Is it possible to use list like array? - c++

I'd like to ask, Is it possible to make the list works like array?
I mean how to overload [] operator to make it work as in array.
I've read some kind of code. It's works for example when we want
-print memory cell : cout<<abc[0];
left-hand assignment of a variable : b = abc[0];
but does't work right-hand : abc[0] = 5;
and I'dont know how to determine the size of the array
#include <iostream>
#include <list>
#include <iterator>
using namespace std;
template<class type>
class My_array
{
public:
list<type> List;
void add(type element)
{
List.push_back(element);
}
void dele()
{
List.pop_back();
}
type operator [](int i)
{
typename list<type>::iterator iter;
int counter = 0;
for(iter = this->List.begin(); iter != this->List.end(); iter++)
{
if(counter == i) break;
counter++;
}
return *iter;
}
My_array &operator = (My_array &k)
{
if(this == &k) return *this;
return *this;
}
};
int main()
{
My_array<int> abc;
abc.add(5);
int b = 7;
cout<<abc[0]<<endl;
b = abc[0];
cout<<b<<endl;
return 0;
}

You can modify the overload to return a reference to the element.
type& operator [](int i) // add & to make it return a reference

Simply change
type operator [](int i)
to
type& operator [](int i)
It works for access and assignment!

Related

how to create an overload operator for adding a new element to the beginning or end of a vector с++

First I would like to apologize for the quality of my code, I'm just learning.
I have a university assignment.
String concatenation and adding one character to a string (like
on the left and on the right). Implement using overloading
the operator.
The question is this:
I need to implement two overloads (operator+)
First: adding one element to the end of the vector ( + 'e', ​​for example ).
Second: adding an element to the beginning of the vector ('e' + , for example).
I have problems in order to implement the second part of the assignment.
I searched similar questions on stackoverflow, but they did not help me much.
Here is my code:
#include <iostream>
#include <vector>
using namespace std;
template <class T>
class String
{
private:
public:
vector<T> ptr_string;
String() // default value constructor (empty string)
{
ptr_string.push_back('\0');
}
String(const String& other) // copy constructor of the same type
{
int n = other.getLength();
for (int i = 0; i < n; i++)
{
ptr_string.push_back(other.ptr_string[i]);
}
}
String(T symbol, int n) // n times repeated value constructor
{
for (int i = 0; i < n; i++)
{
ptr_string.push_back(symbol);
}
}
String(String&& a) // move constructor
: ptr_string(a.ptr_string)
{
a.ptr_string = nullptr;
}
int getLength() const
{
return ptr_string.size();
}
void printString() const
{
int i = 0;
for (int i = 0; i < ptr_string.size(); i++)
{
cout << ptr_string[i];
}
cout << endl;
}
template <typename T2>
auto operator+(T2 b)
{
ptr_string.push_back(b);
return ptr_string;
}
auto operator+(String const& a)
{
ptr_string.push_back(a);
return ptr_string;
}
};
int main()
{
String<char> P = String<char>('P', 10);
P + 'e';
P.printString();
'e' + P;
P.printString();
}
I tried to pass a reference to a vector as a parameter, but I ran into a problem that this is most likely not the right solution.
auto operator+( String const& a)
{
ptr_string.push_back(a);
return ptr_string;
}
String<char> P = String<char>( 'P', 10);
'e' + P;
P.printString();
expected result: ePPPPPPPPPP
First, operator+ should not modify the current object. It should not return a vector but a new String<T>. It should be const.
Your char,int constuctor misses to add a nullterminator. Maybe that was on purpose, but I changed it because I am using that constructor. Moreover, I removed the move constructor, because its not needed yet. In its implementation you assign nullptr to the vector which is wrong. You need not implement the move constructor, you can declare it as =default;. This is what I also did for the copy constructor, because the compiler generated copy constructor is as good (or better) than your self written one.
Then, there is no + for 'e'+String in your code. When implmented as member then this is always the left operand. You can implement it as free function.
#include <iostream>
#include <vector>
template<class T>
class String {
public:
std::vector<T> ptr_string;
String() { ptr_string.push_back('\0'); }
String(const String& other) = default;
String(T symbol, int n) {
for (int i = 0; i < n; i++) {
ptr_string.push_back(symbol);
}
ptr_string.push_back('\0');
}
int getLength() const {
return ptr_string.size();
}
void printString() const {
int i = 0;
for (int i = 0; i < ptr_string.size(); i++) {
std::cout << ptr_string[i];
}
std::cout << std::endl;
}
template<typename T2>
auto operator+( T2 b) const {
String res = *this;
res.ptr_string.push_back(b);
return res;
}
auto operator+( String const& a) {
String res = *this;
for (const auto& c : a.ptr_string) res.ptr_string.push_back(c);
return res;
}
};
template<typename T2,typename T>
auto operator+(const T2& b,const String<T>& a) {
return String<T>(b,1) + a;
}
int main() {
String<char> P = String<char>( 'P', 10);
auto Y = P + 'e';
P.printString();
Y.printString();
auto Z = 'e' + P;
P.printString();
Z.printString();
}
Demo
This is just minimum changes on your code. I would actually implement also the other operators outside of the class as free functions. The loop in the char,int constructor should be replaced with the appropriate vector constructor and perhaps there is more which can be improved. For more on operator overloading I refer you to https://en.cppreference.com/w/cpp/language/operators and What are the basic rules and idioms for operator overloading?
I don't think your assignment really cover a scenario that happens in real life. It is full of code smell. As #463035818_is_not_a_number mentionned operator+ usually don't modify the current object. But it is technically possible, See below. Vector are not meant to "push_front", avoid 'push_front' on vector as a general rule (here, i use deque for ex).
#include <deque>
#include <iostream>
#include <string>
template<class T>
struct ConcatenableDeq
{
std::deque<T> _deq;
ConcatenableDeq(std::deque<T> deq) : _deq(deq) {};
void print() const
{
for (const auto& e : this->_deq)
std::cout << e << " ";
std::cout << std::endl;
}
friend void operator+(ConcatenableDeq<T>& cd, const T& v)
{
cd._deq.push_back(v);
}
friend void operator+(const T& v, ConcatenableDeq<T>& cd)
{
cd._deq.push_front(v);
}
};
int main(int argc, char* argv[])
{
ConcatenableDeq<char> cd({ '1', '2', '3' });
cd.print();
cd + '4';
cd.print();
'0' + cd;
cd.print();
// output:
// 1 2 3
// 1 2 3 4
// 0 1 2 3 4
}

Conversion Issues relating to templates (c++)

I am trying to code a template array class and overloading some operators. Part of my code is as follows:
template.h:
main.cpp:
C2679 binary '<': no operator found which takes a right-hand operand of type 'Array<int>' (or there is no acceptable conversion)
What is causing this error?
What is causing this error?
You are using
return this < a;
this is a pointer while a is a reference to an object. It's analgous to comparing an int* with an int.
int a = 10;
int b = 11;
int* p = &b;
if ( p < a ) { ... }
That is not right.
That function needs to be implemented differently. You need to compare each item of the arrays and return an appropriate value.
template<typename T>
bool Array<T>::operator<(const T& a)
{
int lowerLength = std::min(this->arrLength, a.arrLengh);
for ( int i = 0; i < lowerLength; ++i )
{
if ( this->myArray[i] != a.myArray[i] )
{
return (this->myArray[i] < a.myArray[i]);
}
}
// If we get here, return a value based on which array has more elements.
return (this->arrLength < a.arrLengh)
}
While at it, make the member function a const member function.
bool Array<T>::operator<(const T& a) const;
and change the implementation accordingly.
In findBigPos() (and your other functions in Driver.cpp, too), you should be passing arr by reference, not by pointer. When arr is a pointer, arr[index] is the same as *(arr + index) - it performs pointer arithmetic to dereference the pointer at a given offset, it does not index into your array at all. That is why the compiler thinks you are comparing Array<int> objects, and not calling your operator[].
Try this instead:
#include "wallet.h"
#include "currency.h"
#include "array.h"
#include <iostream>
#include <string>
using namespace std;
template<typename T>
void recurSelectionSort(Array<T>&, int size, int index);
template<typename T>
int findBigPos(Array<T>&, int size, int index);
int main() {
//code
}
template<typename T>
void recurSelectionSort(Array<T>& arr, int size, int index) // move the biggest element in arr to index
{
if (index == size) {
return;
}
else if (index < size) {
int bigPos = findBigPos(arr, size, index); //position of "biggest" element
T bigVal = arr[bigPos]; //the value of "biggest" element
T copy = arr[index]; //copy of wat ever is going to get copy
arr[index] = bigVal;
arr[bigPos] = copy;
recurSelectionSort(arr, size, index + 1);
cout << arr;
}
}
template<typename T>
int findBigPos(Array<T>& arr, int size, int index)
{
if (index == size - 1) {
return index;
}
else
{
int bigPos = findBigPos(arr, size, index + 1);
return arr[bigPos] < arr[index] ? index : bigPos;
}
}
That said, there are some issues with your Array class itself, too.
You are not implementing the Rule of 3/5/0. Your class is lacking a copy constructor and a copy assignment operator, and in C++11 and later a move constructor and a move assignment operator.
you don't have a const version of your operator[] for your operator<< to use, since it takes a reference to a const Array<T> as input.
your operator[] is not checking for index < 0. And it would be better to throw a std::out_of_range exception instead of an int. If it throws at all. Typically, an array's operator[] should not perform bounds checking at all. That is why containers like std::vector and std::string have a separate at() method for handling bounds checking.
your operator< is not implemented correctly at all. You can't compare a Array<T>* pointer to a const T& reference. You probably meant to dereference the this pointer before comparing it to a, but then that would lead to an endless recursive loop. What you should do instead is change const T& a to const Array<T> &a and then compare the contents of this to the contents of a.
Try this:
#ifndef ARRAY_HEADER
#define ARRAY_HEADER
#include <iostream>
#include <stdexcept>
#include <utility>
template<typename T>
class Array
{
private:
int arrLength;
T* myArray;
public:
Array(int length = 5);
Array(const Array &a);
Array(Array &&a);
virtual ~Array();
int getLength() const;
Array& operator=(Array a);
T& operator[](int index);
const T& operator[](int index) const;
bool operator<(const Array &a) const;
friend std::ostream& operator<<(std::ostream &output, const Array &arr)
{
int arrSize = arr.getLength();
for (int i = 0; i < arrSize; i++) {
output << arr[i] << " ";
}
return output;
}
};
template<typename T>
Array<T>::Array(int length)
{
myArray = new T[length];
arrLength = length;
}
template<typename T>
Array<T>::Array(const Array<T> &a)
{
myArray = new T[a.arrLength];
arrLength = a.arrLength;
for(int i = 0; i < arrLength; ++i)
myArray[i] = a.myArray[i];
}
template<typename T>
Array<T>::Array(Array<T> &&a)
{
arrLength = a.arrLength;
myArray = a.myArray;
a.myArray = nullptr;
a.arrLength = 0;
}
template<typename T>
Array<T>::~Array()
{
delete[] myArray;
}
template<typename T>
int Array<T>::getLength() const
{
return arrLength;
}
template<typename T>
Array<T>& Array<T>::operator=(Array<T> a)
{
using std::swap;
swap(myArray, a.myArray);
swap(arrLength, a.arrLength);
return *this;
}
template<typename T>
T& Array<T>::operator[](int index) {
if ((index < 0) || (index >= arrLength)) {
throw std::out_of_range("index is out of range");
}
return myArray[index];
}
template<typename T>
const T& Array<T>::operator[](int index) const {
if ((index < 0) || (index >= arrLength)) {
throw std::out_of_range("index is out of range");
}
return myArray[index];
}
template<typename T>
bool Array<T>::operator<(const Array<T> &a) const
{
if (arrLength < a.arrLength)
return true;
if (arrLength == a.arrLength)
{
for (int i = 0; i < arrLength; ++i)
{
if (myArray[i] != a.myArray[i])
return myArray[i] < a.myArray[i];
}
}
return false;
}
#endif

How to control value assigned by operator []

I know how to overload operator[] as follows :
T& operator [](int idx) {
return TheArray[idx];
}
T operator [](int idx) const {
return TheArray[idx];
}
But what I want is to control values assigned by arr[i] = value.
I want to control value to be between 0 and 9.
Is there any syntax to do so?
You would have to write a template class that holds a reference to the element in the array (of type T), in this template you implement the assignment operator, and there you can implement your check. Then you return an object of this template class from your [] operator.
Something like this:
template< typename T> class RangeCheck
{
public:
RangeCheck( T& dest): mDestVar( dest) { }
RangeCheck& operator =( const T& new_value) {
if ((0 <= new_value) && (new_value < 9)) { // <= ??
mDestVar = new_value;
} else {
... // error handling
}
return *this;
}
private:
T& mDestVar;
};
Rene has provided a good answer. In addition to this, here is a full example. Note that I added a "user-defined conversion", i.e., operator T, in the proxy_T class.
#include <iostream>
#include <array>
#include <stdexcept>
template <class T>
class myClass
{
std::array<T, 5> TheArray; // Some array...
class proxy_T
{
T& value; // Reference to the element to be modified
public:
proxy_T(T& v) : value(v) {}
proxy_T& operator=(T const& i)
{
if (i >= 0 and i <= 9)
{
value = i;
}
else
{
throw std::range_error(std::to_string(i));
}
return *this;
}
operator T() // This is required for getting a T value from a proxy_T, which make the cout-lines work
{
return value;
}
};
public:
proxy_T operator [](int const idx)
{
return TheArray.at(idx);
}
T operator [](int const idx) const
{
return TheArray[idx];
}
};
int main() {
myClass<int> A;
std::cout << A[0] << std::endl;
A[0] = 2;
std::cout << A[0] << std::endl;
A[1] = 20;
}

Overloading operator [ ] for 3 dimension array [duplicate]

Is it possible to overload [] operator twice? To allow, something like this: function[3][3](like in a two dimensional array).
If it is possible, I would like to see some example code.
You can overload operator[] to return an object on which you can use operator[] again to get a result.
class ArrayOfArrays {
public:
ArrayOfArrays() {
_arrayofarrays = new int*[10];
for(int i = 0; i < 10; ++i)
_arrayofarrays[i] = new int[10];
}
class Proxy {
public:
Proxy(int* _array) : _array(_array) { }
int operator[](int index) {
return _array[index];
}
private:
int* _array;
};
Proxy operator[](int index) {
return Proxy(_arrayofarrays[index]);
}
private:
int** _arrayofarrays;
};
Then you can use it like:
ArrayOfArrays aoa;
aoa[3][5];
This is just a simple example, you'd want to add a bunch of bounds checking and stuff, but you get the idea.
For a two dimensional array, specifically, you might get away with a single operator[] overload that returns a pointer to the first element of each row.
Then you can use the built-in indexing operator to access each element within the row.
An expression x[y][z] requires that x[y] evaluates to an object d that supports d[z].
This means that x[y] should be an object with an operator[] that evaluates to a "proxy object" that also supports an operator[].
This is the only way to chain them.
Alternatively, overload operator() to take multiple arguments, such that you might invoke myObject(x,y).
It is possible if you return some kind of proxy class in first [] call. However, there is other option: you can overload operator() that can accept any number of arguments (function(3,3)).
One approach is using std::pair<int,int>:
class Array2D
{
int** m_p2dArray;
public:
int operator[](const std::pair<int,int>& Index)
{
return m_p2dArray[Index.first][Index.second];
}
};
int main()
{
Array2D theArray;
pair<int, int> theIndex(2,3);
int nValue;
nValue = theArray[theIndex];
}
Of course, you may typedef the pair<int,int>
You can use a proxy object, something like this:
#include <iostream>
struct Object
{
struct Proxy
{
Object *mObj;
int mI;
Proxy(Object *obj, int i)
: mObj(obj), mI(i)
{
}
int operator[](int j)
{
return mI * j;
}
};
Proxy operator[](int i)
{
return Proxy(this, i);
}
};
int main()
{
Object o;
std::cout << o[2][3] << std::endl;
}
If, instead of saying a[x][y], you would like to say a[{x,y}], you can do like this:
struct Coordinate { int x, y; }
class Matrix {
int** data;
operator[](Coordinate c) {
return data[c.y][c.x];
}
}
It 'll be great if you can let me know what function, function[x] and function[x][y] are. But anyway let me consider it as an object declared somewhere like
SomeClass function;
(Because you said that it's operator overload, I think you won't be interested at array like SomeClass function[16][32];)
So function is an instance of type SomeClass. Then look up declaration of SomeClass for the return type of operator[] overload, just like
ReturnType operator[](ParamType);
Then function[x] will have the type ReturnType. Again look up ReturnType for the operator[] overload. If there is such a method, you could then use the expression function[x][y].
Note, unlike function(x, y), function[x][y] are 2 separate calls. So it's hard for compiler or runtime garantees the atomicity unless you use a lock in the context. A similar example is, libc says printf is atomic while successively calls to the overloaded operator<< in output stream are not. A statement like
std::cout << "hello" << std::endl;
might have problem in multi-thread application, but something like
printf("%s%s", "hello", "\n");
is fine.
template<class F>
struct indexer_t{
F f;
template<class I>
std::result_of_t<F const&(I)> operator[](I&&i)const{
return f(std::forward<I>(i))1;
}
};
template<class F>
indexer_t<std::decay_t<F>> as_indexer(F&& f){return {std::forward<F>(f)};}
This lets you take a lambda, and produce an indexer (with [] support).
Suppose you have an operator() that supports passing both coordinates at onxe as two arguments. Now writing [][] support is just:
auto operator[](size_t i){
return as_indexer(
[i,this](size_t j)->decltype(auto)
{return (*this)(i,j);}
);
}
auto operator[](size_t i)const{
return as_indexer(
[i,this](size_t j)->decltype(auto)
{return (*this)(i,j);}
);
}
And done. No custom class required.
#include<iostream>
using namespace std;
class Array
{
private: int *p;
public:
int length;
Array(int size = 0): length(size)
{
p=new int(length);
}
int& operator [](const int k)
{
return p[k];
}
};
class Matrix
{
private: Array *p;
public:
int r,c;
Matrix(int i=0, int j=0):r(i), c(j)
{
p= new Array[r];
}
Array& operator [](const int& i)
{
return p[i];
}
};
/*Driver program*/
int main()
{
Matrix M1(3,3); /*for checking purpose*/
M1[2][2]=5;
}
struct test
{
using array_reference = int(&)[32][32];
array_reference operator [] (std::size_t index)
{
return m_data[index];
}
private:
int m_data[32][32][32];
};
Found my own simple solution to this.
vector< vector< T > > or T** is required only when you have rows of variable length
and way too inefficient in terms of memory usage/allocations
if you require rectangular array consider doing some math instead!
see at() method:
template<typename T > class array2d {
protected:
std::vector< T > _dataStore;
size_t _sx;
public:
array2d(size_t sx, size_t sy = 1): _sx(sx), _dataStore(sx*sy) {}
T& at( size_t x, size_t y ) { return _dataStore[ x+y*sx]; }
const T& at( size_t x, size_t y ) const { return _dataStore[ x+y*sx]; }
const T& get( size_t x, size_t y ) const { return at(x,y); }
void set( size_t x, size_t y, const T& newValue ) { at(x,y) = newValue; }
};
The shortest and easiest solution:
class Matrix
{
public:
float m_matrix[4][4];
// for statements like matrix[0][0] = 1;
float* operator [] (int index)
{
return m_matrix[index];
}
// for statements like matrix[0][0] = otherMatrix[0][0];
const float* operator [] (int index) const
{
return m_matrix[index];
}
};
It is possible to overload multiple [] using a specialized template handler. Just to show how it works :
#include <iostream>
#include <algorithm>
#include <numeric>
#include <tuple>
#include <array>
using namespace std;
// the number '3' is the number of [] to overload (fixed at compile time)
struct TestClass : public SubscriptHandler<TestClass,int,int,3> {
// the arguments will be packed in reverse order into a std::array of size 3
// and the last [] will forward them to callSubscript()
int callSubscript(array<int,3>& v) {
return accumulate(v.begin(),v.end(),0);
}
};
int main() {
TestClass a;
cout<<a[3][2][9]; // prints 14 (3+2+9)
return 0;
}
And now the definition of SubscriptHandler<ClassType,ArgType,RetType,N> to make the previous code work. It only shows how it can be done. This solution is optimal nor bug-free (not threadsafe for instance).
#include <iostream>
#include <algorithm>
#include <numeric>
#include <tuple>
#include <array>
using namespace std;
template <typename ClassType,typename ArgType,typename RetType, int N> class SubscriptHandler;
template<typename ClassType,typename ArgType,typename RetType, int N,int Recursion> class SubscriptHandler_ {
ClassType*obj;
array<ArgType,N+1> *arr;
typedef SubscriptHandler_<ClassType,ArgType,RetType,N,Recursion-1> Subtype;
friend class SubscriptHandler_<ClassType,ArgType,RetType,N,Recursion+1>;
friend class SubscriptHandler<ClassType,ArgType,RetType,N+1>;
public:
Subtype operator[](const ArgType& arg){
Subtype s;
s.obj = obj;
s.arr = arr;
arr->at(Recursion)=arg;
return s;
}
};
template<typename ClassType,typename ArgType,typename RetType,int N> class SubscriptHandler_<ClassType,ArgType,RetType,N,0> {
ClassType*obj;
array<ArgType,N+1> *arr;
friend class SubscriptHandler_<ClassType,ArgType,RetType,N,1>;
friend class SubscriptHandler<ClassType,ArgType,RetType,N+1>;
public:
RetType operator[](const ArgType& arg){
arr->at(0) = arg;
return obj->callSubscript(*arr);
}
};
template<typename ClassType,typename ArgType,typename RetType, int N> class SubscriptHandler{
array<ArgType,N> arr;
ClassType*ptr;
typedef SubscriptHandler_<ClassType,ArgType,RetType,N-1,N-2> Subtype;
protected:
SubscriptHandler() {
ptr=(ClassType*)this;
}
public:
Subtype operator[](const ArgType& arg){
Subtype s;
s.arr=&arr;
s.obj=ptr;
s.arr->at(N-1)=arg;
return s;
}
};
template<typename ClassType,typename ArgType,typename RetType> struct SubscriptHandler<ClassType,ArgType,RetType,1>{
RetType operator[](const ArgType&arg) {
array<ArgType,1> arr;
arr.at(0)=arg;
return ((ClassType*)this)->callSubscript(arr);
}
};
With a std::vector<std::vector<type*>>, you can build the inside vector using custom input operator that iterate over your data and return a pointer to each data.
For example:
size_t w, h;
int* myData = retrieveData(&w, &h);
std::vector<std::vector<int*> > data;
data.reserve(w);
template<typename T>
struct myIterator : public std::iterator<std::input_iterator_tag, T*>
{
myIterator(T* data) :
_data(data)
{}
T* _data;
bool operator==(const myIterator& rhs){return rhs.data == data;}
bool operator!=(const myIterator& rhs){return rhs.data != data;}
T* operator*(){return data;}
T* operator->(){return data;}
myIterator& operator++(){data = &data[1]; return *this; }
};
for (size_t i = 0; i < w; ++i)
{
data.push_back(std::vector<int*>(myIterator<int>(&myData[i * h]),
myIterator<int>(&myData[(i + 1) * h])));
}
Live example
This solution has the advantage of providing you with a real STL container, so you can use special for loops, STL algorithms, and so on.
for (size_t i = 0; i < w; ++i)
for (size_t j = 0; j < h; ++j)
std::cout << *data[i][j] << std::endl;
However, it does create vectors of pointers, so if you're using small datastructures such as this one you can directly copy the content inside the array.
Sample code:
template<class T>
class Array2D
{
public:
Array2D(int a, int b)
{
num1 = (T**)new int [a*sizeof(int*)];
for(int i = 0; i < a; i++)
num1[i] = new int [b*sizeof(int)];
for (int i = 0; i < a; i++) {
for (int j = 0; j < b; j++) {
num1[i][j] = i*j;
}
}
}
class Array1D
{
public:
Array1D(int* a):temp(a) {}
T& operator[](int a)
{
return temp[a];
}
T* temp;
};
T** num1;
Array1D operator[] (int a)
{
return Array1D(num1[a]);
}
};
int _tmain(int argc, _TCHAR* argv[])
{
Array2D<int> arr(20, 30);
std::cout << arr[2][3];
getchar();
return 0;
}
Using C++11 and the Standard Library you can make a very nice two-dimensional array in a single line of code:
std::array<std::array<int, columnCount>, rowCount> myMatrix {0};
std::array<std::array<std::string, columnCount>, rowCount> myStringMatrix;
std::array<std::array<Widget, columnCount>, rowCount> myWidgetMatrix;
By deciding the inner matrix represents rows, you access the matrix with an myMatrix[y][x] syntax:
myMatrix[0][0] = 1;
myMatrix[0][3] = 2;
myMatrix[3][4] = 3;
std::cout << myMatrix[3][4]; // outputs 3
myStringMatrix[2][4] = "foo";
myWidgetMatrix[1][5].doTheStuff();
And you can use ranged-for for output:
for (const auto &row : myMatrix) {
for (const auto &elem : row) {
std::cout << elem << " ";
}
std::cout << std::endl;
}
(Deciding the inner array represents columns would allow for an foo[x][y] syntax but you'd need to use clumsier for(;;) loops to display output.)

How to Overload the [] operator in a nested manner? [duplicate]

Is it possible to overload [] operator twice? To allow, something like this: function[3][3](like in a two dimensional array).
If it is possible, I would like to see some example code.
You can overload operator[] to return an object on which you can use operator[] again to get a result.
class ArrayOfArrays {
public:
ArrayOfArrays() {
_arrayofarrays = new int*[10];
for(int i = 0; i < 10; ++i)
_arrayofarrays[i] = new int[10];
}
class Proxy {
public:
Proxy(int* _array) : _array(_array) { }
int operator[](int index) {
return _array[index];
}
private:
int* _array;
};
Proxy operator[](int index) {
return Proxy(_arrayofarrays[index]);
}
private:
int** _arrayofarrays;
};
Then you can use it like:
ArrayOfArrays aoa;
aoa[3][5];
This is just a simple example, you'd want to add a bunch of bounds checking and stuff, but you get the idea.
For a two dimensional array, specifically, you might get away with a single operator[] overload that returns a pointer to the first element of each row.
Then you can use the built-in indexing operator to access each element within the row.
An expression x[y][z] requires that x[y] evaluates to an object d that supports d[z].
This means that x[y] should be an object with an operator[] that evaluates to a "proxy object" that also supports an operator[].
This is the only way to chain them.
Alternatively, overload operator() to take multiple arguments, such that you might invoke myObject(x,y).
It is possible if you return some kind of proxy class in first [] call. However, there is other option: you can overload operator() that can accept any number of arguments (function(3,3)).
One approach is using std::pair<int,int>:
class Array2D
{
int** m_p2dArray;
public:
int operator[](const std::pair<int,int>& Index)
{
return m_p2dArray[Index.first][Index.second];
}
};
int main()
{
Array2D theArray;
pair<int, int> theIndex(2,3);
int nValue;
nValue = theArray[theIndex];
}
Of course, you may typedef the pair<int,int>
You can use a proxy object, something like this:
#include <iostream>
struct Object
{
struct Proxy
{
Object *mObj;
int mI;
Proxy(Object *obj, int i)
: mObj(obj), mI(i)
{
}
int operator[](int j)
{
return mI * j;
}
};
Proxy operator[](int i)
{
return Proxy(this, i);
}
};
int main()
{
Object o;
std::cout << o[2][3] << std::endl;
}
If, instead of saying a[x][y], you would like to say a[{x,y}], you can do like this:
struct Coordinate { int x, y; }
class Matrix {
int** data;
operator[](Coordinate c) {
return data[c.y][c.x];
}
}
It 'll be great if you can let me know what function, function[x] and function[x][y] are. But anyway let me consider it as an object declared somewhere like
SomeClass function;
(Because you said that it's operator overload, I think you won't be interested at array like SomeClass function[16][32];)
So function is an instance of type SomeClass. Then look up declaration of SomeClass for the return type of operator[] overload, just like
ReturnType operator[](ParamType);
Then function[x] will have the type ReturnType. Again look up ReturnType for the operator[] overload. If there is such a method, you could then use the expression function[x][y].
Note, unlike function(x, y), function[x][y] are 2 separate calls. So it's hard for compiler or runtime garantees the atomicity unless you use a lock in the context. A similar example is, libc says printf is atomic while successively calls to the overloaded operator<< in output stream are not. A statement like
std::cout << "hello" << std::endl;
might have problem in multi-thread application, but something like
printf("%s%s", "hello", "\n");
is fine.
template<class F>
struct indexer_t{
F f;
template<class I>
std::result_of_t<F const&(I)> operator[](I&&i)const{
return f(std::forward<I>(i))1;
}
};
template<class F>
indexer_t<std::decay_t<F>> as_indexer(F&& f){return {std::forward<F>(f)};}
This lets you take a lambda, and produce an indexer (with [] support).
Suppose you have an operator() that supports passing both coordinates at onxe as two arguments. Now writing [][] support is just:
auto operator[](size_t i){
return as_indexer(
[i,this](size_t j)->decltype(auto)
{return (*this)(i,j);}
);
}
auto operator[](size_t i)const{
return as_indexer(
[i,this](size_t j)->decltype(auto)
{return (*this)(i,j);}
);
}
And done. No custom class required.
#include<iostream>
using namespace std;
class Array
{
private: int *p;
public:
int length;
Array(int size = 0): length(size)
{
p=new int(length);
}
int& operator [](const int k)
{
return p[k];
}
};
class Matrix
{
private: Array *p;
public:
int r,c;
Matrix(int i=0, int j=0):r(i), c(j)
{
p= new Array[r];
}
Array& operator [](const int& i)
{
return p[i];
}
};
/*Driver program*/
int main()
{
Matrix M1(3,3); /*for checking purpose*/
M1[2][2]=5;
}
struct test
{
using array_reference = int(&)[32][32];
array_reference operator [] (std::size_t index)
{
return m_data[index];
}
private:
int m_data[32][32][32];
};
Found my own simple solution to this.
vector< vector< T > > or T** is required only when you have rows of variable length
and way too inefficient in terms of memory usage/allocations
if you require rectangular array consider doing some math instead!
see at() method:
template<typename T > class array2d {
protected:
std::vector< T > _dataStore;
size_t _sx;
public:
array2d(size_t sx, size_t sy = 1): _sx(sx), _dataStore(sx*sy) {}
T& at( size_t x, size_t y ) { return _dataStore[ x+y*sx]; }
const T& at( size_t x, size_t y ) const { return _dataStore[ x+y*sx]; }
const T& get( size_t x, size_t y ) const { return at(x,y); }
void set( size_t x, size_t y, const T& newValue ) { at(x,y) = newValue; }
};
The shortest and easiest solution:
class Matrix
{
public:
float m_matrix[4][4];
// for statements like matrix[0][0] = 1;
float* operator [] (int index)
{
return m_matrix[index];
}
// for statements like matrix[0][0] = otherMatrix[0][0];
const float* operator [] (int index) const
{
return m_matrix[index];
}
};
It is possible to overload multiple [] using a specialized template handler. Just to show how it works :
#include <iostream>
#include <algorithm>
#include <numeric>
#include <tuple>
#include <array>
using namespace std;
// the number '3' is the number of [] to overload (fixed at compile time)
struct TestClass : public SubscriptHandler<TestClass,int,int,3> {
// the arguments will be packed in reverse order into a std::array of size 3
// and the last [] will forward them to callSubscript()
int callSubscript(array<int,3>& v) {
return accumulate(v.begin(),v.end(),0);
}
};
int main() {
TestClass a;
cout<<a[3][2][9]; // prints 14 (3+2+9)
return 0;
}
And now the definition of SubscriptHandler<ClassType,ArgType,RetType,N> to make the previous code work. It only shows how it can be done. This solution is optimal nor bug-free (not threadsafe for instance).
#include <iostream>
#include <algorithm>
#include <numeric>
#include <tuple>
#include <array>
using namespace std;
template <typename ClassType,typename ArgType,typename RetType, int N> class SubscriptHandler;
template<typename ClassType,typename ArgType,typename RetType, int N,int Recursion> class SubscriptHandler_ {
ClassType*obj;
array<ArgType,N+1> *arr;
typedef SubscriptHandler_<ClassType,ArgType,RetType,N,Recursion-1> Subtype;
friend class SubscriptHandler_<ClassType,ArgType,RetType,N,Recursion+1>;
friend class SubscriptHandler<ClassType,ArgType,RetType,N+1>;
public:
Subtype operator[](const ArgType& arg){
Subtype s;
s.obj = obj;
s.arr = arr;
arr->at(Recursion)=arg;
return s;
}
};
template<typename ClassType,typename ArgType,typename RetType,int N> class SubscriptHandler_<ClassType,ArgType,RetType,N,0> {
ClassType*obj;
array<ArgType,N+1> *arr;
friend class SubscriptHandler_<ClassType,ArgType,RetType,N,1>;
friend class SubscriptHandler<ClassType,ArgType,RetType,N+1>;
public:
RetType operator[](const ArgType& arg){
arr->at(0) = arg;
return obj->callSubscript(*arr);
}
};
template<typename ClassType,typename ArgType,typename RetType, int N> class SubscriptHandler{
array<ArgType,N> arr;
ClassType*ptr;
typedef SubscriptHandler_<ClassType,ArgType,RetType,N-1,N-2> Subtype;
protected:
SubscriptHandler() {
ptr=(ClassType*)this;
}
public:
Subtype operator[](const ArgType& arg){
Subtype s;
s.arr=&arr;
s.obj=ptr;
s.arr->at(N-1)=arg;
return s;
}
};
template<typename ClassType,typename ArgType,typename RetType> struct SubscriptHandler<ClassType,ArgType,RetType,1>{
RetType operator[](const ArgType&arg) {
array<ArgType,1> arr;
arr.at(0)=arg;
return ((ClassType*)this)->callSubscript(arr);
}
};
With a std::vector<std::vector<type*>>, you can build the inside vector using custom input operator that iterate over your data and return a pointer to each data.
For example:
size_t w, h;
int* myData = retrieveData(&w, &h);
std::vector<std::vector<int*> > data;
data.reserve(w);
template<typename T>
struct myIterator : public std::iterator<std::input_iterator_tag, T*>
{
myIterator(T* data) :
_data(data)
{}
T* _data;
bool operator==(const myIterator& rhs){return rhs.data == data;}
bool operator!=(const myIterator& rhs){return rhs.data != data;}
T* operator*(){return data;}
T* operator->(){return data;}
myIterator& operator++(){data = &data[1]; return *this; }
};
for (size_t i = 0; i < w; ++i)
{
data.push_back(std::vector<int*>(myIterator<int>(&myData[i * h]),
myIterator<int>(&myData[(i + 1) * h])));
}
Live example
This solution has the advantage of providing you with a real STL container, so you can use special for loops, STL algorithms, and so on.
for (size_t i = 0; i < w; ++i)
for (size_t j = 0; j < h; ++j)
std::cout << *data[i][j] << std::endl;
However, it does create vectors of pointers, so if you're using small datastructures such as this one you can directly copy the content inside the array.
Sample code:
template<class T>
class Array2D
{
public:
Array2D(int a, int b)
{
num1 = (T**)new int [a*sizeof(int*)];
for(int i = 0; i < a; i++)
num1[i] = new int [b*sizeof(int)];
for (int i = 0; i < a; i++) {
for (int j = 0; j < b; j++) {
num1[i][j] = i*j;
}
}
}
class Array1D
{
public:
Array1D(int* a):temp(a) {}
T& operator[](int a)
{
return temp[a];
}
T* temp;
};
T** num1;
Array1D operator[] (int a)
{
return Array1D(num1[a]);
}
};
int _tmain(int argc, _TCHAR* argv[])
{
Array2D<int> arr(20, 30);
std::cout << arr[2][3];
getchar();
return 0;
}
Using C++11 and the Standard Library you can make a very nice two-dimensional array in a single line of code:
std::array<std::array<int, columnCount>, rowCount> myMatrix {0};
std::array<std::array<std::string, columnCount>, rowCount> myStringMatrix;
std::array<std::array<Widget, columnCount>, rowCount> myWidgetMatrix;
By deciding the inner matrix represents rows, you access the matrix with an myMatrix[y][x] syntax:
myMatrix[0][0] = 1;
myMatrix[0][3] = 2;
myMatrix[3][4] = 3;
std::cout << myMatrix[3][4]; // outputs 3
myStringMatrix[2][4] = "foo";
myWidgetMatrix[1][5].doTheStuff();
And you can use ranged-for for output:
for (const auto &row : myMatrix) {
for (const auto &elem : row) {
std::cout << elem << " ";
}
std::cout << std::endl;
}
(Deciding the inner array represents columns would allow for an foo[x][y] syntax but you'd need to use clumsier for(;;) loops to display output.)