Related
I'm trying to make a quad rotate around its center. I am using glm::rotate() and setting the quad to rotate on the z axis. However when I do this it gives this weird effect. The quad stretches and warps. It almost looks 3d but since I am rotating it around the z axis that shouldn't happen right?
Here's relevant code for context:
float rotation = 0.0f;
double prevTime = glfwGetTime();
while (!glfwWindowShouldClose(window))
{
GLCall(glClearColor(0.0f, 0.0f, 0.0f, 1.0f));
GLCall(glClear(GL_COLOR_BUFFER_BIT));
updateInput(window);
shader.Use();
glUniform1f(xMov, x);
glUniform1f(yMov, y);
test.Bind();
double crntTime = glfwGetTime();
if (crntTime - prevTime >= 1 / 60)
{
rotation += 0.5f;
prevTime = crntTime;
}
glm::mat4 model = glm::mat4(1.0f);
model = glm::rotate(model, glm::radians(rotation), glm::vec3(0.0f, 0.0f, 1.0f));
int modelLoc = glGetUniformLocation(shader.id, "model");
glUniformMatrix4fv(modelLoc, 1, GL_FALSE, glm::value_ptr(model));
vao.Bind();
vBuffer1.Bind();
iBuffer1.Bind();
GLCall(glDrawElements(GL_TRIANGLES, 6, GL_UNSIGNED_INT, 0));
glfwSwapBuffers(window);
glfwPollEvents();
}
Shader:
#version 440 core
layout(location = 0) in vec3 aPos;
layout(location = 1) in vec3 aColor;
layout(location = 2) in vec2 aTex;
out vec3 color;
out vec2 texCoord;
uniform float xMove;
uniform float yMove;
uniform mat4 model;
void main()
{
gl_Position = model * vec4(aPos.x + xMove, aPos.y + yMove, aPos.z, 1.0);
color = aColor;
texCoord = aTex;
}
Without you showing the graphical output it is hard to say.
Your first issue is, you are not rotating around the center, to rotate by the center you must, offset the quad so that its center is at 0,0. then rotate, then offset back to the original position, but you have this line:
gl_Position = model * vec4(aPos.x + xMove, aPos.y + yMove, aPos.z, 1.0);
Under the assumption that the quad as at the origin to begin with you are rotating it around the point (-xMove, -yMove).
I have been playing around with OpenGL and shaders and got myself into shadow mapping.
Trying to follow tutorials on the Internet (ogldev and learnopengl), got some unexpected results.
The issue is best described with few screenshots (I have added a static quad with depth framebuffer for debugging):
Somehow I managed to get shadows to be rendered on a ground quad once, with a static light (this commit). But the shadow pattern is, again, incorrect. I strongly suspect model transformation matrix calculaitons on this:
The way I render the scene is quite straightforward:
create the pipelines:
for mapping the shadows (filling the depth frame buffer)
for rendering the scene using the depth frame buffer
(extra) debugging one, rendering depth frame buffer to a static quad on a screen
fill the depth frame buffer: using the shadow mapping pipeline, render the scene from the light point, using orthographic projection
render the shaded scene: using the rendering pipeline and depth frame buffer bind as the first texture, render the scene from a camera point, using perspective projection
Seems like the algorithm in all those tutorials on shadow mapping out there. Yet, instead of a mouray effect (like in all of the tutorials), I get no shadow on the bottom plane whatsoever and weird artifacts (incorrect shadow mapping) on the 3D (chicken) model.
Interestingly enough, if I do not render (for both the shadow mapping and final rendering pass) the chicken model, the plane is lit with the same weird pattern:
I also had to remove any normal transformations from the fragment shader and disable face culling to make the ground plane lit. With front-face culling the plane does not appear in the shadow map (depth buffer).
I assume the following might be causing this issue:
wrong depth frame buffer setup (data format or texture parameters)
flipped depth frame buffer texture
wrong shadow calculations in rendering shaders
wrong light matrices (view & projection) setup
wrong matrix calculations in the rendering shaders (given the model transformation matrices for both chicken model and the quad contain both rotation and scaling)
Unfortunately, I ran out of ideas even on how to assess the above assumptions.
Looking for any help on the matter (also feel free to criticize any of my approaches, including C++, CMake, OpenGL and computer graphics).
The full solution source code is available on GitHub, but for convenience I have placed the heavily cut source code below.
shadow-mapping.vert:
#version 410
layout (location = 0) in vec3 vertexPosition;
out gl_PerVertex
{
vec4 gl_Position;
};
uniform mat4 lightSpaceMatrix;
uniform mat4 modelTransformation;
void main()
{
gl_Position = lightSpaceMatrix * modelTransformation * vec4(vertexPosition, 1.0);
}
shadow-mapping.frag:
#version 410
layout (location = 0) out float fragmentDepth;
void main()
{
fragmentDepth = gl_FragCoord.z;
}
shadow-rendering.vert:
#version 410
layout (location = 0) in vec3 vertexPosition;
layout (location = 1) in vec3 vertexNormal;
layout (location = 2) in vec2 vertexTextureCoord;
out VS_OUT
{
vec3 fragmentPosition;
vec3 normal;
vec2 textureCoord;
vec4 fragmentPositionInLightSpace;
} vsOut;
out gl_PerVertex {
vec4 gl_Position;
};
uniform mat4 projection;
uniform mat4 view;
uniform mat4 model;
uniform mat4 lightSpaceMatrix;
void main()
{
vsOut.fragmentPosition = vec3(model * vec4(vertexPosition, 1.0));
vsOut.normal = transpose(inverse(mat3(model))) * vertexNormal;
vsOut.textureCoord = vertexTextureCoord;
vsOut.fragmentPositionInLightSpace = lightSpaceMatrix * model * vec4(vertexPosition, 1.0);
gl_Position = projection * view * model * vec4(vertexPosition, 1.0);
}
shadow-rendering.frag:
#version 410
layout (location = 0) out vec4 fragmentColor;
in VS_OUT {
vec3 fragmentPosition;
vec3 normal;
vec2 textureCoord;
vec4 fragmentPositionInLightSpace;
} fsIn;
uniform sampler2D shadowMap;
uniform sampler2D diffuseTexture;
uniform vec3 lightPosition;
uniform vec3 lightColor;
uniform vec3 cameraPosition;
float shadowCalculation()
{
vec2 shadowMapCoord = fsIn.fragmentPositionInLightSpace.xy * 0.5 + 0.5;
float occluderDepth = texture(shadowMap, shadowMapCoord).r;
float thisDepth = fsIn.fragmentPositionInLightSpace.z * 0.5 + 0.5;
return occluderDepth < thisDepth ? 1.0 : 0.0;
}
void main()
{
vec3 color = texture(diffuseTexture, fsIn.textureCoord).rgb;
vec3 normal = normalize(fsIn.normal);
// ambient
vec3 ambient = 0.3 * color;
// diffuse
vec3 lightDirection = normalize(lightPosition - fsIn.fragmentPosition);
float diff = max(dot(lightDirection, normal), 0.0);
vec3 diffuse = diff * lightColor;
// specular
vec3 viewDirection = normalize(cameraPosition - fsIn.fragmentPosition);
vec3 halfwayDirection = normalize(lightDirection + viewDirection);
float spec = pow(max(dot(normal, halfwayDirection), 0.0), 64.0);
vec3 specular = spec * lightColor;
// calculate shadow
float shadow = shadowCalculation();
vec3 lighting = ((shadow * (diffuse + specular)) + ambient) * color;
fragmentColor = vec4(lighting, 1.0);
}
main.cpp, setting up shaders and frame buffer:
// loading the shadow mapping shaders
auto shadowMappingVertexProgram = ...;
auto shadowMappingFragmentProgram = ...;
auto shadowMappingLightSpaceUniform = shadowMappingVertexProgram->getUniform<glm::mat4>("lightSpaceMatrix");
auto shadowMappingModelTransformationUniform = shadowMappingVertexProgram->getUniform<glm::mat4>("modelTransformation");
auto shadowMappingPipeline = std::make_unique<globjects::ProgramPipeline>();
shadowMappingPipeline->useStages(shadowMappingVertexProgram.get(), gl::GL_VERTEX_SHADER_BIT);
shadowMappingPipeline->useStages(shadowMappingFragmentProgram.get(), gl::GL_FRAGMENT_SHADER_BIT);
// (omitted) loading the depth frame buffer debugging shaders and creating a pipeline here
// loading the rendering shaders
auto shadowRenderingVertexProgram = ...;
auto shadowRenderingFragmentProgram = ...;
auto shadowRenderingModelTransformationUniform = shadowRenderingVertexProgram->getUniform<glm::mat4>("model");
auto shadowRenderingViewTransformationUniform = shadowRenderingVertexProgram->getUniform<glm::mat4>("view");
auto shadowRenderingProjectionTransformationUniform = shadowRenderingVertexProgram->getUniform<glm::mat4>("projection");
auto shadowRenderingLightSpaceMatrixUniform = shadowRenderingVertexProgram->getUniform<glm::mat4>("lightSpaceMatrix");
auto shadowRenderingLightPositionUniform = shadowRenderingFragmentProgram->getUniform<glm::vec3>("lightPosition");
auto shadowRenderingLightColorUniform = shadowRenderingFragmentProgram->getUniform<glm::vec3>("lightColor");
auto shadowRenderingCameraPositionUniform = shadowRenderingFragmentProgram->getUniform<glm::vec3>("cameraPosition");
auto shadowRenderingPipeline = std::make_unique<globjects::ProgramPipeline>();
shadowRenderingPipeline->useStages(shadowRenderingVertexProgram.get(), gl::GL_VERTEX_SHADER_BIT);
shadowRenderingPipeline->useStages(shadowRenderingFragmentProgram.get(), gl::GL_FRAGMENT_SHADER_BIT);
// loading the chicken model
auto chickenModel = Model::fromAiNode(chickenScene, chickenScene->mRootNode, { "media" });
// INFO: this transformation is hard-coded specifically for Chicken.3ds model
chickenModel->setTransformation(glm::rotate(glm::scale(glm::mat4(1.0f), glm::vec3(0.01f)), glm::radians(-90.0f), glm::vec3(1.0f, 0, 0)));
// loading the quad model
auto quadModel = Model::fromAiNode(quadScene, quadScene->mRootNode);
// INFO: this transformation is hard-coded specifically for quad.obj model
quadModel->setTransformation(glm::rotate(glm::scale(glm::translate(glm::mat4(1.0f), glm::vec3(-5, 0, 5)), glm::vec3(10.0f, 0, 10.0f)), glm::radians(-90.0f), glm::vec3(1.0f, 0, 0)));
// loading the floor texture
sf::Image textureImage = ...;
auto defaultTexture = std::make_unique<globjects::Texture>(static_cast<gl::GLenum>(GL_TEXTURE_2D));
defaultTexture->setParameter(static_cast<gl::GLenum>(GL_TEXTURE_MIN_FILTER), static_cast<GLint>(GL_LINEAR));
defaultTexture->setParameter(static_cast<gl::GLenum>(GL_TEXTURE_MAG_FILTER), static_cast<GLint>(GL_LINEAR));
defaultTexture->image2D(0, static_cast<gl::GLenum>(GL_RGBA8), glm::vec2(textureImage.getSize().x, textureImage.getSize().y), 0, static_cast<gl::GLenum>(GL_RGBA), static_cast<gl::GLenum>(GL_UNSIGNED_BYTE), reinterpret_cast<const gl::GLvoid*>(textureImage.getPixelsPtr()));
// initializing the depth frame buffer
auto shadowMapTexture = std::make_unique<globjects::Texture>(static_cast<gl::GLenum>(GL_TEXTURE_2D));
shadowMapTexture->setParameter(static_cast<gl::GLenum>(GL_TEXTURE_MIN_FILTER), static_cast<gl::GLenum>(GL_LINEAR));
shadowMapTexture->setParameter(static_cast<gl::GLenum>(GL_TEXTURE_MAG_FILTER), static_cast<gl::GLenum>(GL_LINEAR));
shadowMapTexture->setParameter(static_cast<gl::GLenum>(GL_TEXTURE_WRAP_S), static_cast<gl::GLenum>(GL_CLAMP_TO_BORDER));
shadowMapTexture->setParameter(static_cast<gl::GLenum>(GL_TEXTURE_WRAP_T), static_cast<gl::GLenum>(GL_CLAMP_TO_BORDER));
shadowMapTexture->setParameter(static_cast<gl::GLenum>(GL_TEXTURE_BORDER_COLOR), glm::vec4(1.0f, 1.0f, 1.0f, 1.0f));
shadowMapTexture->image2D(0, static_cast<gl::GLenum>(GL_DEPTH_COMPONENT), glm::vec2(window.getSize().x, window.getSize().y), 0, static_cast<gl::GLenum>(GL_DEPTH_COMPONENT), static_cast<gl::GLenum>(GL_FLOAT), nullptr);
auto framebuffer = std::make_unique<globjects::Framebuffer>();
framebuffer->attachTexture(static_cast<gl::GLenum>(GL_DEPTH_ATTACHMENT), shadowMapTexture.get());
main.cpp, rendering (main loop):
// (omitted) event handling, camera updates go here
glm::mat4 cameraProjection = glm::perspective(glm::radians(fov), (float) window.getSize().x / (float) window.getSize().y, 0.1f, 100.0f);
glm::mat4 cameraView = glm::lookAt(cameraPos, cameraPos + cameraForward, cameraUp);
// moving light together with the camera, for debugging purposes
glm::vec3 lightPosition = cameraPos;
// light settings
const float nearPlane = 1.0f;
const float farPlane = 10.0f;
glm::mat4 lightProjection = glm::ortho(-5.0f, 5.0f, -5.0f, 5.0f, nearPlane, farPlane);
glm::mat4 lightView = glm::lookAt(lightPosition, glm::vec3(0.0f, 0.0f, 0.0f), glm::vec3(0.0f, 1.0f, 0.0f));
glm::mat4 lightSpaceMatrix = lightProjection * lightView;
::glViewport(0, 0, static_cast<GLsizei>(window.getSize().x), static_cast<GLsizei>(window.getSize().y));
// first render pass - shadow mapping
framebuffer->bind();
::glClearColor(1.0f, 1.0f, 1.0f, 1.0f);
::glClear(GL_DEPTH_BUFFER_BIT);
framebuffer->clearBuffer(static_cast<gl::GLenum>(GL_DEPTH), 0, glm::vec4(1.0f));
glEnable(GL_DEPTH_TEST);
// cull front faces to prevent peter panning the generated shadow map
glCullFace(GL_FRONT);
shadowMappingPipeline->use();
shadowMappingLightSpaceUniform->set(lightSpaceMatrix);
shadowMappingModelTransformationUniform->set(chickenModel->getTransformation());
chickenModel->draw();
shadowMappingModelTransformationUniform->set(quadModel->getTransformation());
quadModel->draw();
framebuffer->unbind();
shadowMappingPipeline->release();
glCullFace(GL_BACK);
// second pass - switch to normal shader and render picture with depth information to the viewport
glClearColor(0.0f, 0.0f, 0.0f, 1.0f);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
shadowRenderingPipeline->use();
shadowRenderingLightPositionUniform->set(lightPosition);
shadowRenderingLightColorUniform->set(glm::vec3(1.0, 1.0, 1.0));
shadowRenderingCameraPositionUniform->set(cameraPos);
shadowRenderingProjectionTransformationUniform->set(cameraProjection);
shadowRenderingViewTransformationUniform->set(cameraView);
shadowRenderingLightSpaceMatrixUniform->set(lightSpaceMatrix);
// draw chicken
shadowMapTexture->bind();
shadowRenderingModelTransformationUniform->set(chickenModel->getTransformation());
chickenModel->draw();
shadowRenderingModelTransformationUniform->set(quadModel->getTransformation());
defaultTexture->bind();
quadModel->draw();
defaultTexture->unbind();
shadowMapTexture->unbind();
shadowRenderingPipeline->release();
// (omitted) render the debugging quad with depth (shadow) map
window.display();
As shameful as it might be, the issue was with the wrong texture being bound.
The globjects library that I use to have few nice(-r) abstractions over OpenGL actually does not provide a smart logic around texture binding (as I blindly assumed). So using just Texture::bind() and Texture::unbind() won't automagically keep track of how many textures have been bound and increment an index.
E.g. it does not behave (roughly) like this:
static int boundTextureIndex = -1;
void Texture::bind() {
glBindTexture(this->textureType, this->textureId);
glActivateTexture(GL_TEXTURE0 + (++boundTextureIndex));
}
void Texture::unbind() {
--boundTextureIndex;
}
So after changing the texture->bind() to texture->bindActive(0) followed by shaderProgram->setUniform("texture", 0), I finally got to the mouray effect and correct shadow mapping:
Full change is in this commit.
Right now I have the ability to scale, rotate, and translate points by using a matrix.
// I use a left to right multiplying style (scale, rotate, then translate)
Matrix model = Matrix::Scale(0.4f) * Matrix::Rotation(45.0f, Vector3(0.0f, 0.0f, 1.0f)) * Matrix::Translation(Vector3(0.0f, 0.5f)).Transposed();
// vertex shader code
#version 460 core
layout (location = 0) in vec3 vertexPosition;
uniform mat4 model;
void main() {
gl_Position = model * vec4(vertexPosition, 1.0);
}
The main problem I'm having is creating a perspective projection matrix.
static Matrix Projection(float verticalFoV, float aspectRatio, float zNear, float zFar) {
// is this even correct?
float yScale = (1.0f / tan(verticalFoV / 2.0f)) * aspectRatio;
float xScale = yScale / aspectRatio;
float frustumLength = zFar - zNear;
return Matrix({
xScale, 0, 0, 0,
0, yScale, 0, 0,
0, 0, -((zFar + zNear) / frustumLength), -((2.0f * zNear * zFar) / frustumLength),
0, 0, -1.0f, 0
});
}
Which would then be used like this.
Matrix projection = Matrix::Projection(70.0f * DegreesToRadians, screenWidth / screenHeight, 0.1f, 100.0f);
I send over the matrices without transposing them.
glUniformMatrix4fv(glGetUniformLocation(shaderProgram, "model"), 1, false, &model[0][0]);
glUniformMatrix4fv(glGetUniformLocation(shaderProgram, "projection"), 1, false, &projection[0][0]);
And I want to be able to multiply them left to right in the vertex shader.
#version 460 core
layout (location = 0) in vec3 vertexPosition;
uniform mat4 model;
uniform mat4 projection;
void main() {
// I'm eventually gonna add view so it'd look like this
// gl_Position = model * view * projection * vec4(vertexPosition, 1.0);
gl_Position = model * projection * vec4(vertexPosition, 1.0);
}
P.S: I want to use a left handed coordinate system. (Right = +X, Up = +Y, Forward = +Z)
OpenGL matrices are stored with column major order. Your matrices are stored with row major order. Hence, you have to multiply the matrices to the vector form the right:
gl_Position = model * projection * vec4(vertexPosition, 1.0);
gl_Position = vec4(vertexPosition, 1.0) * model * projection;
I got an orthographic camera working however I wanted to try and implement a perspective camera so I can do some parallax effects later down the line. I am having some issues when trying to implement it. It seems like the depth is not working correctly. I am rotating a 2d image along the x-axis to simulate it laying somewhat down so I get see the projection matrix working. It is still showing as an orthographic perspective though.
Here is some of my code:
CameraPersp::CameraPersp() :
_camPos(0.0f,0.0f,0.0f), _modelMatrix(1.0f), _viewMatrix(1.0f), _projectionMatrix(1.0f)
Function called init to setup the matrix variables:
void CameraPersp::init(int screenWidth, int screenHeight)
{
_screenHeight = screenHeight;
_screenWidth = screenWidth;
_modelMatrix = glm::translate(_modelMatrix, glm::vec3(0.0f, 0.0f, 0.0f));
_modelMatrix = glm::rotate(_modelMatrix, glm::radians(-55.0f), glm::vec3(1.0f, 0.0f, 0.0f));
_viewMatrix = glm::translate(_viewMatrix, glm::vec3(0.0f, 0.0f, -3.0f));
_projectionMatrix = glm::perspective(glm::radians(45.0f), static_cast<float>(_screenWidth) / _screenHeight, 0.1f, 100.0f);
}
Initializing a texture to be loaded in with x,y,z,width,height,src
_sprites.back()->init(-0.5f, -0.5f, 0.0f, 1.0f, 1.0f, "src/content/sprites/DungeonCrawlStoneSoupFull/monster/deep_elf_death_mage.png");
Sending in the matrices to the vertexShader:
GLint mLocation = _colorProgram.getUniformLocation("M");
glm::mat4 mMatrix = _camera.getMMatrix();
//glUniformMatrix4fv(mLocation, 1, GL_FALSE, &(mMatrix[0][0]));
glUniformMatrix4fv(mLocation, 1, GL_FALSE, glm::value_ptr(mMatrix));
GLint vLocation = _colorProgram.getUniformLocation("V");
glm::mat4 vMatrix = _camera.getVMatrix();
//glUniformMatrix4fv(vLocation, 1, GL_FALSE, &(vMatrix[0][0]));
glUniformMatrix4fv(vLocation, 1, GL_FALSE, glm::value_ptr(vMatrix));
GLint pLocation = _colorProgram.getUniformLocation("P");
glm::mat4 pMatrix = _camera.getPMatrix();
//glUniformMatrix4fv(pLocation, 1, GL_FALSE, &(pMatrix[0][0]));
glUniformMatrix4fv(pLocation, 1, GL_FALSE, glm::value_ptr(pMatrix));
Here is my vertex shader:
#version 460
//The vertex shader operates on each vertex
//input data from VBO. Each vertex is 2 floats
in vec3 vertexPosition;
in vec4 vertexColor;
in vec2 vertexUV;
out vec3 fragPosition;
out vec4 fragColor;
out vec2 fragUV;
//uniform mat4 MVP;
uniform mat4 M;
uniform mat4 V;
uniform mat4 P;
void main() {
//Set the x,y position on the screen
//gl_Position.xy = vertexPosition;
gl_Position = M * V * P * vec4(vertexPosition, 1.0);
//the z position is zero since we are 2d
//gl_Position.z = 0.0;
//indicate that the coordinates are nomalized
gl_Position.w = 1.0;
fragPosition = vertexPosition;
fragColor = vertexColor;
// opengl needs to flip the coordinates
fragUV = vec2(vertexUV.x, 1.0 - vertexUV.y);
}
I can see the image "squish" a little because it is still rendering the perspective as orthographic. If I remove the rotation on the x-axis, it is not longer squished because it isn't laying down at all. Any thoughts on what I am doing wrong? I can supply more info upon request but I think I put in most of the meat of things.
Picture:
You shouldn't modify gl_Position.w
gl_Position = M * V * P * vec4(vertexPosition, 1.0); // gl_Position is good
//indicate that the coordinates are nomalized < not true
gl_Position.w = 1.0; // Now perspective divisor is lost, projection isn't correct
I am trying to implement a simple projective texture mapping approach by using shaders in OpenGL 3+. While there are some examples on the web I am having trouble creating a working example with shaders.
I am actually planning on using two shaders, one which does a normal scene draw, and another for projective texture mapping. I have a function for drawing a scene void ProjTextureMappingScene::renderScene(GLFWwindow *window) and I am using glUseProgram() to switch between shaders. The normal drawing works fine. However, it is unclear to me how I am supposed to render the projective texture on top of an already textured cube. Do I somehow have to use a stencil buffer or a framebuffer object(the rest of the scene should be unaffected)?
I also don't think that my projective texture mapping shaders are correct since the second time I render a cube it shows black. Further, I tried to debug by using colors and only the t component of the shader seems to be non-zero(so the cube appears green). I am overriding the texColor in the fragment shader below just for debugging purposes.
VertexShader
#version 330
uniform mat4 TexGenMat;
uniform mat4 InvViewMat;
uniform mat4 P;
uniform mat4 MV;
uniform mat4 N;
layout (location = 0) in vec3 inPosition;
//layout (location = 1) in vec2 inCoord;
layout (location = 2) in vec3 inNormal;
out vec3 vNormal, eyeVec;
out vec2 texCoord;
out vec4 projCoords;
void main()
{
vNormal = (N * vec4(inNormal, 0.0)).xyz;
vec4 posEye = MV * vec4(inPosition, 1.0);
vec4 posWorld = InvViewMat * posEye;
projCoords = TexGenMat * posWorld;
// only needed for specular component
// currently not used
eyeVec = -posEye.xyz;
gl_Position = P * MV * vec4(inPosition, 1.0);
}
FragmentShader
#version 330
uniform sampler2D projMap;
uniform sampler2D gSampler;
uniform vec4 vColor;
in vec3 vNormal, lightDir, eyeVec;
//in vec2 texCoord;
in vec4 projCoords;
out vec4 outputColor;
struct DirectionalLight
{
vec3 vColor;
vec3 vDirection;
float fAmbientIntensity;
};
uniform DirectionalLight sunLight;
void main (void)
{
// supress the reverse projection
if (projCoords.q > 0.0)
{
vec2 finalCoords = projCoords.st / projCoords.q;
vec4 vTexColor = texture(gSampler, finalCoords);
// only t has non-zero values..why?
vTexColor = vec4(finalCoords.s, finalCoords.t, finalCoords.r, 1.0);
//vTexColor = vec4(projCoords.s, projCoords.t, projCoords.r, 1.0);
float fDiffuseIntensity = max(0.0, dot(normalize(vNormal), -sunLight.vDirection));
outputColor = vTexColor*vColor*vec4(sunLight.vColor * (sunLight.fAmbientIntensity + fDiffuseIntensity), 1.0);
}
}
Creation of TexGen Matrix
biasMatrix = glm::mat4(0.5f, 0, 0, 0.5f,
0, 0.5f, 0, 0.5f,
0, 0, 0.5f, 0.5f,
0, 0, 0, 1);
// 4:3 perspective with 45 fov
projectorP = glm::perspective(45.0f * zoomFactor, 4.0f / 3.0f, 0.1f, 1000.0f);
projectorOrigin = glm::vec3(-3.0f, 3.0f, 0.0f);
projectorTarget = glm::vec3(0.0f, 0.0f, 0.0f);
projectorV = glm::lookAt(projectorOrigin, // projector origin
projectorTarget, // project on object at origin
glm::vec3(0.0f, 1.0f, 0.0f) // Y axis is up
);
mModel = glm::mat4(1.0f);
...
texGenMatrix = biasMatrix * projectorP * projectorV * mModel;
invViewMatrix = glm::inverse(mModel*mModelView);
Render Cube Again
It is also unclear to me what the modelview of the cube should be? Should it use the view matrix from the slide projector(as it is now) or the normal view projector? Currently the cube is rendered black(or green if debugging) in the middle of the scene view, as it would appear from the slide projector(I made a toggle hotkey so that I can see what the slide projector "sees"). The cube also moves with the view. How do I get the projection unto the cube itself?
mModel = glm::translate(projectorV, projectorOrigin);
// bind projective texture
tTextures[2].bindTexture();
// set all uniforms
...
// bind VBO data and draw
glBindVertexArray(uiVAOSceneObjects);
glDrawArrays(GL_TRIANGLES, 6, 36);
Switch between main scene camera and slide projector camera
if (useMainCam)
{
mCurrent = glm::mat4(1.0f);
mModelView = mModelView*mCurrent;
mProjection = *pipeline->getProjectionMatrix();
}
else
{
mModelView = projectorV;
mProjection = projectorP;
}
I have solved the problem. One issue I had is that I confused the matrices in the two camera systems (world and projective texture camera). Now when I set the uniforms for the projective texture mapping part I use the correct matrices for the MVP values - the same ones I use for the world scene.
glUniformMatrix4fv(iPTMProjectionLoc, 1, GL_FALSE, glm::value_ptr(*pipeline->getProjectionMatrix()));
glUniformMatrix4fv(iPTMNormalLoc, 1, GL_FALSE, glm::value_ptr(glm::transpose(glm::inverse(mCurrent))));
glUniformMatrix4fv(iPTMModelViewLoc, 1, GL_FALSE, glm::value_ptr(mCurrent));
glUniformMatrix4fv(iTexGenMatLoc, 1, GL_FALSE, glm::value_ptr(texGenMatrix));
glUniformMatrix4fv(iInvViewMatrix, 1, GL_FALSE, glm::value_ptr(invViewMatrix));
Further, the invViewMatrix is just the inverse of the view matrix not the model view (this didn't change the behaviour in my case, since the model was identity, but it is wrong). For my project I only wanted to selectively render a few objects with projective textures. To do this, for each object, I must make sure that the current shader program is the one for projective textures using glUseProgram(projectiveTextureMappingProgramID). Next, I compute the required matrices for this object:
texGenMatrix = biasMatrix * projectorP * projectorV * mModel;
invViewMatrix = glm::inverse(mView);
Coming back to the shaders, the vertex shader is correct except that I re-added the UV texture coordinates (inCoord) for the current object and stored them in texCoord.
For the fragment shader I changed the main function to clamp the projective texture so that it doesn't repeat (I couldn't get it to work with the client side GL_CLAMP_TO_EDGE) and I am also using the default object texture and UV coordinates in case the projector does not cover the whole object (I also removed lighting from the projective texture since it is not needed in my case):
void main (void)
{
vec2 finalCoords = projCoords.st / projCoords.q;
vec4 vTexColor = texture(gSampler, texCoord);
vec4 vProjTexColor = texture(projMap, finalCoords);
//vec4 vProjTexColor = textureProj(projMap, projCoords);
float fDiffuseIntensity = max(0.0, dot(normalize(vNormal), -sunLight.vDirection));
// supress the reverse projection
if (projCoords.q > 0.0)
{
// CLAMP PROJECTIVE TEXTURE (for some reason gl_clamp did not work...)
if(projCoords.s > 0 && projCoords.t > 0 && finalCoords.s < 1 && finalCoords.t < 1)
//outputColor = vProjTexColor*vColor*vec4(sunLight.vColor * (sunLight.fAmbientIntensity + fDiffuseIntensity), 1.0);
outputColor = vProjTexColor*vColor;
else
outputColor = vTexColor*vColor*vec4(sunLight.vColor * (sunLight.fAmbientIntensity + fDiffuseIntensity), 1.0);
}
else
{
outputColor = vTexColor*vColor*vec4(sunLight.vColor * (sunLight.fAmbientIntensity + fDiffuseIntensity), 1.0);
}
}
If you are stuck and for some reason can not get the shaders to work, you can check out an example in "OpenGL 4.0 Shading Language Cookbook" (textures chapter) - I actually missed this, until I got it working by myself.
In addition to all of the above, a great help for debugging if the algorithm is working correctly was to draw the frustum (as wireframe) for the projective camera. I used a shader for frustum drawing. The fragment shader just assigns a solid color, while the vertex shader is listed below with explanations:
#version 330
// input vertex data
layout(location = 0) in vec3 vp;
uniform mat4 P;
uniform mat4 MV;
uniform mat4 invP;
uniform mat4 invMV;
void main()
{
/*The transformed clip space position c of a
world space vertex v is obtained by transforming
v with the product of the projection matrix P
and the modelview matrix MV
c = P MV v
So, if we could solve for v, then we could
genrerate vertex positions by plugging in clip
space positions. For your frustum, one line
would be between the clip space positions
(-1,-1,near) and (-1,-1,far),
the lower left edge of the frustum, for example.
NB: If you would like to mix normalized device
coords (x,y) and eye space coords (near,far),
you need an additional step here. Modify your
clip position as follows
c' = (c.x * c.z, c.y * c.z, c.z, c.z)
otherwise you would need to supply both the z
and w for c, which might be inconvenient. Simply
use c' instead of c below.
To solve for v, multiply both sides of the equation above with
-1
(P MV)
This gives
-1
(P MV) c = v
This is equivalent to
-1 -1
MV P c = v
-1
P is given by
|(r-l)/(2n) 0 0 (r+l)/(2n) |
| 0 (t-b)/(2n) 0 (t+b)/(2n) |
| 0 0 0 -1 |
| 0 0 -(f-n)/(2fn) (f+n)/(2fn)|
where l, r, t, b, n, and f are the parameters in the glFrustum() call.
If you don't want to fool with inverting the
model matrix, the info you already have can be
used instead: the forward, right, and up
vectors, in addition to the eye position.
First, go from clip space to eye space
-1
e = P c
Next go from eye space to world space
v = eyePos - forward*e.z + right*e.x + up*e.y
assuming x = right, y = up, and -z = forward.
*/
vec4 fVp = invMV * invP * vec4(vp, 1.0);
gl_Position = P * MV * fVp;
}
The uniforms are used like this (make sure you use the right matrices):
// projector matrices
glUniformMatrix4fv(iFrustumInvProjectionLoc, 1, GL_FALSE, glm::value_ptr(glm::inverse(projectorP)));
glUniformMatrix4fv(iFrustumInvMVLoc, 1, GL_FALSE, glm::value_ptr(glm::inverse(projectorV)));
// world camera
glUniformMatrix4fv(iFrustumProjectionLoc, 1, GL_FALSE, glm::value_ptr(*pipeline->getProjectionMatrix()));
glUniformMatrix4fv(iFrustumModelViewLoc, 1, GL_FALSE, glm::value_ptr(mModelView));
To get the input vertices needed for the frustum's vertex shader you can do the following to get the coordinates (then just add them to your vertex array):
glm::vec3 ftl = glm::vec3(-1, +1, pFar); //far top left
glm::vec3 fbr = glm::vec3(+1, -1, pFar); //far bottom right
glm::vec3 fbl = glm::vec3(-1, -1, pFar); //far bottom left
glm::vec3 ftr = glm::vec3(+1, +1, pFar); //far top right
glm::vec3 ntl = glm::vec3(-1, +1, pNear); //near top left
glm::vec3 nbr = glm::vec3(+1, -1, pNear); //near bottom right
glm::vec3 nbl = glm::vec3(-1, -1, pNear); //near bottom left
glm::vec3 ntr = glm::vec3(+1, +1, pNear); //near top right
glm::vec3 frustum_coords[36] = {
// near
ntl, nbl, ntr, // 1 triangle
ntr, nbl, nbr,
// right
nbr, ftr, ntr,
ftr, nbr, fbr,
// left
nbl, ftl, ntl,
ftl, nbl, fbl,
// far
ftl, fbl, fbr,
fbr, ftr, ftl,
//bottom
nbl, fbr, fbl,
fbr, nbl, nbr,
//top
ntl, ftr, ftl,
ftr, ntl, ntr
};
After all is said and done, it's nice to see how it looks:
As you can see I applied two projective textures, one of a biohazard image on Blender's Suzanne monkey head, and a smiley texture on the floor and a small cube. You can also see that the cube is partly covered by the projective texture, while the rest of it appears with its default texture. Finally, you can see the green frustum wireframe for the projector camera - and everything looks correct.