this
// baseList is the list between begin and end-2 (inclusive)
foreach (auto j : restList) {
// restList is the list between iterator i+2 and end (inclusive)
// we do not need to consider i+1, because not enough space for AP
if ((i-j)%2 == 0) { //if it's possible to have a 3 term AP between these two nodes
size_t listOffset = binarySearch(begin.ends);
if (listOffset is valid) {
begin.ends[listOffset].offsets.push_back(offsets);
} else {
EndNode end;
end.value = j;
end.offsets.push_back(j's offset);
begin.ends.sorted_insert(end);
}
}
}
if (begin has shit in it) {
nodeList.sorted_insert(begin);
}
}
// Collection done, now iterate over collection
List<Result> res;
foreach (auto node : nodeList) {
foreach (auto endNode : node.ends) {
foreach (value : sublist from node.offset until endNode.offsets.last()) {
if (value == average(node.value, endNode.value)) {
// binary_search here to determine how many offsets in "endNode.offsets" "value's offset" is less than.
do this that many times:
res.push_back({node.value, value, endNode.value});
}
}
}
}
return res;
Here's a simple C version of the solution that takes advantage of the Ai + Ak must be even test:
#include <stdio.h>
static int arr[] = {9, 4, 2, 3, 6, 10, 3, 3, 10};
int main ()
{
int i, j, k;
int sz = sizeof(arr)/sizeof(arr[0]);
int count = 0;
for (i = 0; i < sz - 2; i++)
{
for (k = i + 2; k < sz; k++)
{
int ik = arr[i] + arr[k];
int ikdb2 = ik / 2;
if ((ikdb2 * 2) == ik) // if ik is even
{
for (j = i + 1; j < k; j++)
{
if (arr[j] == ikdb2)
{
count += 1;
printf("{%d, %d, %d}\n", arr[i], arr[j], arr[k]);
}
}
}
}
}
printf("Count is: %d\n", count);
}
and the console dribble:
tmp e$ cc -o triples triples.c
tmp e$ ./triples
{9, 6, 3}
{9, 6, 3}
{2, 6, 10}
{2, 6, 10}
{3, 3, 3}
Count is: 5
tmp e$
This more complicated version keeps a list of Aj indexed by value to go from n-cubed to n-squared (kinda).
#include <stdio.h>
#include <stdint.h>
static uint32_t arr[] = {9, 4, 2, 3, 6, 10, 3, 3, 10};
#define MAX_VALUE 100000u
#define MAX_ASIZE 30000u
static uint16_t index[MAX_VALUE+1];
static uint16_t list[MAX_ASIZE+1];
static inline void remove_from_index (int subscript)
{
list[subscript] = 0u; // it is guaranteed to be the last element
uint32_t value = arr[subscript];
if (value <= MAX_VALUE && subscript == index[value])
{
index[value] = 0u; // list now empty
}
}
static inline void add_to_index (int subscript)
{
uint32_t value = arr[subscript];
if (value <= MAX_VALUE)
{
list[subscript] = index[value]; // cons
index[value] = subscript;
}
}
int main ()
{
int i, k;
int sz = sizeof(arr)/sizeof(arr[0]);
int count = 0;
for (i = 0; i < sz - 2; i++)
{
for (k = i; k < sz; k++) remove_from_index(k);
for (k = i + 2; k < sz; k++)
{
uint32_t ik = arr[i] + arr[k];
uint32_t ikdb2 = ik / 2;
add_to_index(k-1); // A(k-1) is now a legal middle value
if ((ikdb2 * 2) == ik) // if ik is even
{
uint16_t rover = index[ikdb2];
while (rover != 0u)
{
count += 1;
printf("{%d, %d, %d}\n", arr[i], arr[rover], arr[k]);
rover = list[rover];
}
}
}
}
printf("Count is: %d\n", count);
}
and the dribble:
tmp e$ cc -o triples triples.c
tmp e$ ./triples
{9, 6, 3}
{9, 6, 3}
{2, 6, 10}
{2, 6, 10}
{3, 3, 3}
Count is: 5
tmp e$