avformat_close_input memory leak? - c++

I developed an app to push live stream with ffmpeg. When I checked the app with leaks --atExit -- <the app> (I'm on mac), I found some memory leak with AVFormatContext.
The minimized code are provided below:
#include <iostream>
extern "C" {
#include <libavcodec/avcodec.h>
#include <libavformat/avformat.h>
#include <libavdevice/avdevice.h>
}
void foo() {
avdevice_register_all();
AVFormatContext *avInputFormatContext = avformat_alloc_context();
AVInputFormat *avInputFormat = av_find_input_format("avfoundation");
std::cout << "open input" << std::endl;
int ret = avformat_open_input(&avInputFormatContext, "Capture screen 0", avInputFormat, nullptr);
if (ret < 0) { std::cout << "open input failed: " << ret << std::endl; return;}
avformat_close_input(&avInputFormatContext);
}
int main() {
foo();
return 0;
}
The output is
Process: ffmpegtest [87726]
Path: /Users/USER/*/ffmpegtest
Load Address: 0x10a752000
Identifier: ffmpegtest
Version: ???
Code Type: X86-64
Platform: macOS
Parent Process: leaks [87725]
Date/Time: 2021-01-20 15:44:57.533 +0800
Launch Time: 2021-01-20 15:44:55.760 +0800
OS Version: macOS 11.1 (20C69)
Report Version: 7
Analysis Tool: /Applications/Xcode.app/Contents/Developer/usr/bin/leaks
Analysis Tool Version: Xcode 12.3 (12C33)
Physical footprint: 9.9M
Physical footprint (peak): 10.6M
----
leaks Report Version: 4.0
Process 87726: 14143 nodes malloced for 2638 KB
Process 87726: 1 leak for 32 total leaked bytes.
1 (32 bytes) ROOT LEAK: 0x7f8c61e1b040 [32] length: 16 "Capture screen 0"
Did I miss something?

Related

Vulkan physical device selection causes memory leaks?

Currently using Ubuntu 20.04 LTS, g++11.1.0, C++20, SDL2
Compiler Flags: -lvulkan -ldl -lSDL2main -lSDL2
Code:
#include "VkBootstrap.h"
#include <SDL2/SDL.h>
#include <SDL2/SDL_vulkan.h>
#include <vulkan/vulkan.hpp>
#include <iostream>
int main()
{
VkExtent2D windowExtent {1600, 900};
// Initialize SDL
if (SDL_Init(SDL_INIT_VIDEO))
{
std::cerr << "Unable to initialize SDL: " << SDL_GetError();
std::abort();
}
// Create a SDL Window
SDL_Window* window {SDL_CreateWindow(
"Vulkan",
SDL_WINDOWPOS_UNDEFINED,
SDL_WINDOWPOS_UNDEFINED,
windowExtent.width,
windowExtent.height,
SDL_WINDOW_VULKAN | SDL_WINDOW_RESIZABLE
)};
// Check if window was created sucessfully
if (!window)
{
std::cerr << "Failed to create SDL Window: " << SDL_GetError();
std::abort();
}
vkb::InstanceBuilder instanceBuilder {};
// Initialize the Vulkan instance, with basic debug features
auto builderResult {instanceBuilder
.set_app_name("Vulkan Game")
.request_validation_layers(true)
.use_default_debug_messenger()
.require_api_version(1, 2, 0)
.build()};
vkb::Instance vkbInstance {builderResult.value()};
// Store the Instance
VkInstance instance {vkbInstance.instance};
// Store the Debug Messenger
VkDebugUtilsMessengerEXT debugMessenger {vkbInstance.debug_messenger};
VkSurfaceKHR surface {};
// Get a Vulkan Rendering Surface of the SDL Window
if (!SDL_Vulkan_CreateSurface(window, instance, &surface))
{
std::cerr << "Unable to Create Vulkan Rendering Surface.\n";
std::abort();
}
vkb::PhysicalDeviceSelector gpuSelector {vkbInstance};
// Initialize the Physical Device with a GPU that can render to the window
vkb::PhysicalDevice vkbPhysicalDevice {gpuSelector
.set_minimum_version(1, 2)
.set_surface(surface)
.select()
.value()};
// Store the Vulkan Physical Device
VkPhysicalDevice physicalDevice {vkbPhysicalDevice.physical_device};
// Surface Deletion
vkDestroySurfaceKHR(instance, surface, nullptr);
// Debug Messenger Deletion
vkb::destroy_debug_utils_messenger(instance, debugMessenger);
// Instance Deletion
vkDestroyInstance(instance, nullptr);
// Window Deletion
SDL_DestroyWindow(window);
}
Driver:
Following the tutorial https://vkguide.dev/ and using the VkBootstrap library, when I try to select the physical device, it causes a memory leak like the one shown below:
=================================================================
==44934==ERROR: LeakSanitizer: detected memory leaks
Direct leak of 576 byte(s) in 4 object(s) allocated from:
#0 0x7f8e9c905e17 in __interceptor_calloc ../../../../src/libsanitizer/asan/asan_malloc_linux.cpp:154
#1 0x7f8e97a13a1d (/lib/x86_64-linux-gnu/libdrm.so.2+0x4a1d)
#2 0x31647261632e (<unknown module>)
Direct leak of 128 byte(s) in 4 object(s) allocated from:
#0 0x7f8e9c905c47 in __interceptor_malloc ../../../../src/libsanitizer/asan/asan_malloc_linux.cpp:145
#1 0x7f8e9b35a0c5 (/lib/x86_64-linux-gnu/libxcb.so.1+0xe0c5)
SUMMARY: AddressSanitizer: 704 byte(s) leaked in 8 allocation(s).
I ran a diagnostic on the available GPUs by modifying the VkBootstrap.cpp file to output data, and got this:
GPU: Intel(R) HD Graphics 530 (SKL GT2)
Api Version: 4202641
Device ID: 6418
Device Type: 1
Driver Version: 88080387
GPU: llvmpipe (LLVM 12.0.0, 256 bits)
Api Version: 4194306
Device ID: 0
Device Type: 4
Driver Version: 1
Selected GPU: Intel(R) HD Graphics 530 (SKL GT2)
Although I have an Nvidia and Intel graphics card, how come it isn't showing the Nvidia graphics card as a viable GPU?
Also, why are these memory leaks occurring? How can I resolve them?

Sqlite database empty when profiling with callgrind

I am attempting to profile a program that requires data loaded from a sqlite database. Running the program normally works as expected, but when I use callgrind the opened database is empty (no tables; a user_version that is set in the database comes back as 0). The database file is found at the correct path, and appears to be correctly opened, but there is nothing in it.
Test program (sqlite_test.cpp):
#include <sqlite3.h>
#include <iostream>
#include <sys/stat.h>
bool dbExists() {
struct stat s;
if (stat("testDB", &s) != 0) {
return false;
}
else {
return true;
}
}
int main()
{
if (dbExists())
std::cout << "db exists\n";
sqlite3 *db;
int open = sqlite3_open_v2("testDB", &db, SQLITE_OPEN_READWRITE, NULL);
if (open == SQLITE_OK) {
std::cout << "db opened\n";
}
else {
std::cout << "Failed to open DB; code: " << open << "\n";
}
sqlite3_stmt *stmt;
sqlite3_prepare_v2(db, "PRAGMA user_version;", -1, &stmt, NULL);
int dbVersion = 0;
int res = sqlite3_step(stmt);
if (res == SQLITE_ROW) {
dbVersion = sqlite3_column_int(stmt, 0);
}
else {
std::cout << "DB version not set: " << res << " " << sqlite3_errstr(res) << "\n";
}
std::cout << "Database version: " << dbVersion << std::endl;
sqlite3_close(db);
}
I created a database ("testDB") that has "pragma user_version = 5;", and is located in the same folder as the executable. The executable is built using
g++ sqlite_test.cpp -lsqlite3 -o sqlite_test
Output:
# ./sqlite_test
db exists
db opened
Database version: 5
# valgrind --tool=callgrind ./sqlite_test
==1184== Callgrind, a call-graph generating cache profiler
==1184== Copyright (C) 2002-2015, and GNU GPL'd, by Josef Weidendorfer et al.
==1184== Using Valgrind-3.12.0 and LibVEX; rerun with -h for copyright info
==1184== Command: ./sqlite_test
==1184==
==1184== For interactive control, run 'callgrind_control -h'.
db exists
db opened
Database version: 0
==1184==
==1184== Events : Ir
==1184== Collected : 2787290
==1184==
==1184== I refs: 2,787,290
One other thing I have noticed is that it seems to work fine when running with valgrind (memcheck). It is only with callgrind that the problem shows up. This is true for both valgrind 3.12 and 3.14.
Update:
Obviously I should have mentioned what I am running this on, because it appears to be the source of the problem.
My problem is on a system running Yocto 2.2.2 (Morty) on a single core ARM processor. There is no problem if I run the same thing on a different system (which is a virtual machine) running Ubuntu 18.04.
I am not sure which difference between those systems is causing the problem.

OpenCL could not found Intel HD 4000

I'll warn you in advance my written english it is not good, so please have some patience because I'll do a lot of errors.
I need to expose the graphic card in order to do some benchmark with parallel algorithms on finite element analysis. I downloaded the intel sdk at this link https://software.intel.com/en-us/intel-opencl .
I am using Ubuntu 16.10, so i followed all the instruction as explained in this post https://streamcomputing.eu/blog/2011-06-24/install-opencl-on-debianubuntu-orderly/ .
When i run a simple algorithm wich checks all the device, it only recognizes the cpu, failing to find the graphic card. The same program works well on a mac (because OpenCL is in the stack of course).
// includes...
int main(int argc, const char * argv[])
{
// See what standard OpenCL sees
std::vector<cl::Platform> platforms;
// Get platform
cl::Platform::get(&platforms);
// Temp
std::string s;
// Where the GPU lies
cl::Device gpudevice;
// Found a GPU
bool gpufound = false;
std::cout << "**** OPENCL ****" << std::endl;
// See if we have a GPU
for (auto p : platforms)
{
std::vector<cl::Device> devices;
p.getDevices(CL_DEVICE_TYPE_ALL, &devices);
for (auto d : devices)
{
std::size_t i = 4;
d.getInfo(CL_DEVICE_TYPE, &i);
std::cout << "> Device type " <<
(i & CL_DEVICE_TYPE_CPU ? "CPU" : "") <<
(i & CL_DEVICE_TYPE_GPU ? "GPU" : "") <<
(i & CL_DEVICE_TYPE_ACCELERATOR ? "ACCELERATOR" : "");
if (i & CL_DEVICE_TYPE_GPU)
{
gpudevice = d;
gpufound = true;
}
std::cout << " Version " << s << std::endl;
}
}
if (!gpufound)
{
std::cout << "NO GPU FOUND. ABORTING." << std::endl;
return 1;
}
// Do other things...
the output is:
/home/andrea/Dropbox/fem/SiNDy/clfem/cmake-build-debug/vector_sycl
**** OPENCL ****
> Device type CPU Version
NO GPU FOUND. ABORTING.
Process finished with exit code 1
I tried to add the current user in the video group, i also tried to install Intel Media Server Studio following the instructions coming with the package but I could not build the kernel because of some compile errors.
I also updated all the drivers with the automatic software update of Ubuntu, but still the GC is not found.
Maybe you want to try beignet, which is an OpenCL implementation for IvyBridge+ iGPUs. There are packages of beignet for Ubuntu 16.10. To be more precise, I think you are looking for the packages beignet-dev and beignet-opencl-icd. Test it yourself since I have no Ubuntu installation currently available. (However, beignet itself works pretty well on my Intel HD Graphics 520 and Antergos/Arch Linux)

NetBeans gives segfault, running the prgram using terminal does not

I am confronted to a very weird problem.
When running my very simple one file program via NetBeans, I have the following error:
RUN FINISHED; Segmentation fault; core dumped; real time: 150ms; user: 0ms; system: 0ms
My run command is simple ./Name-Of-The-File.
When I use a terminal and cd to the folder containing the program and run the same command, I get the following output:
Hullo
PLatform Number is : 1
Hullo
(Note that the Hullos were added to pinpoint where the segfault happened, as my very first line in main() prints Hullo.)
Here is the code of the program:
/*
* File: main.cpp
* Author: sysgen
*
* Created on June 4, 2015, 7:08 PM
*/
#include <cstdio>
#include <cstdlib>
#include <iostream>
#include <utility>
#include <CL/cl.hpp>
const std::string hw("Hello World \n");
/*
*
*/
//OpenCL Error checking function
inline void checkErr(cl_int err, const char *name){
if (err != CL_SUCCESS){
std::cerr << "FATAL OPENCL ERROR: " << name << "( " << err << ") " << std::endl;
exit(EXIT_FAILURE);
}
}
int main(void) {
//Creating an OpenCL context
std::cout << "Hullo" << std::endl;
cl_int err;
std::vector< cl::Platform > platformList; //We make a vector which will contain the platforms
cl::Platform::get(&platformList);
checkErr(platformList.size() !=0 ? CL_SUCCESS : -1, "cl::Platform::get");
std::cerr << "PLatform Number is : " << platformList.size() << std::endl;
std::string platformVendor;
platformList[0].getInfo((cl_platform_info)CL_PLATFORM_VENDOR, &platformVendor);
std::cout << "Hullo" << std::endl;
return 0;
}
This error also manifests in codeblocks. There is more details produced by gdb:
Building to ensure sources are up-to-date
Selecting target:
Debug
Adding source dir: /home/sysgen/NetBeansProjects/OpenCL SVOGL/
Adding source dir: /home/sysgen/NetBeansProjects/OpenCL SVOGL/
Adding file: /home/sysgen/NetBeansProjects/OpenCL SVOGL/bin/Debug/OpenCL SVOGL
Changing directory to: "/home/sysgen/NetBeansProjects/OpenCL SVOGL/."
Set variable: LD_LIBRARY_PATH=.:/opt/AMDAPPSDK-3.0-0-Beta/lib/x86_64/:/usr/lib32
Starting debugger: /usr/bin/gdb -nx -fullname -quiet -args "/home/sysgen/NetBeansProjects/OpenCL SVOGL/bin/Debug/OpenCL SVOGL"
done
Registered new type: wxString
Registered new type: STL String
Registered new type: STL Vector
Setting breakpoints
Reading symbols from /home/sysgen/NetBeansProjects/OpenCL SVOGL/bin/Debug/OpenCL SVOGL...(no debugging symbols found)...done.
Debugger name and version: GNU gdb (Ubuntu 7.9-1ubuntu1) 7.9
Program received signal SIGSEGV, Segmentation fault.
In ?? () ()
177 dlerror.c: No such file or directory.
#1 0x00007ffff70dd6fd in init () at dlerror.c:177

How to automatically generate a stacktrace when my program crashes

I am working on Linux with the GCC compiler. When my C++ program crashes I would like it to automatically generate a stacktrace.
My program is being run by many different users and it also runs on Linux, Windows and Macintosh (all versions are compiled using gcc).
I would like my program to be able to generate a stack trace when it crashes and the next time the user runs it, it will ask them if it is ok to send the stack trace to me so I can track down the problem. I can handle the sending the info to me but I don't know how to generate the trace string. Any ideas?
For Linux and I believe Mac OS X, if you're using gcc, or any compiler that uses glibc, you can use the backtrace() functions in execinfo.h to print a stacktrace and exit gracefully when you get a segmentation fault. Documentation can be found in the libc manual.
Here's an example program that installs a SIGSEGV handler and prints a stacktrace to stderr when it segfaults. The baz() function here causes the segfault that triggers the handler:
#include <stdio.h>
#include <execinfo.h>
#include <signal.h>
#include <stdlib.h>
#include <unistd.h>
void handler(int sig) {
void *array[10];
size_t size;
// get void*'s for all entries on the stack
size = backtrace(array, 10);
// print out all the frames to stderr
fprintf(stderr, "Error: signal %d:\n", sig);
backtrace_symbols_fd(array, size, STDERR_FILENO);
exit(1);
}
void baz() {
int *foo = (int*)-1; // make a bad pointer
printf("%d\n", *foo); // causes segfault
}
void bar() { baz(); }
void foo() { bar(); }
int main(int argc, char **argv) {
signal(SIGSEGV, handler); // install our handler
foo(); // this will call foo, bar, and baz. baz segfaults.
}
Compiling with -g -rdynamic gets you symbol info in your output, which glibc can use to make a nice stacktrace:
$ gcc -g -rdynamic ./test.c -o test
Executing this gets you this output:
$ ./test
Error: signal 11:
./test(handler+0x19)[0x400911]
/lib64/tls/libc.so.6[0x3a9b92e380]
./test(baz+0x14)[0x400962]
./test(bar+0xe)[0x400983]
./test(foo+0xe)[0x400993]
./test(main+0x28)[0x4009bd]
/lib64/tls/libc.so.6(__libc_start_main+0xdb)[0x3a9b91c4bb]
./test[0x40086a]
This shows the load module, offset, and function that each frame in the stack came from. Here you can see the signal handler on top of the stack, and the libc functions before main in addition to main, foo, bar, and baz.
It's even easier than "man backtrace", there's a little-documented library (GNU specific) distributed with glibc as libSegFault.so, which was I believe was written by Ulrich Drepper to support the program catchsegv (see "man catchsegv").
This gives us 3 possibilities. Instead of running "program -o hai":
Run within catchsegv:
$ catchsegv program -o hai
Link with libSegFault at runtime:
$ LD_PRELOAD=/lib/libSegFault.so program -o hai
Link with libSegFault at compile time:
$ gcc -g1 -lSegFault -o program program.cc
$ program -o hai
In all 3 cases, you will get clearer backtraces with less optimization (gcc -O0 or -O1) and debugging symbols (gcc -g). Otherwise, you may just end up with a pile of memory addresses.
You can also catch more signals for stack traces with something like:
$ export SEGFAULT_SIGNALS="all" # "all" signals
$ export SEGFAULT_SIGNALS="bus abrt" # SIGBUS and SIGABRT
The output will look something like this (notice the backtrace at the bottom):
*** Segmentation fault Register dump:
EAX: 0000000c EBX: 00000080 ECX:
00000000 EDX: 0000000c ESI:
bfdbf080 EDI: 080497e0 EBP:
bfdbee38 ESP: bfdbee20
EIP: 0805640f EFLAGS: 00010282
CS: 0073 DS: 007b ES: 007b FS:
0000 GS: 0033 SS: 007b
Trap: 0000000e Error: 00000004
OldMask: 00000000 ESP/signal:
bfdbee20 CR2: 00000024
FPUCW: ffff037f FPUSW: ffff0000
TAG: ffffffff IPOFF: 00000000
CSSEL: 0000 DATAOFF: 00000000
DATASEL: 0000
ST(0) 0000 0000000000000000 ST(1)
0000 0000000000000000 ST(2) 0000
0000000000000000 ST(3) 0000
0000000000000000 ST(4) 0000
0000000000000000 ST(5) 0000
0000000000000000 ST(6) 0000
0000000000000000 ST(7) 0000
0000000000000000
Backtrace:
/lib/libSegFault.so[0xb7f9e100]
??:0(??)[0xb7fa3400]
/usr/include/c++/4.3/bits/stl_queue.h:226(_ZNSt5queueISsSt5dequeISsSaISsEEE4pushERKSs)[0x805647a]
/home/dbingham/src/middle-earth-mud/alpha6/src/engine/player.cpp:73(_ZN6Player5inputESs)[0x805377c]
/home/dbingham/src/middle-earth-mud/alpha6/src/engine/socket.cpp:159(_ZN6Socket4ReadEv)[0x8050698]
/home/dbingham/src/middle-earth-mud/alpha6/src/engine/socket.cpp:413(_ZN12ServerSocket4ReadEv)[0x80507ad]
/home/dbingham/src/middle-earth-mud/alpha6/src/engine/socket.cpp:300(_ZN12ServerSocket4pollEv)[0x8050b44]
/home/dbingham/src/middle-earth-mud/alpha6/src/engine/main.cpp:34(main)[0x8049a72]
/lib/tls/i686/cmov/libc.so.6(__libc_start_main+0xe5)[0xb7d1b775]
/build/buildd/glibc-2.9/csu/../sysdeps/i386/elf/start.S:122(_start)[0x8049801]
If you want to know the gory details, the best source is unfortunately the source: See http://sourceware.org/git/?p=glibc.git;a=blob;f=debug/segfault.c and its parent directory http://sourceware.org/git/?p=glibc.git;a=tree;f=debug
Linux
While the use of the backtrace() functions in execinfo.h to print a stacktrace and exit gracefully when you get a segmentation fault has already been suggested, I see no mention of the intricacies necessary to ensure the resulting backtrace points to the actual location of the fault (at least for some architectures - x86 & ARM).
The first two entries in the stack frame chain when you get into the signal handler contain a return address inside the signal handler and one inside sigaction() in libc. The stack frame of the last function called before the signal (which is the location of the fault) is lost.
Code
#ifndef _GNU_SOURCE
#define _GNU_SOURCE
#endif
#ifndef __USE_GNU
#define __USE_GNU
#endif
#include <execinfo.h>
#include <signal.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <ucontext.h>
#include <unistd.h>
/* This structure mirrors the one found in /usr/include/asm/ucontext.h */
typedef struct _sig_ucontext {
unsigned long uc_flags;
ucontext_t *uc_link;
stack_t uc_stack;
sigcontext_t uc_mcontext;
sigset_t uc_sigmask;
} sig_ucontext_t;
void crit_err_hdlr(int sig_num, siginfo_t * info, void * ucontext)
{
void * array[50];
void * caller_address;
char ** messages;
int size, i;
sig_ucontext_t * uc;
uc = (sig_ucontext_t *)ucontext;
/* Get the address at the time the signal was raised */
#if defined(__i386__) // gcc specific
caller_address = (void *) uc->uc_mcontext.eip; // EIP: x86 specific
#elif defined(__x86_64__) // gcc specific
caller_address = (void *) uc->uc_mcontext.rip; // RIP: x86_64 specific
#else
#error Unsupported architecture. // TODO: Add support for other arch.
#endif
fprintf(stderr, "signal %d (%s), address is %p from %p\n",
sig_num, strsignal(sig_num), info->si_addr,
(void *)caller_address);
size = backtrace(array, 50);
/* overwrite sigaction with caller's address */
array[1] = caller_address;
messages = backtrace_symbols(array, size);
/* skip first stack frame (points here) */
for (i = 1; i < size && messages != NULL; ++i)
{
fprintf(stderr, "[bt]: (%d) %s\n", i, messages[i]);
}
free(messages);
exit(EXIT_FAILURE);
}
int crash()
{
char * p = NULL;
*p = 0;
return 0;
}
int foo4()
{
crash();
return 0;
}
int foo3()
{
foo4();
return 0;
}
int foo2()
{
foo3();
return 0;
}
int foo1()
{
foo2();
return 0;
}
int main(int argc, char ** argv)
{
struct sigaction sigact;
sigact.sa_sigaction = crit_err_hdlr;
sigact.sa_flags = SA_RESTART | SA_SIGINFO;
if (sigaction(SIGSEGV, &sigact, (struct sigaction *)NULL) != 0)
{
fprintf(stderr, "error setting signal handler for %d (%s)\n",
SIGSEGV, strsignal(SIGSEGV));
exit(EXIT_FAILURE);
}
foo1();
exit(EXIT_SUCCESS);
}
Output
signal 11 (Segmentation fault), address is (nil) from 0x8c50
[bt]: (1) ./test(crash+0x24) [0x8c50]
[bt]: (2) ./test(foo4+0x10) [0x8c70]
[bt]: (3) ./test(foo3+0x10) [0x8c8c]
[bt]: (4) ./test(foo2+0x10) [0x8ca8]
[bt]: (5) ./test(foo1+0x10) [0x8cc4]
[bt]: (6) ./test(main+0x74) [0x8d44]
[bt]: (7) /lib/libc.so.6(__libc_start_main+0xa8) [0x40032e44]
All the hazards of calling the backtrace() functions in a signal handler still exist and should not be overlooked, but I find the functionality I described here quite helpful in debugging crashes.
It is important to note that the example I provided is developed/tested on Linux for x86. I have also successfully implemented this on ARM using uc_mcontext.arm_pc instead of uc_mcontext.eip.
Here's a link to the article where I learned the details for this implementation:
http://www.linuxjournal.com/article/6391
Even though a correct answer has been provided that describes how to use the GNU libc backtrace() function1 and I provided my own answer that describes how to ensure a backtrace from a signal handler points to the actual location of the fault2, I don't see any mention of demangling C++ symbols output from the backtrace.
When obtaining backtraces from a C++ program, the output can be run through c++filt1 to demangle the symbols or by using abi::__cxa_demangle1 directly.
1 Linux & OS X
Note that c++filt and __cxa_demangle are GCC specific
2 Linux
The following C++ Linux example uses the same signal handler as my other answer and demonstrates how c++filt can be used to demangle the symbols.
Code:
class foo
{
public:
foo() { foo1(); }
private:
void foo1() { foo2(); }
void foo2() { foo3(); }
void foo3() { foo4(); }
void foo4() { crash(); }
void crash() { char * p = NULL; *p = 0; }
};
int main(int argc, char ** argv)
{
// Setup signal handler for SIGSEGV
...
foo * f = new foo();
return 0;
}
Output (./test):
signal 11 (Segmentation fault), address is (nil) from 0x8048e07
[bt]: (1) ./test(crash__3foo+0x13) [0x8048e07]
[bt]: (2) ./test(foo4__3foo+0x12) [0x8048dee]
[bt]: (3) ./test(foo3__3foo+0x12) [0x8048dd6]
[bt]: (4) ./test(foo2__3foo+0x12) [0x8048dbe]
[bt]: (5) ./test(foo1__3foo+0x12) [0x8048da6]
[bt]: (6) ./test(__3foo+0x12) [0x8048d8e]
[bt]: (7) ./test(main+0xe0) [0x8048d18]
[bt]: (8) ./test(__libc_start_main+0x95) [0x42017589]
[bt]: (9) ./test(__register_frame_info+0x3d) [0x8048981]
Demangled Output (./test 2>&1 | c++filt):
signal 11 (Segmentation fault), address is (nil) from 0x8048e07
[bt]: (1) ./test(foo::crash(void)+0x13) [0x8048e07]
[bt]: (2) ./test(foo::foo4(void)+0x12) [0x8048dee]
[bt]: (3) ./test(foo::foo3(void)+0x12) [0x8048dd6]
[bt]: (4) ./test(foo::foo2(void)+0x12) [0x8048dbe]
[bt]: (5) ./test(foo::foo1(void)+0x12) [0x8048da6]
[bt]: (6) ./test(foo::foo(void)+0x12) [0x8048d8e]
[bt]: (7) ./test(main+0xe0) [0x8048d18]
[bt]: (8) ./test(__libc_start_main+0x95) [0x42017589]
[bt]: (9) ./test(__register_frame_info+0x3d) [0x8048981]
The following builds on the signal handler from my original answer and can replace the signal handler in the above example to demonstrate how abi::__cxa_demangle can be used to demangle the symbols. This signal handler produces the same demangled output as the above example.
Code:
void crit_err_hdlr(int sig_num, siginfo_t * info, void * ucontext)
{
sig_ucontext_t * uc = (sig_ucontext_t *)ucontext;
void * caller_address = (void *) uc->uc_mcontext.eip; // x86 specific
std::cerr << "signal " << sig_num
<< " (" << strsignal(sig_num) << "), address is "
<< info->si_addr << " from " << caller_address
<< std::endl << std::endl;
void * array[50];
int size = backtrace(array, 50);
array[1] = caller_address;
char ** messages = backtrace_symbols(array, size);
// skip first stack frame (points here)
for (int i = 1; i < size && messages != NULL; ++i)
{
char *mangled_name = 0, *offset_begin = 0, *offset_end = 0;
// find parantheses and +address offset surrounding mangled name
for (char *p = messages[i]; *p; ++p)
{
if (*p == '(')
{
mangled_name = p;
}
else if (*p == '+')
{
offset_begin = p;
}
else if (*p == ')')
{
offset_end = p;
break;
}
}
// if the line could be processed, attempt to demangle the symbol
if (mangled_name && offset_begin && offset_end &&
mangled_name < offset_begin)
{
*mangled_name++ = '\0';
*offset_begin++ = '\0';
*offset_end++ = '\0';
int status;
char * real_name = abi::__cxa_demangle(mangled_name, 0, 0, &status);
// if demangling is successful, output the demangled function name
if (status == 0)
{
std::cerr << "[bt]: (" << i << ") " << messages[i] << " : "
<< real_name << "+" << offset_begin << offset_end
<< std::endl;
}
// otherwise, output the mangled function name
else
{
std::cerr << "[bt]: (" << i << ") " << messages[i] << " : "
<< mangled_name << "+" << offset_begin << offset_end
<< std::endl;
}
free(real_name);
}
// otherwise, print the whole line
else
{
std::cerr << "[bt]: (" << i << ") " << messages[i] << std::endl;
}
}
std::cerr << std::endl;
free(messages);
exit(EXIT_FAILURE);
}
Might be worth looking at Google Breakpad, a cross-platform crash dump generator and tools to process the dumps.
You did not specify your operating system, so this is difficult to answer. If you are using a system based on gnu libc, you might be able to use the libc function backtrace().
GCC also has two builtins that can assist you, but which may or may not be implemented fully on your architecture, and those are __builtin_frame_address and __builtin_return_address. Both of which want an immediate integer level (by immediate, I mean it can't be a variable). If __builtin_frame_address for a given level is non-zero, it should be safe to grab the return address of the same level.
Thank you to enthusiasticgeek for drawing my attention to the addr2line utility.
I've written a quick and dirty script to process the output of the answer provided here:
(much thanks to jschmier!) using the addr2line utility.
The script accepts a single argument: The name of the file containing the output from jschmier's utility.
The output should print something like the following for each level of the trace:
BACKTRACE: testExe 0x8A5db6b
FILE: pathToFile/testExe.C:110
FUNCTION: testFunction(int)
107
108
109 int* i = 0x0;
*110 *i = 5;
111
112 }
113 return i;
Code:
#!/bin/bash
LOGFILE=$1
NUM_SRC_CONTEXT_LINES=3
old_IFS=$IFS # save the field separator
IFS=$'\n' # new field separator, the end of line
for bt in `cat $LOGFILE | grep '\[bt\]'`; do
IFS=$old_IFS # restore default field separator
printf '\n'
EXEC=`echo $bt | cut -d' ' -f3 | cut -d'(' -f1`
ADDR=`echo $bt | cut -d'[' -f3 | cut -d']' -f1`
echo "BACKTRACE: $EXEC $ADDR"
A2L=`addr2line -a $ADDR -e $EXEC -pfC`
#echo "A2L: $A2L"
FUNCTION=`echo $A2L | sed 's/\<at\>.*//' | cut -d' ' -f2-99`
FILE_AND_LINE=`echo $A2L | sed 's/.* at //'`
echo "FILE: $FILE_AND_LINE"
echo "FUNCTION: $FUNCTION"
# print offending source code
SRCFILE=`echo $FILE_AND_LINE | cut -d':' -f1`
LINENUM=`echo $FILE_AND_LINE | cut -d':' -f2`
if ([ -f $SRCFILE ]); then
cat -n $SRCFILE | grep -C $NUM_SRC_CONTEXT_LINES "^ *$LINENUM\>" | sed "s/ $LINENUM/*$LINENUM/"
else
echo "File not found: $SRCFILE"
fi
IFS=$'\n' # new field separator, the end of line
done
IFS=$old_IFS # restore default field separator
ulimit -c <value> sets the core file size limit on unix. By default, the core file size limit is 0. You can see your ulimit values with ulimit -a.
also, if you run your program from within gdb, it will halt your program on "segmentation violations" (SIGSEGV, generally when you accessed a piece of memory that you hadn't allocated) or you can set breakpoints.
ddd and nemiver are front-ends for gdb which make working with it much easier for the novice.
It's important to note that once you generate a core file you'll need to use the gdb tool to look at it. For gdb to make sense of your core file, you must tell gcc to instrument the binary with debugging symbols: to do this, you compile with the -g flag:
$ g++ -g prog.cpp -o prog
Then, you can either set "ulimit -c unlimited" to let it dump a core, or just run your program inside gdb. I like the second approach more:
$ gdb ./prog
... gdb startup output ...
(gdb) run
... program runs and crashes ...
(gdb) where
... gdb outputs your stack trace ...
I hope this helps.
It looks like in one of last c++ boost version appeared library to provide exactly what You want, probably the code would be multiplatform.
It is boost::stacktrace, which You can use like as in boost sample:
#include <filesystem>
#include <sstream>
#include <fstream>
#include <signal.h> // ::signal, ::raise
#include <boost/stacktrace.hpp>
const char* backtraceFileName = "./backtraceFile.dump";
void signalHandler(int)
{
::signal(SIGSEGV, SIG_DFL);
::signal(SIGABRT, SIG_DFL);
boost::stacktrace::safe_dump_to(backtraceFileName);
::raise(SIGABRT);
}
void sendReport()
{
if (std::filesystem::exists(backtraceFileName))
{
std::ifstream file(backtraceFileName);
auto st = boost::stacktrace::stacktrace::from_dump(file);
std::ostringstream backtraceStream;
backtraceStream << st << std::endl;
// sending the code from st
file.close();
std::filesystem::remove(backtraceFileName);
}
}
int main()
{
::signal(SIGSEGV, signalHandler);
::signal(SIGABRT, signalHandler);
sendReport();
// ... rest of code
}
In Linux You compile the code above:
g++ --std=c++17 file.cpp -lstdc++fs -lboost_stacktrace_backtrace -ldl -lbacktrace
Example backtrace copied from boost documentation:
0# bar(int) at /path/to/source/file.cpp:70
1# bar(int) at /path/to/source/file.cpp:70
2# bar(int) at /path/to/source/file.cpp:70
3# bar(int) at /path/to/source/file.cpp:70
4# main at /path/to/main.cpp:93
5# __libc_start_main in /lib/x86_64-linux-gnu/libc.so.6
6# _start
Ive been looking at this problem for a while.
And buried deep in the Google Performance Tools README
http://code.google.com/p/google-perftools/source/browse/trunk/README
talks about libunwind
http://www.nongnu.org/libunwind/
Would love to hear opinions of this library.
The problem with -rdynamic is that it can increase the size of the binary relatively significantly in some cases
The new king in town has arrived
https://github.com/bombela/backward-cpp
1 header to place in your code and 1 library to install.
Personally I call it using this function
#include "backward.hpp"
void stacker() {
using namespace backward;
StackTrace st;
st.load_here(99); //Limit the number of trace depth to 99
st.skip_n_firsts(3);//This will skip some backward internal function from the trace
Printer p;
p.snippet = true;
p.object = true;
p.color = true;
p.address = true;
p.print(st, stderr);
}
Some versions of libc contain functions that deal with stack traces; you might be able to use them:
http://www.gnu.org/software/libc/manual/html_node/Backtraces.html
I remember using libunwind a long time ago to get stack traces, but it may not be supported on your platform.
You can use DeathHandler - small C++ class which does everything for you, reliable.
Forget about changing your sources and do some hacks with backtrace() function or macroses - these are just poor solutions.
As a properly working solution, I would advice:
Compile your program with "-g" flag for embedding debug symbols to binary (don't worry this will not impact your performance).
On linux run next command: "ulimit -c unlimited" - to allow system make big crash dumps.
When your program crashed, in the working directory you will see file "core".
Run next command to print backtrace to stdout: gdb -batch -ex "backtrace" ./your_program_exe ./core
This will print proper readable backtrace of your program in human readable way (with source file names and line numbers).
Moreover this approach will give you freedom to automatize your system:
have a short script that checks if process created a core dump, and then send backtraces by email to developers, or log this into some logging system.
ulimit -c unlimited
is a system variable, wich will allow to create a core dump after your application crashes. In this case an unlimited amount. Look for a file called core in the very same directory. Make sure you compiled your code with debugging informations enabled!
regards
Look at:
man 3 backtrace
And:
#include <exeinfo.h>
int backtrace(void **buffer, int size);
These are GNU extensions.
As a Windows-only solution, you can get the equivalent of a stack trace (with much, much more information) using Windows Error Reporting. With just a few registry entries, it can be set up to collect user-mode dumps:
Starting with Windows Server 2008 and Windows Vista with Service Pack 1 (SP1), Windows Error Reporting (WER) can be configured so that full user-mode dumps are collected and stored locally after a user-mode application crashes. [...]
This feature is not enabled by default. Enabling the feature requires administrator privileges. To enable and configure the feature, use the following registry values under the HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\Windows Error Reporting\LocalDumps key.
You can set the registry entries from your installer, which has the required privileges.
Creating a user-mode dump has the following advantages over generating a stack trace on the client:
It's already implemented in the system. You can either use WER as outlined above, or call MiniDumpWriteDump yourself, if you need more fine-grained control over the amount of information to dump. (Make sure to call it from a different process.)
Way more complete than a stack trace. Among others it can contain local variables, function arguments, stacks for other threads, loaded modules, and so on. The amount of data (and consequently size) is highly customizable.
No need to ship debug symbols. This both drastically decreases the size of your deployment, as well as makes it harder to reverse-engineer your application.
Largely independent of the compiler you use. Using WER does not even require any code. Either way, having a way to get a symbol database (PDB) is very useful for offline analysis. I believe GCC can either generate PDB's, or there are tools to convert the symbol database to the PDB format.
Take note, that WER can only be triggered by an application crash (i.e. the system terminating a process due to an unhandled exception). MiniDumpWriteDump can be called at any time. This may be helpful if you need to dump the current state to diagnose issues other than a crash.
Mandatory reading, if you want to evaluate the applicability of mini dumps:
Effective minidumps
Effective minidumps (Part 2)
See the Stack Trace facility in ACE (ADAPTIVE Communication Environment). It's already written to cover all major platforms (and more). The library is BSD-style licensed so you can even copy/paste the code if you don't want to use ACE.
I can help with the Linux version: the function backtrace, backtrace_symbols and backtrace_symbols_fd can be used. See the corresponding manual pages.
*nix:
you can intercept SIGSEGV (usualy this signal is raised before crashing) and keep the info into a file. (besides the core file which you can use to debug using gdb for example).
win:
Check this from msdn.
You can also look at the google's chrome code to see how it handles crashes. It has a nice exception handling mechanism.
I have seen a lot of answers here performing a signal handler and then exiting.
That's the way to go, but remember a very important fact: If you want to get the core dump for the generated error, you can't call exit(status). Call abort() instead!
I found that #tgamblin solution is not complete.
It cannot handle with stackoverflow.
I think because by default signal handler is called with the same stack and
SIGSEGV is thrown twice. To protect you need register an independent stack for the signal handler.
You can check this with code below. By default the handler fails. With defined macro STACK_OVERFLOW it's all right.
#include <iostream>
#include <execinfo.h>
#include <signal.h>
#include <stdlib.h>
#include <unistd.h>
#include <string>
#include <cassert>
using namespace std;
//#define STACK_OVERFLOW
#ifdef STACK_OVERFLOW
static char stack_body[64*1024];
static stack_t sigseg_stack;
#endif
static struct sigaction sigseg_handler;
void handler(int sig) {
cerr << "sig seg fault handler" << endl;
const int asize = 10;
void *array[asize];
size_t size;
// get void*'s for all entries on the stack
size = backtrace(array, asize);
// print out all the frames to stderr
cerr << "stack trace: " << endl;
backtrace_symbols_fd(array, size, STDERR_FILENO);
cerr << "resend SIGSEGV to get core dump" << endl;
signal(sig, SIG_DFL);
kill(getpid(), sig);
}
void foo() {
foo();
}
int main(int argc, char **argv) {
#ifdef STACK_OVERFLOW
sigseg_stack.ss_sp = stack_body;
sigseg_stack.ss_flags = SS_ONSTACK;
sigseg_stack.ss_size = sizeof(stack_body);
assert(!sigaltstack(&sigseg_stack, nullptr));
sigseg_handler.sa_flags = SA_ONSTACK;
#else
sigseg_handler.sa_flags = SA_RESTART;
#endif
sigseg_handler.sa_handler = &handler;
assert(!sigaction(SIGSEGV, &sigseg_handler, nullptr));
cout << "sig action set" << endl;
foo();
return 0;
}
I would use the code that generates a stack trace for leaked memory in Visual Leak Detector. This only works on Win32, though.
If you still want to go it alone as I did you can link against bfd and avoid using addr2line as I have done here:
https://github.com/gnif/LookingGlass/blob/master/common/src/platform/linux/crash.c
This produces the output:
[E] crash.linux.c:170 | crit_err_hdlr | ==== FATAL CRASH (a12-151-g28b12c85f4+1) ====
[E] crash.linux.c:171 | crit_err_hdlr | signal 11 (Segmentation fault), address is (nil)
[E] crash.linux.c:194 | crit_err_hdlr | [trace]: (0) /home/geoff/Projects/LookingGlass/client/src/main.c:936 (register_key_binds)
[E] crash.linux.c:194 | crit_err_hdlr | [trace]: (1) /home/geoff/Projects/LookingGlass/client/src/main.c:1069 (run)
[E] crash.linux.c:194 | crit_err_hdlr | [trace]: (2) /home/geoff/Projects/LookingGlass/client/src/main.c:1314 (main)
[E] crash.linux.c:199 | crit_err_hdlr | [trace]: (3) /lib/x86_64-linux-gnu/libc.so.6(__libc_start_main+0xeb) [0x7f8aa65f809b]
[E] crash.linux.c:199 | crit_err_hdlr | [trace]: (4) ./looking-glass-client(_start+0x2a) [0x55c70fc4aeca]
In addition to above answers, here how you make Debian Linux OS generate core dump
Create a “coredumps” folder in the user's home folder
Go to /etc/security/limits.conf. Below the ' ' line, type “ soft core unlimited”, and “root soft core unlimited” if enabling core dumps for root, to allow unlimited space for core dumps.
NOTE: “* soft core unlimited” does not cover root, which is why root has to be specified in its own line.
To check these values, log out, log back in, and type “ulimit -a”. “Core file size” should be set to unlimited.
Check the .bashrc files (user, and root if applicable) to make sure that ulimit is not set there. Otherwise, the value above will be overwritten on startup.
Open /etc/sysctl.conf.
Enter the following at the bottom: “kernel.core_pattern = /home//coredumps/%e_%t.dump”. (%e will be the process name, and %t will be the system time)
Exit and type “sysctl -p” to load the new configuration
Check /proc/sys/kernel/core_pattern and verify that this matches what you just typed in.
Core dumping can be tested by running a process on the command line (“ &”), and then killing it with “kill -11 ”. If core dumping is successful, you will see “(core dumped)” after the segmentation fault indication.
gdb -ex 'set confirm off' -ex r -ex bt -ex q <my-program>
On Linux/unix/MacOSX use core files (you can enable them with ulimit or compatible system call). On Windows use Microsoft error reporting (you can become a partner and get access to your application crash data).
I forgot about the GNOME tech of "apport", but I don't know much about using it. It is used to generate stacktraces and other diagnostics for processing and can automatically file bugs. It's certainly worth checking in to.
You are probably not going to like this - all I can say in its favour is that it works for me, and I have similar but not identical requirements: I am writing a compiler/transpiler for a 1970's Algol-like language which uses C as it's output and then compiles the C so that as far as the user is concerned, they're generally not aware of C being involved, so although you might call it a transpiler, it's effectively a compiler that uses C as it's intermediate code. The language being compiled has a history of providing good diagnostics and a full backtrace in the original native compilers. I've been able to find gcc compiler flags and libraries etc that allow me to trap most of the runtime errors that the original compilers did (although with one glaring exception - unassigned variable trapping). When a runtime error occurs (eg arithmetic overflow, divide by zero, array index out of bounds, etc) the original compilers output a backtrace to the console listing all variables in the stack frames of every active procedure call. I struggled to get this effect in C, but eventually did so with what can only be described as a hack... When the program is invoked, the wrapper that supplies the C "main" looks at its argv, and if a special option is not present, it restarts itself under gdb with an altered argv containing both gdb options and the 'magic' option string for the program itself. This restarted version then hides those strings from the user's code by restoring the original arguments before calling the main block of the code written in our language. When an error occurs (as long as it is not one explicitly trapped within the program by user code), it exits to gdb which prints the required backtrace.
Keys lines of code in the startup sequence include:
if ((argc >= 1) && (strcmp(origargv[argc-1], "--restarting-under-gdb")) != 0) {
// initial invocation
// the "--restarting-under-gdb" option is how the copy running under gdb knows
// not to start another gdb process.
and
char *gdb [] = {
"/usr/bin/gdb", "-q", "-batch", "-nx", "-nh", "-return-child-result",
"-ex", "run",
"-ex", "bt full",
"--args"
};
The original arguments are appended to the gdb options above. That should be enough of a hint for you to do something similar for your own system.
I did look at other library-supported backtrace options (eg libbacktrace,
https://codingrelic.geekhold.com/2010/09/gcc-function-instrumentation.html, etc) but they only output the procedure call stack, not the local variables. However if anyone knows of any cleaner mechanism to get a similar effect, do please let us know. The main downside to this is that the variables are printed in C syntax, not the syntax of the language the user writes in. And (until I add suitable #line directives on every generated line of C :-() the backtrace lists the C source file and line numbers.
G
PS The gcc compile options I use are:
GCCOPTS=" -Wall -Wno-return-type -Wno-comment -g -fsanitize=undefined
-fsanitize-undefined-trap-on-error -fno-sanitize-recover=all -frecord-gcc-switches
-fsanitize=float-divide-by-zero -fsanitize=float-cast-overflow -ftrapv
-grecord-gcc-switches -O0 -ggdb3 "