Pointer to pointer assignment and dereference in C++ - c++

Let's say I have a linked list node like the following:
struct ListNode {
int val;
ListNode *next;
ListNode(int x) : val(x), next(NULL) {}
};
The goal is to write a function to delete a node in a singly-linked list. One efficient way to do it in constant time is something like this:
void deleteNode(ListNode* node) {
auto *tmp = node->next;
*node = *tmp;
delete tmp;
}
This works, but why do we need to dereference the pointers?
If node is a pointer and tmp is a pointer, why does it need to dereferenced? Why can't I do node = tmp?

When performing *node=*tmp you copy all the bytes of *tmp into *node thus
node->val now holds tmp->val and node->next now holds tmp->next.
The old content of node has been forgotten (it's normal since you want to get rid of this node) but you saved the content of the next node at this same place.
Then if you delete the next node (known through tmp) you don't lose its content (it has been saved in the previous node).

Let's break down the three lines of your deleteNode function:
auto *tmp = node->next;
This creates a local variable, tmp which will be a copy of the next field of the passed node parameter. This is a pointer to the next structure in the list and, once we've made a copy of it, we can erase or overwrite that member.
*node = *tmp;
This copies the actual data of the structure pointed to by tmp (that is, the next node in the list) to the current node, overwriting the next field as it does so. We need to dereference both pointers in order to copy the values of the structures pointed to.
delete tmp;
This deletes the 'next' node in the given list. However, we have already copied all its data (including its next member) into our current node, so our modified list now starts with (effectively) the second one in the original list (the passed parameter); notably, the next field of *node will now be the address originally stored in node->next->next – thus, we have 'skipped' an entry (the second) in the list and deleted it.

The reason you can't just write node = tmp is because that wouldn't change anything outside of your function.
Given this linked list
node0 -> node1 -> node2 -> node3
If you want to delete node1, the desired outcome would be
node0 -> node2 -> node3
If you don't want to actively modify the pointer value (that is, the address next) in node0, you have to move the value inside node2 to where node1 was.

Why can't I do node = tmp ?
You can do that, but it won't do anything useful. node is a local variable in deleteNode. As it is a pointer you can use that local pointer to modify what it points to, but modfying the pointer itself has no effect outside of the function.
Actually pointers are not different with respect to that. You also cannot observe any effect from outside when you have
void foo(int x) {
x = 42;
}
Passing a reference is different:
void bar(int& x) {
x = 42;
}
int a = 0;
bar(a); // now a == 42
Same with pointers:
void bar_ptr(int*& x) {
x = nullptr;
}
int* b = &a;
bar_ptr(b); // now b == nullptr

If you do node = tmp and after that delete tmp you will be deleting the ListNode, which node points to.

As others pointed out, node = tmp just changes the argument(local variable)
*node = *tmp is to copy the content of ListNode which is equivalent to
node.val = tmp.val; node.next = tmp.next
This function actually removes the next element - it works, but it invalidates the next pointer(if there was something that refers node->next as a pointer, it is now a dangling pointer)

What your function really does, is that it doesn't delete the node from the parameter, but the next node, overwriting the current node with the follower.
The dereferencing of the pointer acts like a memcpy() and moves the data from the next node to the current. You are not copying the pointers but the data it points to.
This way you can repeatedly call the function with the same node pointer, and it will move down the chain.
However, since you are not checking the pointer, the last node probably has a NULL pointer and will crash on derefencing.
So you need to do
if (tmp)
*node = *tmp;
Example:
typedef struct list
{
struct list *next;
int value;
} List;
void deleteNext(List* node)
{
auto *tmp = node->next;
if(tmp)
*node = *tmp;
delete tmp;
}
int main(int argc, char *argv[])
{
List *l0 = new List;
List *l1 = new List;
l0->value = 0;
l0->next = l1;
l1->value = 1;
l1->next = NULL;
deleteNext(l0);
deleteNext(l0); // Without the 'if' it will crash here.
return 0;
}

but why do we need to dereference the pointers?
Let's explore what happens if we don't indirect through the pointers:
auto *tmp = node->next;
node = tmp;
delete tmp;
This would be equivalent to just
delete node->next;
// resulting structure
previous node next (deleted) next next (leaked)
1---------->2----dangling--->_ 4
// desired structure that we get from the correct code
previous node next (deleted) next next
_
1-----------3---------------------------------->4
So, we end up with wrong node being deleted, and with a dangling pointer in the node that was supposed to be deleted.
Note that even the correct inirecting version is broken when attempting to delete the last node.

Related

Passing a linked list without memory leak in C++

In many occasions, we need to modify a linked list drastically so we will sometimes create another linked list and pass it to the old one. For example,
struct node { //let's say we have a linked list storing integers
int data;
node* next;
};
and suppose we already have a linked list storing integers 1,2,3.
node* head; //suppose we already store 1,2,3 in this linked list
node* new_head ; //suppose we make a temporary linked list storing 4,5,6,7
head = new_head; //modifying the original linked list
My Question
If I delete head (the old linked list) before the assignment then the whole program will crash.
Conversely, if I do not delete it, then there will be a memory leak.
Therefore, I am looking for a way to modify the linked list without memory leak.
My attempt
I tried to make a helper function similar to strcpy to do my work.
void passing_node(node*& head1, node* head2){ //copy head2 and paste to head1
node* ptr1 = head1;
for (node* ptr2 = head; ptr2 != nullptr; ptr2 = ptr2->next)
{
if (ptr1 == nullptr){
ptr1 = new node;
}
ptr1->data = ptr2->data;
ptr1 = ptr1->next;
}
}
// note that we assume that the linked list head2 is always longer than head1.
However, I still got a crash in the program and I cannot think of any other way to modify this. Any help would be appreciated.
Easier way to avoid memory leak is to avoid raw owning pointers.
You might use std::unique_ptr (or rewrite your own version):
struct node {
int data = 0;
std::unique_ptr<node> next;
};
You can move nodes.
You can no longer copy nodes (with possible double free issue).
so deep_copy might look like:
std::unique_ptr<Node> deep_copy(const Node* node)
{
if (node == nullptr) return nullptr;
auto res = std::make_unique<Node>();
res->data = node->data;
res->next = deep_copy(node->next.get());
return res;
}
I would suggest preallocating the linked list so it's easy to delete every node in one call. The nodes would then just reference somewhere inside this preallocated memory. For example:
struct Node
{
int value;
Node* next;
};
struct LinkedList
{
Node* elements;
Node* first;
Node* last;
Node* free_list;
LinkedList(size_t size)
{
first = nullptr;
last = nullptr;
elements = new Node[size]{0};
free_list = elements;
for (size_t i = 0; i < size-1; ++i)
free_list[i].next = &free_list[i+1];
free_list[count-1].next = nullptr;
}
~LinkedList()
{
delete[] elements;
}
void Add(int value)
{
if (free_list == nullptr)
// Reallocate or raise error.
// Take node from free_list and update free_list to
// point to the next node in its list.
// Update last node to the new node.
// Update the first node if it's the first to be added.
}
void Free(Node* node)
{
// Search for the node and update the previous and
// next's pointers.
// Update first or last if the node is either of them.
// Add the node to the last place in the free_list
}
};
From here you'll have many strategies to add or remove nodes. As long as you make sure to only add nodes to the allocated elements array, you'll never have any memory leak. Before adding, you must check if the array have the capacity to add one more node. If it doesn't, you either have to raise an error, or reallocate a new the LinkedList, copy over all values, and delete the old one.
It becomes a bit more complicated when the array becomes fragmented. You can use a 'free list' to keep track of the deleted nodes. Basically, a LinkedList of all nodes that are deleted.
Just take notice that my code is incomplete. The basic approach is to create an allocator of some sort from which you can allocate a bulk, use segments of it, and then delete in bulk.

double linked list head dereferenced is null

my head pointer is supposed to be null, because I don't want
it to have any value when I make my linked list.
I know that you can't dereference something that is null,
but I just want to point it's next node to something new.
can someone explain how I could point the head node pointer?
void dlist::push_front(int value) {
node *p = new node();
node *tempH = head();
tempH->next = p; //break
/***********************************************************
my head pointer is suposed to be null, because I don't want
it to have any value when I make my linked list.
I know that you can't dereference something that is null,
but I just want to point it's next node to something new.
can someone explane how I could point the head node pointer?
************************************************************/
p->value = value;
p->next = tempH->next;
p->prev = tempH;
p->next->prev = p;
p->prev->next = p;
}
#pragma once
#include <ostream>
class dlist {
public:
dlist() {}
// Implement the destructor, to delete all the nodes
//~dlist();
struct node {
int value;
node* next;
node* prev;
};
node* head() const { return _head; }
node* tail() const { return _tail; }
void push_front(int value);
private:
node* _head = nullptr;
node* _tail = nullptr;
};
in your list constructor, simply set the head pointer to null.
dlist::dlist() {
_head = nullptr;
}
Further, if you end up removing the LAST item in your list, you will need to also make _head = nullptr;
Be sure to check if the head is null before dereferencing.
if(_head == nullptr){
_head = new node(...);
}
Your insert function will be responsible for assigning the first node to the head, in the event that you're adding to an uninitialized list.
If your list needs to be sorted, you will need to account for the head changing in the event that the new node should precede the head node.
The most practical solution here is to just use sentinel nodes for your head and tail. Or, just one sentinel node, that stands in for both. The sentinel nodes' elements can just be left uninitialised, you only need those nodes for the next and prev pointers they contain. To test if you've reached the end of the list, instead of testing for a null pointer, you test whether the pointer points to the sentinel node.
You can just use normal nodes as your sentinels if you expect your list elements to be small, or your lists to be very large. You waste a bit of memory on space for elements that won't be used, but it's probably not a big deal. If you really care about memory efficiency (say, you're writing a library), you can have something like this:
template<typename T> class dlist {
struct node_header {
node_header* next;
node_header* prev;
};
struct node : public node_header {
T element;
};
// Convert a node_header pointer to a node pointer
node* node_from_header(node_header* p) {
return static_cast<node*>(p);
}
};
With this approach, your sentinel node is a node_header and all your actual, element-containing nodes are nodes. Your internal algorithms all work on node_headers, until you need to actually retrieve the element of a node, at which point you use node_from_header() to retrieve the full, element-containing node.
If you absolutely want to not use sentinel nodes, you'll have to rewrite your code to directly use the head pointer, rather than retrieving it through a function, and add special-case code for handling a null head pointer. It's not a pretty option.

How does this pop-function work?

I would like to understand the following pop-function.
struct list_node{
int key;
list_node* next;
list_node(int k, list_node* n)
: key(k), next(n);
{}
};
class stapel{
private: list_node* top_node;
public: void pop (int value);
};
void stapel::pop()
{
list_node* p=top_node;
top_node=top_node -> next;
delete p;
}
I know the pop-function removes the topmost node of a stack. So you have a pointer p, that points to the same node like the pointer top_node. I have difficulties understanding the next line. top_node->next means the same like (*top_node).next and top_node is of type list_node, which is like a box that consist a key, a next-pointer and their values. Now I can't understand what top_node->next really means. I know next will become the next top_node pointer but why?
void stapel::pop()
{
list_node* p = top_node; // Get pointer to top of stack
top_node = top_node->next; // Find the next item in the stack, assign it to now be the top
delete p; // Delete the current top
}
You basically told the stack that the new "top" is the node that used to be 2nd from the top. You then delete the top node.
The way that the next line is working, is the same way that a "linked list" works. When you construct the stack (or linked list), for each node, you assign the value of that node (key), and a pointer to the next node (next).
top_node = top_node->next;
is simply getting the next member variable of the current node. That member variable happens to be a pointer to the next node, which was assigned when the current node was inserted into the stack.
Edit
As #Edward noted, it would also be a good idea to check that top_node is not nullptr. If it were, you would hit an exception when you tried to access the next member. So you could modify this function as:
void stapel::pop()
{
if (top_node == nullptr)
return;
list_node* p = top_node;
top_node = top_node->next;
delete p;
}

Coding a function to copy a linked-list in C++

I need to implement an auxilliary function, named copyList, having one parameter, a pointer to a ListNode. This function needs to return a pointer to the first node of a copy of original linked list. So, in other words, I need to code a function in C++ that takes a header node of a linked list and copies that entire linked list, returning a pointer to the new header node. I need help implementing this function and this is what I have right now.
Listnode *SortedList::copyList(Listnode *L) {
Listnode *current = L; //holds the current node
Listnode *copy = new Listnode;
copy->next = NULL;
//traverses the list
while (current != NULL) {
*(copy->student) = *(current->student);
*(copy->next) = *(current->next);
copy = copy->next;
current = current->next;
}
return copy;
}
Also, this is the Listnode structure I am working with:
struct Listnode {
Student *student;
Listnode *next;
};
Note: another factor I am running into with this function is the idea of returning a pointer to a local variable.
The first question you need to ask yourself is what the copy semantics are. In particular, you're using a Student* as node contents. What does copying node contents mean? Should we copy the pointer so that the two lists will point to (share) the same student instances, or should you perform a deep copy?
struct Listnode {
Student *student; // a pointer? shouldn't this be a `Student` object?
Listnode *next;
};
The next question you should ask yourself is how you will allocate the nodes for the second list. Currently, you only allocate 1 node in the copy.
I think you code should look more like:
Listnode *SortedList::copyList(Listnode *L) {
Listnode *current = L;
// Assume the list contains at least 1 student.
Listnode *copy = new Listnode;
copy->student = new Student(*current->student);
copy->next = NULL;
// Keep track of first element of the copy.
Listnode *const head = copy;
// 1st element already copied.
current = current->next;
while (current != NULL) {
// Allocate the next node and advance `copy` to the element being copied.
copy = copy->next = new Listnode;
// Copy the node contents; don't share references to students.
copy->student = new Student(*current->student);
// No next element (yet).
copy->next = NULL;
// Advance 'current' to the next element
current = current->next;
}
// Return pointer to first (not last) element.
return head;
}
If you prefer sharing student instances between the two lists, you can use
copy->student = current->student;
instead of
copy->student = new Student(*current->student);
This is an excellent question since you've done the bulk of the work yourself, far better than most "please do my homework for me" questions.
A couple of points.
First, what happens if you pass in an empty list? You probably want to catch that up front and just return an empty list to the caller.
Second, you only allocate the first node in the copy list, you need to do one per node in the original list.
Something like (pseudo-code (but C++-like) for homework, sorry):
# Detect empty list early.
if current == NULL:
return NULL;
# Do first node as special case, maintain pointer to last element
# for appending, and start with second original node.
copy = new node()
last = copy
copy->payload = current->payload
current = current->next
# While more nodes to copy.
while current != NULL:
# Create a new node, tracking last.
last->next = new node()
last = last->next
# Transfer payload and advance pointer in original list.
last->payload = current->payload
current = current->next
# Need to terminate new list and return address of its first node
last->next = NULL
return copy
And, while you're correct that you shouldn't return a pointer to a local stack variable, that's not what you're doing. The variable you're returning points to heap-allocated memory, which will survive function exit.
I have been trying to do the same thing. My requirements were:
1. Each node is a very basic and simple class (I moved away from the struct model).
2. I want to create a deep copy, and not just a pointer to the old linked list.
The way that I chose to do this is with the following C++ code:
template <class T>
Node <T> * copy(Node <T> * rhs)
{
Node <T> * current = new Node<T>();
Node <T> * pHead = current;
for (Node <T> * p = rhs; p; p = p->pNext)
{
Node <T> * prev = current;
prev->data = p->data;
if (p->pNext != NULL)
{
Node <T> * next = new Node<T>();
prev->pNext = next;
current = next;
}
else
{
prev->pNext = NULL;
}
}
return pHead;
}
This works well, with no errors. Because the "head" is a special case, there is a need for my implementation of a "current" pointer.
The statement
copy->next = current->next
is wrong. You should do
Create the first node copy here
copy->student = current->student;
copy->next = NULL;
while(current->next!=NULL)
{
Create new node TEMP here
copy->next = TEMP;
TEMP->student = current->student;
TEMP->next = NULL;
copy = TEMP;
}
Since you need a copy of the linked list, you need to create a new node in the loop while traversing through the original list.
Listnode *startCopyNode = copy;
while (current != NULL) {
*(copy->student) = *(current->student);
copy->next = new Listnode;
copy = copy->next;
current = current->next;
}
copy->next = NULL;
return startCopyNode;
Remember to delete the nodes of linked list.
#pat, I guess you will get a seg_fault, because you create memory only once. You need to create memory(basically call 'new') for each and every node. Find out, where you need to use the 'new' keyword, to create memory for all the nodes.
Once you are done with this, you need to link it to the previous node, since its a singly linked list, you need to maintain a pointer to the previous node. If you want to learn and should be able to remember all life, don't see any of the code mentioned above. Try to think the above mentioned factors and try to come up with your own code.
As others have pointed out, you need to call new for each node in the original list to allocate space for a copy, then copy the old node to the new one and update the pointer in the copied node.
another factor I am running into with this function is the idea of returning a pointer to a local variable.
You are not returning a pointer to a local variable; when you called new, you allocated memory on the heap and are returning a pointer to that (which of course means that you need to remember to call delete to free it when you are done with the new list, from outside the function).

Can we delete the last node of a Single Linked list if we only know the address of last node

// Variables
typedef struct node
{
int value;
struct node *next;
}mynode;
// Globals (not required, though).
mynode *head, *tail, *temp;
// Functions
void add(int value);
// Function to add new nodes to the linked list
void add(int value)
{
temp = (mynode *) malloc(sizeof(struct node));
temp->next=(mynode *)0;
temp->value=value;
if(head==(mynode *)0)
{
head=temp;
tail=temp;
}
else
{
tail->next=temp;
tail=temp;
}
}
// The main() function
int main()
{
head=(mynode *)0;
// Construct the linked list.
add(1);
add(2);
add(3);
return(0);
}
If I only have a pointer to a node, whose value is 3(The Last node as seen in the aforementioned code) , Can we delete it and make a node whose value is 2(aforementioned code) as the last node.
No you can not. Unless you have some reference to previous node. like head pointer. If you have other reference than its pretty much easier. In fact if you don't have any pointers you will loose the list itself
No, but if you know what you are doing, you can modify the last node in-place. Deleting the last node requires access to the second-to-last node, and specifically its link to the last node.
The answer is no.
You can call free on that pointer to the last node, but that just means that the memory occupied by that node is no longer claimed. The data will most likely stay there unchanged for a while. And that means that the next-to-last node's pointer to it is still valid, even though it should not be.
To delete the node in a way that is meaningful to the list, that pointer contained in the next-to-last node has to be nullified. And that can't be done unless that next-to-last node can be accessed, either by a direct pointer to it, or by traversing the list from a preceding node.
You can use a doubly linked list to access the previous node. Or iterate through the entire list.
Yes you can.. Try the following code:
void deleteNode()
{
mynode *temp1;
for(temp1 = head; temp->next!= tail; temp1 = temp1->next);
tail = temp1;
free(tail->next);
}
It will delete the last node.