If I have a tuple member variable where the types in the tuple are a parameter pack of a class template, I can apply a function to each object in the tuple with a static member function like this:
template<size_t I = 0, typename F, typename... Tp>
static void apply_to_foos(std::tuple<Tp...>& t, F func) {
auto& foo = std::get<I>(t);
func(foo);
if constexpr (I + 1 != sizeof...(Tp))
apply_to_foos<I + 1>(t, func);
}
so for example, if foos_is the tuple member variable, I could implement a member function over the foos via:
void frobnicate() {
apply_to_foos( foos_, [](auto& f){f.frob();} );
}
etc. however, if frobnicate had been const I run into the problem that foos_ will now be const, and apply_to_foos wants a non-const tuple. So for example this won't work (if foos are some kind of containers)
size_t size() const {
size_t sz = 0;
apply_to_foos( foos_, [&sz](auto& f){ sz += f.size();} );
return sz;
}
I could implement an overload of apply_to_foos that takes a const std::tuple<Tp...>&, const_cast to a non-const tuple and call the original overload, but, well, then I am just casting away const-ness.
The annoying thing about it is that the only part of apply_to_foos that cares about const-ness is the signature. Everything else will work with const values as long the const-ness is respected e.g. the lambda will need to take a reference to const value, etc. If I could cast from a const tuple to a tuple of consts then I could implement the const overload like this:
template<size_t I = 0, typename F, typename... Tp>
static void apply_to_foos(const std::tuple<Tp...>& t, F func) {
auto& tup_of_consts = const_tuple_to_tuple_of_consts(t);
apply_to_foos(tup_of_consts, func);
}
and the size() member function would just work naturally ... I feel like there must be an easier way to handle this though?
You can't cast a const std::tuple<T1, T2> to std::tuple<const T1, const T2> without making copies of the contained items.
You have two options for what you can do though:
1. Deduce the type of t and sidestep the problem entirely:
template<size_t I = 0, typename F, typename T>
static void apply_to_foos(T& t, F func) {
auto& foo = std::get<I>(t);
func(foo);
if constexpr (I + 1 != std::tuple_size<T>::value)
apply_to_foos<I + 1>(t, func);
}
Live Demo
With the type of t deduced, both situations will work. If passed a const tuple then T will be decuded to const std::tuple<...> making the type of t const std::tuple<...>& and if passed a non-const tuple then T will be deduced to std::tuple<...> and the type of t will be std::tuple<...>&. The only other change required is to use std::tuple_size<T>::value in place of sizeof...(Tp). Note that this also allows apply_to_foos to work with other types like std::array and std::pair.
You'll probably also want to apply perfect-forwarding to allow apply_to_foos to work with rvalues and preserve the value category of the tuple elements as well. For example:
template<size_t I = 0, typename F, typename T>
static void apply_to_foos(T&& t, F func) {
func(std::get<I>(std::forward<T>(t)));
if constexpr (I + 1 != std::tuple_size<std::remove_reference_t<T>>::value)
apply_to_foos<I + 1>(std::forward<T>(t), func);
}
Live Demo
2. Create a new tuple containing references to the original tuple's contents
Create a second overload of apply_to_foos that accepts a reference to a const tuple and creates a temporary tuple of const references to the original tuple's elements:
template<typename F, typename... Tp>
static void apply_to_foos(const std::tuple<Tp...>& t, F func) {
std::tuple<std::add_const_t<Tp>&...> tuple_of_const = t;
apply_to_foos(tuple_of_const, func);
}
Live Demo
This will work fine, but it has issues with value category preservation. The elements of a tuple rvalue will be passed to the callback function as const lvalues and can't easily be moved-from for example.
I think this is an okay use of const_cast to pretend that your mutable parameter is const. It may be UB, I'm no expert.
Basically, put the logic in the const version for const-correctness. Then the non-const version calls the const version after casting away the const from the reference.
First, removing a const from a reference (might be a better way to do this):
// badly named but turns `const int &` -> `int &`
template <typename T>
struct remove_const_ref {
using type = std::add_lvalue_reference_t<
std::remove_const_t<std::remove_reference_t<T>>>;
};
template <typename T>
using remove_const_ref_t = typename remove_const_ref<T>::type;
Then, the const version:
template <size_t I = 0, typename F, typename... Tp>
static void apply_to_foos(const std::tuple<Tp...> &t, F func) {
auto &foo = std::get<I>(t);
func(foo);
if constexpr (I + 1 != sizeof...(Tp)) apply_to_foos<I + 1>(t, func);
}
And the non-const version, which just casts and calls:
template <size_t I = 0, typename F, typename... Tp>
static void apply_to_foos(std::tuple<Tp...> &t, F func) {
apply_to_foos(std::as_const(t), [&func](const auto &v) {
func(const_cast<remove_const_ref_t<decltype(v)>>(v));
});
}
Example:
int main() {
std::tuple thingMut = {1, 2, 3, 4};
const std::tuple thingConst = {1, 2, 3, 4};
apply_to_foos(thingMut, [](auto &v) {
v++;
std::cout << "mut frob: " << v << std::endl;
});
apply_to_foos(thingConst, [](auto &v) {
// v++; error: you cannot assign to a variable that is const
std::cout << "const frob: " << v << std::endl;
});
}
Related
I want to store passed data via constexpr constructor of a struct, and store the data in a std::tuple, to perform various TMP / compile time operations.
Implementation
template <typename... _Ts>
struct myInitializer {
std::tuple<_Ts...> init_data;
constexpr myInitializer(_Ts&&... _Vs)
: init_data{ std::tuple(std::forward<_Ts>(_Vs)...) }
{}
};
Stored data uses a lightweight strong type struct, generated via lvalue and rvalue helper overload:
template <typename T, typename... Ts>
struct data_of_t {
using type = T;
using data_t = std::tuple<Ts...>;
data_t data;
constexpr data_of_t(Ts&&... _vs)
: data(std::forward<Ts>(_vs)...)
{}
};
template<typename T, typename... Ts>
constexpr auto data_of(Ts&&... _vs) {
return data_of_t<T, Ts...>(std::forward<Ts>(_vs)...);
};
template<typename T, typename... Ts>
constexpr auto data_of(Ts&... _vs) {
return data_of_t<T, Ts...>(std::forward<Ts>(_vs)...);
};
It's implemented like
template <typename T = int>
class test {
public:
static constexpr auto func(int p0=0, int p1=1, int p2=3) noexcept {
return data_of <test<T>>
(data_of<test<T>>(p0, p1));
}
};
int main() {
constexpr // fails to run constexpr // works without
auto init = myInitializer (
test<int>::func()
,test<int>::func(3)
,test<int>::func(4,5)
);
std::apply([&](auto&&... args) {
//std::cout << __PRETTY_FUNCTION__ << std::endl;
auto merged_tuple = std::tuple_cat(std::forward<decltype(args.data)>(args.data)...);
}
, init.init_data);
}
Getting to the point
std::tuple_cat fails if myInitializer instance is constexpr.
std::apply([&](auto&&... args) {
auto merged_tuple = std::tuple_cat(std::forward<decltype(args.data)>(args.data)...);
It appears to be related to the const qualifier added via constexpr.
How can this be fixed?
See full example at https://godbolt.org/z/j5xdT39aE
This:
auto merged_tuple = std::tuple_cat(std::forward<decltype(args.data)>(args.data)...);
is not the right way to forward data. decltype(args.data) is going to give you the type of that data member - which is not a function of either the const-ness or value category of args. Let's take a simpler example:
void f(auto&& arg) {
g(std::forward<decltype(arg.data)>(arg.data));
}
struct C { int data; };
C c1{1};
const C c2{2};
f(c1);
f(c2);
f(C{3});
So here I have three calls to f (which call f<C&>, f<const C&>, and f<C>, respectively). In all three cases, decltype(arg.data) is... just int. That's what the type of C::data is. But that's not how it needs to be forwarded (it won't compile for c2 because we're trying to cast away const-ness -- as in your example -- and it'll erroneously move out of c1).
What you want is to forward arg, separately, and then access data:
void f(auto&& arg) {
g(std::forward<decltype(arg)>(arg).data);
}
Now, decltype(arg) actually varies from instantiation to instantiation, which is a good indicator that we're doing something sensible.
In addition of the forwarding problem denoted by Barry, there's a different reason why you cannot have constexpr on init. This is because you contain a reference to a temporary inside data_of_t.
You see, you are containing a type obtained from overload resolution from a forwarding reference:
template<typename T, typename... Ts>
constexpr auto data_of(Ts&&... _vs) {
return data_of_t<T, Ts...>(std::forward<Ts>(_vs)...);
};
The Ts... in this case could be something like int, float const&, double&. You send those reference type and then you contain them inside of the std::tuple in data_of_t.
Those temporaries are local variables from the test function:
template <typename T = int>
class test {
public:
static constexpr auto func(int p0=0, int p1=1, int p2=3) noexcept {
return data_of <test<T>>
(data_of<test<T>>(p0, p1));
}
};
The problem here is that p0, p1, p2 are all local variable. You send them in test_of_t which will contain references to them, and you return the object containing all those reference to the local variable. This is maybe the cause of the MSVC crash. Compiler are required to provide diagnostic for any undefined behaviour in constexpr context. This crash is 100% a compiler bug and you should report it.
So how do you fix that?
Simply don't contain references by changing data_of:
template<typename T, typename... Ts>
constexpr auto data_of(Ts&&... _vs) {
return data_of_t<T, std::decay_t<Ts>...>(std::forward<Ts>(_vs)...);
};
This will decay the type thus removing the references and decay any reference to C array to pointers.
Then, you have to change your constructor. You call std::forward in there but it's no forwarding occurring if you decay in the template arguments.
template<typename... Vs> requires((std::same_as<std::decay_t<Vs>, Ts>) && ...)
constexpr data_of_t(Vs... _vs)
: data(std::forward<Vs>(_vs)...)
{}
This will add proper forwarding and also constrain it properly so it always do as data_of intended.
Just doing those change will remove UB from the code, but also change it a bit. The type data_of_t will always contain values, and won't contain references. If you want to send a reference, you will need something like std::ref, just like std::bind have to use to defer parameters.
You will still need to use std::forward<decltype(arg)>(arg).data for proper forwarding as #Barry stated
Suppose I have a variable constructors, which is a tuple of constructor functions represented in variadic generic lambdas.
// types for constructors
using type_tuple = std::tuple<ClassA, ClassB, ClassC>;
// Get a tuple of constructors(variadic generic lambda) of types in type_tuple
auto constructors = execute_all_t<type_tuple>(get_construct());
// For definitions of execute_all_t and get_construct, see link at the bottom.
I can instantiate an object with:
// Create an object using the constructors, where 0 is index of ClassA in the tuple.
ClassA a = std::get<0>(constructors)(/*arguments for any constructor of ClassA*/);
Is it possible to index the type in runtime with a magic_get like below?
auto obj = magic_get(constructors, 0)(/*arguments for any constructor of ClassA*/);
// Maybe obj can be a std::variant<ClassA, ClassB, ClassC>, which contains object of ClassA?
Edit: Ideally obj should be an instance of ClassA. If not possible, I can accept obj to be std::variant<ClassA, ClassB, ClassC>.
Please check out the minimal reproducible example: Try it online!
A similar question: C++11 way to index tuple at runtime without using switch
.
You might have your runtime get return std::variant, something like:
template <typename ... Ts, std::size_t ... Is>
std::variant<Ts...> get_impl(std::size_t index,
std::index_sequence<Is...>,
const std::tuple<Ts...>& t)
{
using getter_type = std::variant<Ts...> (*)(const std::tuple<Ts...>&);
getter_type funcs[] = {+[](const std::tuple<Ts...>& tuple)
-> std::variant<Ts...>
{ return std::get<Is>(tuple); } ...};
return funcs[index](t);
}
template <typename ... Ts>
std::variant<Ts...> get(std::size_t index, const std::tuple<Ts...>& t)
{
return get_impl(index, std::index_sequence_for<Ts...>(), t);
}
Then you might std::visit your variant to do what you want.
Demo
or for your "factory" example:
int argA1 = /*..*/;
std::string argA2 = /*..*/;
int argB1 = /*..*/;
// ...
auto obj = std::visit(overloaded{
[&](const A&) -> std::variant<A, B, C> { return A(argA1, argA2); },
[&](const B&) -> std::variant<A, B, C> { return B(argB1); },
[&](const C&) -> std::variant<A, B, C> { return C(); },
}, get(i, t))
This can probably be done more nicely, but here is an attempt according to your requirements in the comments.
Requires C++17, works on Clang, but gives an Internal Compiler Error on GCC.
It does require though, that you make the constructing function SFINAE-friendly, otherwise there is no way of checking whether it can be called:
So use
return [](auto... args) -> decltype(U(args)...) { return U(args...); };
instead of
return [](auto... args) { return U(args...); };
The behavior of this function given arguments tup and index is as follows:
It returns a lambda that when called with a list of arguments will return a std::variant of all the types that could result from calls of the form std::get<i>(tup)(/*arguments*/). Which one of these is actually called and stored in the returned variant is decided at runtime through the index argument. If index refers to a tuple element that cannot be called as if by std::get<index>(tup)(/*arguments*/), then an exception is thrown at runtime.
The intermediate lambda can be stored and called later. Note however that it saves a reference to the tup argument, so you need to make sure that the argument out-lives the lambda if you don't call and discard it immediately.
#include <tuple>
#include <type_traits>
#include <variant>
#include <utility>
#include <stdexcept>
template<auto V> struct constant_t {
static constexpr auto value = V;
using value_type = decltype(value);
constexpr operator value_type() const {
return V;
}
};
template<auto V>
inline constexpr auto constant = constant_t<V>{};
template<auto V1, auto V2>
constexpr auto operator+(constant_t<V1>, constant_t<V2>) {
return constant<V1+V2>;
}
template<typename T>
struct wrap_t {
using type = T;
constexpr auto operator+() const {
return static_cast<wrap_t*>(nullptr);
}
};
template<typename T>
inline constexpr auto wrap = wrap_t<T>{};
template<auto A>
using unwrap = typename std::remove_pointer_t<decltype(A)>::type;
template <typename Tup>
auto magic_get(Tup&& tup, std::size_t index) {
return [&tup, index](auto&&... args) {
// Get the input tuple size
constexpr auto size = std::tuple_size_v<std::remove_const_t<std::remove_reference_t<Tup>>>;
// Lambda: check if element i of tuple is invocable with given args
constexpr auto is_valid = [](auto i) {
return std::is_invocable_v<decltype(std::get<i>(tup)), decltype(args)...>;
};
// Lambda: get the wrapped return type of the invocable element i of tuple with given args
constexpr auto result_type = [](auto i) {
return wrap<std::invoke_result_t<decltype(std::get<i>(tup)), decltype(args)...>>;
};
// Recursive lambda call: get a tuple of wrapped return type using `result_type` lambda
constexpr auto valid_tuple = [=]() {
constexpr auto lambda = [=](auto&& self, auto i) {
if constexpr (i == size)
return std::make_tuple();
else if constexpr (is_valid(i))
return std::tuple_cat(std::make_tuple(result_type(i)), self(self, i + constant<1>));
else
return self(self, i + constant<1>);
};
return lambda(lambda, constant<std::size_t{0}>);
}();
// Lambda: get the underlying return types as wrapped variant
constexpr auto var_type =
std::apply([](auto... args) { return wrap<std::variant<unwrap<+args>...>>; }, valid_tuple);
/**
* Recursive lambda: get a variant of all underlying return type of matched functions, which
* contains the return value of calling function with given index and args.
*
* #param self The lambda itself
* #param tup A tuple of functions
* #param index The index to choose from matched (via args) functions
* #param i The running index to reach `index`
* #param j The in_place_index for constructing in variant
* #param args The variadic args for callling the function
* #return A variant of all underlying return types of matched functions
*/
constexpr auto lambda = [=](auto&& self, auto&& tup, std::size_t index, auto i, auto j,
auto&&... args) -> unwrap<+var_type> {
if constexpr (i == size)
throw std::invalid_argument("index too large");
else if (i == index) {
if constexpr (is_valid(i)) {
return unwrap<+var_type>{std::in_place_index<j>,
std::get<i>(tup)(decltype(args)(args)...)};
} else {
throw std::invalid_argument("invalid index");
}
} else {
return self(self, decltype(tup)(tup), index, i + constant<1>, j + constant<is_valid(i)>,
decltype(args)(args)...);
}
};
return lambda(lambda, std::forward<Tup>(tup), index, constant<std::size_t{0}>,
constant<std::size_t{0}>, decltype(args)(args)...);
};
}
In C++20, you can simplify this by
using std::remove_cvref_t<Tup> instead of std::remove_const_t<std::remove_reference_t<Tup>>
changing the definition of unwrap to:
template<auto A>
using unwrap = typename decltype(A)::type;
and using it as unwrap<...> instead of unwrap<+...>, which also allows removing the operator+ from wrap_t.
The purpose of wrap/unwrap:
wrap_t is meant to turn a type into a value that I can pass into functions and return from them without creating an object of the original type (which could cause all kinds of issues). It is really just an empty struct templated on the type and a type alias type which gives back the type.
I wrote wrap as a global inline variable, so that I can write wrap<int> instead of wrap<int>{}, since I consider the additional braces annoying.
unwrap<...> isn't really needed. typename decltype(...)::type does the same, it just gives back the type that an instance of wrap represents.
But again I wanted some easier way of writing it, but without C++20 this is not really possible in a nice way. In C++20 I can just pass the wrap object directly as template argument, but that doesn't work in C++17.
So in C++17 I "decay" the object to a pointer, which can be a non-type template argument, with an overloaded operator+, mimicking the syntax of the common lambda-to-function-pointer trick using the unary + operator (but I could have used any other unary operator).
The actual pointer value doesn't matter, I only need the type, but the template argument must be a constant expression, so I let it be a null pointer. The latter requirement is why I am not using the built-in address-of operator & instead of an overloaded +.
When I use have template function which accepts another function as a parameter, C++ can't derive template parameters. It's very annoying to specify them all the time. How can I define the following function such that I don't have to specify type parameters every time?
#include <functional>
template <typename S, typename T>
T apply(const S& source, const function<T (const S&)>& f) {
return f(source);
}
template <typename S, class Functor, typename T>
T applyFun(const S& source, const Functor& f) {
return f(source);
}
int main() {
// Can't derive T. Why?
apply(1, [](int x) { return x + 1; });
// Compiles
apply<int, int>(1, [](const int& x) { return x + 1; });
// Can't derive T. Kind of expected.
applyFun(1, [](int x) { return x + 1; });
}
It makes sense to me why it can't derive type parameter in the second function, but not in the first one (since x + 1 is int, so it should deduce that T = int).
A template parameter must appear in a function parameter type to be deductible. Moreover lambdas are not functions so, whatsoever the return type of a lambda cannot participate to template argument deduction.
But in this case, there is no need to specify the return type. Return type deduction can do the job:
template <typename S, class Functor>
auto applyFun(const S& source, const Functor& f) {
return f(source);
}
If you can use C++17, you can use the deduction guides for std::function as follows
template <typename S, typename F,
typename T = typename decltype( std::function{std::declval<F>()} )::result_type>
T applyFun (S const & source, F const & f)
{
return f(source);
}
but, as pointed by Oliv, for your example function there is non need of T because you can use auto (from C++14; auto ... -> decltype(f(source)) in C++11).
-- EDIT --
The OP say
The good thing about this solution is that I can use T inside the function (e.g. if I want to implement vector_map).
You can detect and use T, also inside the function, using a using
Something as
template <typename S, typename F>
auto applyFun (S const & source, F const & f)
{
using T = typename decltype( std::function{f} )::result_type;
return f(source);
}
or simpler: using T = decltype( f(source) );.
The OP also observe that
The downside is that for some reason now I can't write [] (const auto& x) { ... } in function call.
Correct.
Because std::function template types can't be deduced from a generic-lambda.
But using the fact that you know the type of the argument, you can use decltype() again
template <typename S, typename F,
typename T = decltype(std::declval<F const>()(std::declval<S const>()))>
T applyFun (S const & source, F const & f)
{ return f(source); }
This solution should works also for C++14 and C++11.
I'm learning C++, and I'm trying to implement a binary search function that finds the first element for which a predicate holds. The function's first argument is a vector and the second argument is a function that evaluates the predicate for a given element. The binary search function looks like this:
template <typename T> int binsearch(const std::vector<T> &ts, bool (*predicate)(T)) {
...
}
This works as expected if used like this:
bool gte(int x) {
return x >= 5;
}
int main(int argc, char** argv) {
std::vector<int> a = {1, 2, 3};
binsearch(a, gte);
return 0;
}
But if I use a lambda function as a predicate, I get a compiler error:
search-for-a-range.cpp:20:5: error: no matching function for call to 'binsearch'
binsearch(a, [](int e) -> bool { return e >= 5; });
^~~~~~~~~
search-for-a-range.cpp:6:27: note: candidate template ignored: could not match 'bool (*)(T)' against '(lambda at
search-for-a-range.cpp:20:18)'
template <typename T> int binsearch(const std::vector<T> &ts,
^
1 error generated.
The above error is generated by
binsearch(a, [](int e) -> bool { return e >= 5; });
What's wrong? Why is the compiler not convinced that my lambda has the right type?
Your function binsearch takes a function pointer as argument. A lambda and a function pointer are different types: a lambda may be considered as an instance of a struct implementing operator().
Note that stateless lambdas (lambdas that don't capture any variable) are implicitly convertible to function pointer. Here the implicit conversion doesn't work because of template substitution:
#include <iostream>
template <typename T>
void call_predicate(const T& v, void (*predicate)(T)) {
std::cout << "template" << std::endl;
predicate(v);
}
void call_predicate(const int& v, void (*predicate)(int)) {
std::cout << "overload" << std::endl;
predicate(v);
}
void foo(double v) {
std::cout << v << std::endl;
}
int main() {
// compiles and calls template function
call_predicate(42.0, foo);
// compiles and calls overload with implicit conversion
call_predicate(42, [](int v){std::cout << v << std::endl;});
// doesn't compile because template substitution fails
//call_predicate(42.0, [](double v){std::cout << v << std::endl;});
// compiles and calls template function through explicit instantiation
call_predicate<double>(42.0, [](double v){std::cout << v << std::endl;});
}
You should make your function binsearch more generic, something like:
template <typename T, typename Predicate>
T binsearch(const std::vector<T> &ts, Predicate p) {
// usage
for(auto& t : ts)
{
if(p(t)) return t;
}
// default value if p always returned false
return T{};
}
Take inspiration from standard algorithms library.
The lambda expression with empty capture list could be implicitly converted to a function pointer. But the function pointer predicate is taking T as its parameter, that need to be deduced. Type conversion won't be considered in template type deduction, T can't be deduced; just as the error message said, candidate template (i.e. binsearch) is ignored.
You can use operator+ to achieve this, it'll convert lambda to function pointer, which will be passed to binsearch later and then T will be successfully deduced[1].
binsearch(a, +[](int e) -> bool { return e >= 5; });
// ~
Of course you could use static_cast explicitly:
binsearch(a, static_cast<bool(*)(int)>([](int e) -> bool { return e >= 5; }));
Note if you change predicate's type to be independent of T, i.e. bool (*predicate)(int), passing lambda with empty capture list would work too; the lambda expression will be converted to function pointer implicitly.
Another solution is changing the parameter type from function pointer to std::function, which is more general for functors:
template <typename T> int binsearch(const std::vector<T> &ts, std::function<bool (typename std::vector<T>::value_type)> predicate) {
...
}
then
binsearch(a, [](int e) -> bool { return e >= 5; });
[1] A positive lambda: '+[]{}' - What sorcery is this?
Why is the compiler not convinced that my lambda has the right type?
Template functions being told to deduce their template parameters do no conversion. A lambda is not a function pointer, so there is no way to deduce the T in that argument. As all function arguments independently deduce their template parameters (unless deduction is blocked), this results in an error.
There are a number of fixes you can do.
You can fix the template function.
template <class T>
int binsearch(const std::vector<T> &ts, bool (*predicate)(T))
Replace the function pointer with a Predicate predicate or Predicate&& predicate and leave the body unchanged.
template <class T, class Predicate>
int binsearch(const std::vector<T> &ts, Predicate&& predicate)
Use deduction blocking:
template<class T>struct tag_t{using type=T;};
template<class T>using block_deduction=typename tag_t<T>::type;
template <class T>
int binsearch(const std::vector<T> &ts, block_deduction<bool (*)(T)> predicate)
optionally while replacing the function pointer with a std::function<bool(T)>.
You can fix it at the call site.
You can pass T manually binsearch<T>(vec, [](int x){return x<0;}).
You can decay the lambda to a function pointer with putting a + in front of it +[](int x) ... or a static_cast<bool(*)(int)>( ... ).
The best option is Predicate one. This is also what standard library code does.
We can also go a step further and make your code even more generic:
template <class Range, class Predicate>
auto binsearch(const Range &ts, Predicate&& predicate)
-> typename std::decay< decltype(*std::begin(ts)) >::type
The -> typename std::decay ... trailing return type part can be eliminated in C++14.
A benefit to this is that if the body also uses std::begin and std::end to find begin/end iterators, binsearch now supports deques, flat C-style arrays, std::arrays, std::strings, std::vectors, and even some custom types.
If you have any control over binsearch I suggest you refactor it:
template <typename T, typename Predicate>
int binsearch(std::vector<T> const& vec, Predicate&& pred) {
// This is just to illustrate how to call pred
for (auto const& el : vec) {
if (pred(el)) {
// Do something
}
}
return 0; // Or anything meaningful
}
Another way for you is to perform type-erasure on your functor objects/function pointers/whatever... by embedding them into an std::function<bool(T const&)>. To do so, just rewrite the function above as:
template <typename T>
int binsearch(std::vector<T> const& vec, std::function<bool(T const&)> pred);
But since template argument deduction does not do any conversion, you need to explicitly feed your function like the following:
auto my_predicate = [](int x) { return true; }; // Replace with actual predicate
std::vector<int> my_vector = {1, 2, 3, 4};
binsearch(my_vector, std::function<bool (int const&)>(my_predicate));
However given the description of your function, it seems it does the same job as std::find_if.
std::vector<int> my_vector = {1, 12, 15, 13, 16};
auto it = std::find_if(std::begin(my_vector), std::end(my_vector),
[](int vec_el) { return !vec_el%5; });
// it holds the first element in my_vector that is a multiple of 5.
if (it != std::end(my_vector)) {
std::cout << *it << std::endl; // prints 15 in this case
}
Note that to do a binary search, you need more than just a predicate: you need a predicate that defines an order on your range AND a target value.
A function pointer and a lambda function is not the same thing.
An object t can not be assigned to predicate where:
bool (*predicate)(int)
and
auto t = [](int e) -> bool { return e >= 5; });
Might as well use std::function<bool(int)>. Your signature will look like this:
template <typename T>
int binsearch(const std::vector<T> &ts, std::function<bool(T)> predicate){
// ...
}
Now that's not a function pointer, You'll need to bind your founction pointers if they are necessary, (I assume you're fine with just lambdas)
I'm learning C++, and I'm trying to implement a binary search function that finds the first element for which a predicate holds. The function's first argument is a vector and the second argument is a function that evaluates the predicate for a given element. The binary search function looks like this:
template <typename T> int binsearch(const std::vector<T> &ts, bool (*predicate)(T)) {
...
}
This works as expected if used like this:
bool gte(int x) {
return x >= 5;
}
int main(int argc, char** argv) {
std::vector<int> a = {1, 2, 3};
binsearch(a, gte);
return 0;
}
But if I use a lambda function as a predicate, I get a compiler error:
search-for-a-range.cpp:20:5: error: no matching function for call to 'binsearch'
binsearch(a, [](int e) -> bool { return e >= 5; });
^~~~~~~~~
search-for-a-range.cpp:6:27: note: candidate template ignored: could not match 'bool (*)(T)' against '(lambda at
search-for-a-range.cpp:20:18)'
template <typename T> int binsearch(const std::vector<T> &ts,
^
1 error generated.
The above error is generated by
binsearch(a, [](int e) -> bool { return e >= 5; });
What's wrong? Why is the compiler not convinced that my lambda has the right type?
Your function binsearch takes a function pointer as argument. A lambda and a function pointer are different types: a lambda may be considered as an instance of a struct implementing operator().
Note that stateless lambdas (lambdas that don't capture any variable) are implicitly convertible to function pointer. Here the implicit conversion doesn't work because of template substitution:
#include <iostream>
template <typename T>
void call_predicate(const T& v, void (*predicate)(T)) {
std::cout << "template" << std::endl;
predicate(v);
}
void call_predicate(const int& v, void (*predicate)(int)) {
std::cout << "overload" << std::endl;
predicate(v);
}
void foo(double v) {
std::cout << v << std::endl;
}
int main() {
// compiles and calls template function
call_predicate(42.0, foo);
// compiles and calls overload with implicit conversion
call_predicate(42, [](int v){std::cout << v << std::endl;});
// doesn't compile because template substitution fails
//call_predicate(42.0, [](double v){std::cout << v << std::endl;});
// compiles and calls template function through explicit instantiation
call_predicate<double>(42.0, [](double v){std::cout << v << std::endl;});
}
You should make your function binsearch more generic, something like:
template <typename T, typename Predicate>
T binsearch(const std::vector<T> &ts, Predicate p) {
// usage
for(auto& t : ts)
{
if(p(t)) return t;
}
// default value if p always returned false
return T{};
}
Take inspiration from standard algorithms library.
The lambda expression with empty capture list could be implicitly converted to a function pointer. But the function pointer predicate is taking T as its parameter, that need to be deduced. Type conversion won't be considered in template type deduction, T can't be deduced; just as the error message said, candidate template (i.e. binsearch) is ignored.
You can use operator+ to achieve this, it'll convert lambda to function pointer, which will be passed to binsearch later and then T will be successfully deduced[1].
binsearch(a, +[](int e) -> bool { return e >= 5; });
// ~
Of course you could use static_cast explicitly:
binsearch(a, static_cast<bool(*)(int)>([](int e) -> bool { return e >= 5; }));
Note if you change predicate's type to be independent of T, i.e. bool (*predicate)(int), passing lambda with empty capture list would work too; the lambda expression will be converted to function pointer implicitly.
Another solution is changing the parameter type from function pointer to std::function, which is more general for functors:
template <typename T> int binsearch(const std::vector<T> &ts, std::function<bool (typename std::vector<T>::value_type)> predicate) {
...
}
then
binsearch(a, [](int e) -> bool { return e >= 5; });
[1] A positive lambda: '+[]{}' - What sorcery is this?
Why is the compiler not convinced that my lambda has the right type?
Template functions being told to deduce their template parameters do no conversion. A lambda is not a function pointer, so there is no way to deduce the T in that argument. As all function arguments independently deduce their template parameters (unless deduction is blocked), this results in an error.
There are a number of fixes you can do.
You can fix the template function.
template <class T>
int binsearch(const std::vector<T> &ts, bool (*predicate)(T))
Replace the function pointer with a Predicate predicate or Predicate&& predicate and leave the body unchanged.
template <class T, class Predicate>
int binsearch(const std::vector<T> &ts, Predicate&& predicate)
Use deduction blocking:
template<class T>struct tag_t{using type=T;};
template<class T>using block_deduction=typename tag_t<T>::type;
template <class T>
int binsearch(const std::vector<T> &ts, block_deduction<bool (*)(T)> predicate)
optionally while replacing the function pointer with a std::function<bool(T)>.
You can fix it at the call site.
You can pass T manually binsearch<T>(vec, [](int x){return x<0;}).
You can decay the lambda to a function pointer with putting a + in front of it +[](int x) ... or a static_cast<bool(*)(int)>( ... ).
The best option is Predicate one. This is also what standard library code does.
We can also go a step further and make your code even more generic:
template <class Range, class Predicate>
auto binsearch(const Range &ts, Predicate&& predicate)
-> typename std::decay< decltype(*std::begin(ts)) >::type
The -> typename std::decay ... trailing return type part can be eliminated in C++14.
A benefit to this is that if the body also uses std::begin and std::end to find begin/end iterators, binsearch now supports deques, flat C-style arrays, std::arrays, std::strings, std::vectors, and even some custom types.
If you have any control over binsearch I suggest you refactor it:
template <typename T, typename Predicate>
int binsearch(std::vector<T> const& vec, Predicate&& pred) {
// This is just to illustrate how to call pred
for (auto const& el : vec) {
if (pred(el)) {
// Do something
}
}
return 0; // Or anything meaningful
}
Another way for you is to perform type-erasure on your functor objects/function pointers/whatever... by embedding them into an std::function<bool(T const&)>. To do so, just rewrite the function above as:
template <typename T>
int binsearch(std::vector<T> const& vec, std::function<bool(T const&)> pred);
But since template argument deduction does not do any conversion, you need to explicitly feed your function like the following:
auto my_predicate = [](int x) { return true; }; // Replace with actual predicate
std::vector<int> my_vector = {1, 2, 3, 4};
binsearch(my_vector, std::function<bool (int const&)>(my_predicate));
However given the description of your function, it seems it does the same job as std::find_if.
std::vector<int> my_vector = {1, 12, 15, 13, 16};
auto it = std::find_if(std::begin(my_vector), std::end(my_vector),
[](int vec_el) { return !vec_el%5; });
// it holds the first element in my_vector that is a multiple of 5.
if (it != std::end(my_vector)) {
std::cout << *it << std::endl; // prints 15 in this case
}
Note that to do a binary search, you need more than just a predicate: you need a predicate that defines an order on your range AND a target value.
A function pointer and a lambda function is not the same thing.
An object t can not be assigned to predicate where:
bool (*predicate)(int)
and
auto t = [](int e) -> bool { return e >= 5; });
Might as well use std::function<bool(int)>. Your signature will look like this:
template <typename T>
int binsearch(const std::vector<T> &ts, std::function<bool(T)> predicate){
// ...
}
Now that's not a function pointer, You'll need to bind your founction pointers if they are necessary, (I assume you're fine with just lambdas)