how set light and materials to obtain an emerald object - opengl

When I set the material in opengl for an object (glutSolidSphere(2.,10.,8.);), let for example the emerald parameters:
float[] mat_ambient ={ 0.0215f, 0.1745f, 0.0215f, 0.55f };
float[] mat_diffuse ={0.07568f, 0.61424f, 0.07568f, 0.55f };
float[] mat_specular ={0.633f, 0.727811f, 0.633f, 0.55f };
float shine = 76.8f;
In order to obtain really an emerald object I should set the components of light in the same way? I mean:
float[] light_ambient ={ 0.0215f, 0.1745f, 0.0215f, 0.55f };
float[] light_diffuse ={0.07568f, 0.61424f, 0.07568f, 0.55f };
float[] light_specular ={0.633f, 0.727811f, 0.633f, 0.55f };
float[] light_position= { 1.0, 1.0, 1.0, 0.0 };
The result is not good...

If you want to render a green surface with a Blinn–Phong reflection model and Gouraud shading you have found the answer. However, you can't do anything more realistic with the 20-year-old OpenGL Fixed-Function pipeline. Same reason as in the comments on your previous question How can I do a brass surface?.
With Gouraud shading the ligh model is computed per vertex, compared to Phong shadding where it is computed per fragment. Use a higher resolution on the sphere to improve lighting and get some specular highlights. See GLSL fixed function fragment program replacement and What's the difference between Phong shading and Gouraud shading?.

Related

How to apply Texture-Mapping to a Maya Object using OpenGL?

I am currently learning how to map 2d textures to 3d objects using GLSL. I have a main.cpp, fragment shader, and vertex shader to achieve this as well as a Sphere.obj I made using Maya and some PNG images.
I just created a basic sphere poly model in Maya then exported it as a ".obj".
My fragment shader code is listed below for reference:
#version 410
// Inputs from application.
// Generally, "in" like the eye and normal vectors for things that change frequently,
// and "uniform" for things that change less often (think scene versus vertices).
in vec3 position_eye, normal_eye;
uniform mat4 view_mat;
// This light setup would usually be passed in from the application.
vec3 light_position_world = vec3 (10.0, 25.0, 10.0);
vec3 Ls = vec3 (1.0, 1.0, 1.0); // neutral, full specular color of light
vec3 Ld = vec3 (0.8, 0.8, 0.8); // neutral, lessened diffuse light color of light
vec3 La = vec3 (0.12, 0.12, 0.12); // ambient color of light - just a bit more than dk gray bg
// Surface reflectance properties for Phong or Blinn-Phong shading models below.
vec3 Ks = vec3 (1.0, 1.0, 1.0); // fully reflect specular light
vec3 Kd = vec3 (0.32, 0.18, 0.5); // purple diffuse surface reflectance
vec3 Ka = vec3 (1.0, 1.0, 1.0); // fully reflect ambient light
float specular_exponent = 400.0; // specular 'power' -- controls "roll-off"
// These come from the VAO for texture coordinates.
in vec2 texture_coords;
// And from the uniform outputs for the textures setup in main.cpp.
uniform sampler2D texture00;
uniform sampler2D texture01;
out vec4 fragment_color; // color of surface to draw
void main ()
{
// Ambient intensity
vec3 Ia = La * Ka;
// These next few lines sample the current texture coord (s, t) in texture00 and 01 and mix.
vec4 texel_a = texture (texture00, fract(texture_coords*2.0));
vec4 texel_b = texture (texture01, fract(texture_coords*2.0));
//vec4 mixed = mix (texel_a, texel_b, texture_coords.x);
vec4 mixed = mix (texel_a, texel_b, texture_coords.x);
Kd.x = mixed.x;
Kd.y = mixed.y;
Kd.z = mixed.z;
// Transform light position to view space.
// Vectors here are appended with _eye as a reminder once in view space versus world space.
// "Eye" is used instead of "camera" since reflectance models often phrased that way.
vec3 light_position_eye = vec3 (view_mat * vec4 (light_position_world, 1.0));
vec3 distance_to_light_eye = light_position_eye - position_eye;
vec3 direction_to_light_eye = normalize (distance_to_light_eye);
// Diffuse intensity
float dot_prod = dot (direction_to_light_eye, normal_eye);
dot_prod = max (dot_prod, 0.0);
vec3 Id = Ld * Kd * dot_prod; // final diffuse intensity
// Specular is view dependent; get vector toward camera.
vec3 surface_to_viewer_eye = normalize (-position_eye);
// Phong
//vec3 reflection_eye = reflect (-direction_to_light_eye, normal_eye);
//float dot_prod_specular = dot (reflection_eye, surface_to_viewer_eye);
//dot_prod_specular = max (dot_prod_specular, 0.0);
//float specular_factor = pow (dot_prod_specular, specular_exponent);
// Blinn
vec3 half_way_eye = normalize (surface_to_viewer_eye + direction_to_light_eye);
float dot_prod_specular = max (dot (half_way_eye, normal_eye), 0.0);
float specular_factor = pow (dot_prod_specular, specular_exponent);
// Specular intensity
vec3 Is = Ls * Ks * specular_factor; // final specular intensity
// final color
fragment_color = vec4 (Is + Id + Ia, 1.0);
}
I type in the following command into the terminal to run my package:
./go fs.glsl vs.glsl Sphere.obj image.png image2.png
I am trying to map a world map.jpg to my sphere using this method and ignore the 2nd image input. But it won't run. Can someone tell me what I need to comment out in my fragment shader to ignore the second texture input so my code will run?
PS: How would I go about modifying my fragment shader to implement various types of 'tiling'? I'm a bit lost on this as well. Any examples or tips are appreciated.
Here is the texture portion of my main.cpp code.
// load textures
GLuint tex00;
int tex00location = glGetUniformLocation (shader_programme, "texture00");
glUniform1i (tex00location, 0);
glActiveTexture (GL_TEXTURE0);
assert (load_texture (argv[4], &tex00));
//assert (load_texture ("ship.png", &tex00));
GLuint tex01;
int tex01location = glGetUniformLocation (shader_programme, "texture01");
glUniform1i (tex01location, 1);
glActiveTexture (GL_TEXTURE1);
assert (load_texture (argv[5], &tex01));
/*---------------------------SET RENDERING DEFAULTS---------------------------*/
// Choose vertex and fragment shaders to use as well as view and proj matrices.
glUniformMatrix4fv (view_mat_location, 1, GL_FALSE, view_mat.m);
glUniformMatrix4fv (proj_mat_location, 1, GL_FALSE, proj_mat.m);
// The model matrix stores the position and orientation transformations for the mesh.
mat4 model_mat;
model_mat = translate (identity_mat4 () * scale(identity_mat4(), vec3(0.5, 0.5, 0.5)), vec3(0, -0.5, 0)) * rotate_y_deg (identity_mat4 (), 90 );
// Setup basic GL display attributes.
glEnable (GL_DEPTH_TEST); // enable depth-testing
glDepthFunc (GL_LESS); // depth-testing interprets a smaller value as "closer"
glEnable (GL_CULL_FACE); // cull face
glCullFace (GL_BACK); // cull back face
glFrontFace (GL_CCW); // set counter-clock-wise vertex order to mean the front
glClearColor (0.1, 0.1, 0.1, 1.0); // non-black background to help spot mistakes
glViewport (0, 0, g_gl_width, g_gl_height); // make sure correct aspect ratio

OpenGL shader light position changed in shader

First of all, I'm sorry if the title is misleading but I'm not quite sure how to describe the issue, if it is an issue at all.
I'm vert new to OpenGL, and I have just started to scratch the surface of GLSL following this tutorial.
The main part of the rendering funcion looks like this
GLfloat ambientLight[] = {0.5f, 0.5f, 0.5f, 1.0f};
glLightModelfv(GL_LIGHT_MODEL_AMBIENT, ambientLight);
//Add directed light
GLfloat lightColor1[] = {0.5f, 0.5f, 0.5f, 1.0f}; //Color (0.5, 0.2, 0.2)
//Coming from the direction (-1, 0.5, 0.5)
GLfloat lightPos1[] = { 40.0 * cos((float) elapsed_time / 500.0) , 40.0 * sin((float) elapsed_time / 500.0), -20.0f, 0.0f};
glLightfv(GL_LIGHT0, GL_DIFFUSE, lightColor1);
glLightfv(GL_LIGHT0, GL_POSITION, lightPos1);
glPushMatrix();
glTranslatef(0,0,-50);
glColor3f(1.0, 1.0, 1.0);
glRotatef( (float) elapsed_time / 100.0, 0.0,1.0,0.0 );
glUseProgram( shaderProg );
glutSolidTeapot( 10 );
glPopMatrix();
Where "shaderProg" is a shader program consisting of a vertex shader
varying vec3 normal;
void main(void)
{
normal = gl_Normal;
gl_Position = ftransform();
}
And a fragment shader
uniform vec3 lightDir;
varying vec3 normal;
void main() {
float intensity;
vec4 color;
intensity = dot(vec3(gl_LightSource[0].position), normalize(normal));
if (intensity > 0.95)
color = vec4(1.0,0.5,0.5,1.0);
else if (intensity > 0.5)
color = vec4(0.6,0.3,0.3,1.0);
else if (intensity > 0.25)
color = vec4(0.4,0.2,0.2,1.0);
else
color = vec4(0.2,0.1,0.1,1.0);
gl_FragColor = color;
}
I have two issues.
First is that according to the tutorial the uniform lightDir should be usable, yet I only get results with vec3(gl_LightSource[0].position). Is there any difference between the two?
The other problem is that the setup rotates the light around the teapot differently when using the shader program. Without the shader the light orbits the teapot in the XY axis of the camera. Yet, if the shader is used, the light moves in the XZ axis of the camera. Have I made a mistake? Or have i forgot som translation in the shaders?
Thanks in advance : )
First is that according to the tutorial the uniform lightDir should be
usable, yet I only get results with vec3(gl_LightSource[0].position).
Is there any difference between the two?
That tutorial uses lightDir as a uniform variable. You have to set that yourself. via some glUniform call. If it is the same or not will depend on what exactly you set as the light position here. The lightDir as it is used here is the vector from the surface point you want to shade to the light source. The tutorial uses a directional light, so the light direction is the same everywhere in the scene and does not really depend on the position of the vertex/fragment. You can do the same with the fixed-function lighting by setting the w component of the light poisition to 0. If you don't do that, the results will be very different.
A side note: The GLSL code in that tutorial is unforunately relying on lots of deprecated features. If you learn GLSL, I would really recommend that you learn modern GL core profile.
lightDir is not a pre-defined uniform. The typical definition for a light direction vector is just a normalized vector to the light position in your shader, which you can easily calculate yourself by normalizing the position vector:
vec3 lightDir = normalize(gl_LightSource[0].position.xyz);
You could also pass it into the shader as a uniform you define yourself. For this approach, you would define the uniform in your fragment shader:
uniform vec3 lightDir;
and then get the uniform location with the glGetUniformLocation() call, and set a value with the glUniform3f() call. So once after linking the shader, you have this:
GLint lightDirLoc = glGetUniformLocation(shaderProg, "lightDir");
and then every time you want to change the light direction to (vx, vy, vz):
glUniform3f(lightDirLoc, vx, vy, vz);
For the second part of your question: The reason you get different behavior for the light position with the fixed pipeline compared to what you get with your own shader is that the fixed pipeline applies the current modelview matrix to the specified light position, which is not done in your shader.
As a number of others already suggested: If you learn OpenGL now, I strongly recommend that you skip the legacy features, which includes the fixed function light source parameters. In this case, you can simply use uniform variables you define yourself, as I already illustrated as an option for the lightDir variable above.

Bad shading result when applying material

I've got an openGL 3d scene with two simple objects (glutSolidCube and glutSolidTeapot). When I set up the lights with GL_COLOR_MATERIAL enabled, I get the following result:
Which is good. Then when I set up my own material like this:
//diffuse light color variables
GLfloat dlr = 0.4;
GLfloat dlg = 0.6;
GLfloat dlb = 0.9;
//ambient light color variables
GLfloat alr = 0.7;
GLfloat alg = 0.7;
GLfloat alb = 0.7;
//ambient light color variables
GLfloat slr = 0.4;
GLfloat slg = 0.4;
GLfloat slb = 0.4;
GLfloat DiffuseLight[] = {dlr, dlg, dlb}; //set DiffuseLight[] to the specified values
GLfloat AmbientLight[] = {alr, alg, alb}; //set AmbientLight[] to the specified values
GLfloat SpecularLight[] = {slr, slg, slb}; //set AmbientLight[] to the specified values
glMaterialfv(GL_FRONT_AND_BACK, GL_AMBIENT, (float *)&AmbientLight);
glMaterialfv(GL_FRONT_AND_BACK, GL_DIFFUSE, (float *)&DiffuseLight);
glMaterialfv(GL_FRONT_AND_BACK, GL_SPECULAR, (float *)&SpecularLight);
I get this very different result, in which you can see it's not being shaded properly, it's like FLAT shading although I defined it as SMOOTH (Gouraud).
Where can the problem be? Is it on the material definition?
You forgot to set specular shininess.
glMaterialf(GL_FRONT_AND_BACK, GL_SHININESS, 12.0f);
Set it to 10...25 and it'll look much better/shinier. It won't look as good as per-pixel lighting, though. Default value for shininess is zero which will look exactly like what you see - i.e. ugly.
I get this very different result, in which you can see it's not being shaded properly, it's like FLAT shading although I defined it as SMOOTH (Gouraud).
Well, you got smooth shading. However the OpenGL fixed function pipeline evaluates illumination values only at the vertices, then performs barycentric interpolation over the face. The result you got is exactly what to expect.
What you want is per pixel/fragment illumination. Only way to get this is by using a shader (well, it's also possible by tinkering with the so called "texture combiner environment", but getting that one to work properly is a lot of hard work. Implementing a Phong illumination shader is a matter of minutes).
By changing your lighting and material settings you're just putting emphasis on the shortcommings of the Gouraud shading model.

GLSL per pixel point light shading

VC++, OpenGL, SDL
I am wondering if there is a way to achieve smoother shading across a single Quad of geometry. Right now, the shading looks smooth with my point light, however, the intensity rises along the [/] diagonal subdivision of the face. The lighting is basically non-visible in-between vertices.
This is what happens as the light moves from left to right
As I move the light across the surface, it does this consistently. Gets brightest at each vertex and fades from there.
Am I forced to up the subdivision to achieve a smoother, more radial shade? or is there a method around this?
Here are the shaders I am using:
vert
varying vec3 vertex_light_position;
varying vec3 vertex_normal;
void main()
{
vertex_normal = normalize(gl_NormalMatrix * gl_Normal);
vertex_light_position = normalize(gl_LightSource[0].position.xyz);
gl_FrontColor = gl_Color;
gl_Position = gl_ModelViewProjectionMatrix * gl_Vertex;
}
frag
varying vec3 vertex_light_position;
varying vec3 vertex_normal;
void main()
{
float diffuse_value = max(dot(vertex_normal, vertex_light_position), 0.0);
gl_FragColor = gl_Color * diffuse_value;
}
My geometry in case anyone is wondering:
glBegin(GL_QUADS);
glNormal3f(0.0f, 0.0f, 1.0f);
glTexCoord2f(0.0f, 1.0f); glVertex3f(pos_x, pos_y - size_y, depth);
glTexCoord2f(1.0f, 1.0f); glVertex3f(pos_x + size_x, pos_y - size_y, depth);
glTexCoord2f(1.0f, 0.0f); glVertex3f(pos_x + size_x, pos_y, depth);
glTexCoord2f(0.0f, 0.0f); glVertex3f(pos_x, pos_y, depth);
glEnd();
There are a couple things I see as being possible issues.
Unless I am mistaken, you are using normalize(gl_LightSource[0].position.xyz); to calculate the light vector, but that is based solely on the position of the light, not on the vertex you are operating on. That means the value there will be the same for every vertex and will only change based on the current modelview matrix and light position. I would think that calculating the light vector by doing something like normalize(glLightSource[0].position.xyz - (gl_ModelViewMatrix * gl_Vertex).xyz) would be closer to what you would want.
Secondly, you ought to normalize your vectors in the fragment shader as well as in the vertex shader, since the interpolation of two unit vectors is not guaranteed to be a unit vector itself.
I think the problem is with light vector...
I suggest using:
vec3 light_vector = normalize(gl_LightSource[0].position.xyz - vertex_pos)
vertex_pos can be calculated by using:
vertex_pos = gl_ModelViewMatrix * gl_Vertex
Notice that all the vectors should be in the same space (camera, world, object)
Am I forced to up the subdivision to achieve a smoother, more radial
shade? or is there a method around this?
No, you are free to do whatever you want. The only code you need to change is the fragment shader. Try to play with it and see if you get a better result.
For example, you could do this :
diffuse_value = pow(diffuse_value, 3.0);
as explained here.

What's the best way to draw a fullscreen quad in OpenGL 3.2?

I'm doing ray casting in the fragment shader. I can think of a couple ways to draw a fullscreen quad for this purpose. Either draw a quad in clip space with the projection matrix set to the identity matrix, or use the geometry shader to turn a point into a triangle strip. The former uses immediate mode, deprecated in OpenGL 3.2. The latter I use out of novelty, but it still uses immediate mode to draw a point.
I'm going to argue that the most efficient approach will be in drawing a single "full-screen" triangle. For a triangle to cover the full screen, it needs to be bigger than the actual viewport. In NDC (and also clip space, if we set w=1), the viewport will always be the [-1,1] square. For a triangle to cover this area just completely, we need to have two sides to be twice as long as the viewport rectangle, so that the third side will cross the edge of the viewport, hence we can for example use the following coordiates (in counter-clockwise order): (-1,-1), (3,-1), (-1,3).
We also do not need to worry about the texcoords. To get the usual normalized [0,1] range across the visible viewport, we just need to make the corresponding texcoords for the vertices tiwce as big, and the barycentric interpolation will yield exactly the same results for any viewport pixel as when using a quad.
This approach can of course be combined with attribute-less rendering as suggested in demanze's answer:
out vec2 texcoords; // texcoords are in the normalized [0,1] range for the viewport-filling quad part of the triangle
void main() {
vec2 vertices[3]=vec2[3](vec2(-1,-1), vec2(3,-1), vec2(-1, 3));
gl_Position = vec4(vertices[gl_VertexID],0,1);
texcoords = 0.5 * gl_Position.xy + vec2(0.5);
}
Why will a single triangle be more efficient?
This is not about the one saved vertex shader invocation, and the one less triangle to handle at the front-end. The most significant effect of using a single triangle will be that there are less fragment shader invocations
Real GPUs always invoke the fragment shader for 2x2 pixel sized blocks ("quads") as soon as a single pixel of the primitive falls into such a block. This is necessary for calculating the window-space derivative functions (those are also implicitly needed for texture sampling, see this question).
If the primitive does not cover all 4 pixels in that block, the remaining fragment shader invocations will do no useful work (apart from providing the data for the derivative calculations) and will be so-called helper invocations (which can even be queried via the gl_HelperInvocation GLSL function). See also Fabian "ryg" Giesen's blog article for more details.
If you render a quad with two triangles, both will have one edge going diagonally across the viewport, and on both triangles, you will generate a lot of useless helper invocations at the diagonal edge. The effect will be worst for a perfectly square viewport (aspect ratio 1). If you draw a single triangle, there will be no such diagonal edge (it lies outside of the viewport and won't concern the rasterizer at all), so there will be no additional helper invocations.
Wait a minute, if the triangle extends across the viewport boundaries, won't it get clipped and actually put more work on the GPU?
If you read the textbook materials about graphics pipelines (or even the GL spec), you might get that impression. But real-world GPUs use some different approaches like Guard-band clipping. I won't go into detail here (that would be a topic on it's own, have a look at Fabian "ryg" Giesen's fine blog article for details), but the general idea is that the rasterizer will produce fragments only for pixels inside the viewport (or scissor rect) anyway, no matter if the primitive lies completely inside it or not, so we can simply throw bigger triangles at it if both of the following are true:
a) the triangle does only extend the 2D top/bottom/left/right clipping planes (as opposed to the z-Dimension near/far ones, which are more tricky to handle, especially because vertices may also lie behind the camera)
b) the actual vertex coordinates (and all intermediate calculation results the rasterizer might be doing on them) are representable in the internal data formats the GPU's hardware rasterizer uses. The rasterizer will use fixed-point data types of implementation-specific width, while vertex coords are 32Bit single precision floats. (That is basically what defines the size of the Guard-band)
Our triangle is only factor 3 bigger than the viewport, so we can be very sure that there is no need to clip it at all.
But is it worth it?
Well, the savings on fragment shader invocations are real (especially when you have a complex fragment shader), but the overall effect might be barely measurable in a real-world scenario. On the other hand, the approach is not more complicated than using a full-screen quad, and uses less data, so even if might not make a huge difference, it won't hurt, so why not using it?
Could this approach be used for all sorts of axis-aligned rectangles, not just fullscreen ones?
In theory, you can combine this with the scissor test to draw some arbitrary axis-aligned rectangle (and the scissor test will be very efficient, as it just limits which fragments are produced in the first place, it isn't a real "test" in HW which discards fragments). However, this requires you to change the scissor parameters for each rectangle you want to draw, which implies a lot of state changes and limits you to a single rectangle per draw call, so doing so won't be a good idea in most scenarios.
You can send two triangles creating a quad, with their vertex attributes set to -1/1 respectively.
You do not need to multiply them with any matrix in the vertex/fragment shader.
Here are some code samples, simple as it is :)
Vertex Shader:
const vec2 madd=vec2(0.5,0.5);
attribute vec2 vertexIn;
varying vec2 textureCoord;
void main() {
textureCoord = vertexIn.xy*madd+madd; // scale vertex attribute to [0-1] range
gl_Position = vec4(vertexIn.xy,0.0,1.0);
}
Fragment Shader :
varying vec2 textureCoord;
void main() {
vec4 color1 = texture2D(t,textureCoord);
gl_FragColor = color1;
}
No need to use a geometry shader, a VBO or any memory at all.
A vertex shader can generate the quad.
layout(location = 0) out vec2 uv;
void main()
{
float x = float(((uint(gl_VertexID) + 2u) / 3u)%2u);
float y = float(((uint(gl_VertexID) + 1u) / 3u)%2u);
gl_Position = vec4(-1.0f + x*2.0f, -1.0f+y*2.0f, 0.0f, 1.0f);
uv = vec2(x, y);
}
Bind an empty VAO. Send a draw call for 6 vertices.
To output a fullscreen quad geometry shader can be used:
#version 330 core
layout(points) in;
layout(triangle_strip, max_vertices = 4) out;
out vec2 texcoord;
void main()
{
gl_Position = vec4( 1.0, 1.0, 0.5, 1.0 );
texcoord = vec2( 1.0, 1.0 );
EmitVertex();
gl_Position = vec4(-1.0, 1.0, 0.5, 1.0 );
texcoord = vec2( 0.0, 1.0 );
EmitVertex();
gl_Position = vec4( 1.0,-1.0, 0.5, 1.0 );
texcoord = vec2( 1.0, 0.0 );
EmitVertex();
gl_Position = vec4(-1.0,-1.0, 0.5, 1.0 );
texcoord = vec2( 0.0, 0.0 );
EmitVertex();
EndPrimitive();
}
Vertex shader is just empty:
#version 330 core
void main()
{
}
To use this shader you can use dummy draw command with empty VBO:
glDrawArrays(GL_POINTS, 0, 1);
This is similar to the answer by demanze, but I would argue it's easier to understand. Also this is only drawn with 4 vertices by using TRIANGLE_STRIP.
#version 300 es
out vec2 textureCoords;
void main() {
const vec2 positions[4] = vec2[](
vec2(-1, -1),
vec2(+1, -1),
vec2(-1, +1),
vec2(+1, +1)
);
const vec2 coords[4] = vec2[](
vec2(0, 0),
vec2(1, 0),
vec2(0, 1),
vec2(1, 1)
);
textureCoords = coords[gl_VertexID];
gl_Position = vec4(positions[gl_VertexID], 0.0, 1.0);
}
The following comes from the draw function of the class that draws fbo textures to a screen aligned quad.
Gl.glUseProgram(shad);
Gl.glBindBuffer(Gl.GL_ARRAY_BUFFER, vbo);
Gl.glEnableVertexAttribArray(0);
Gl.glEnableVertexAttribArray(1);
Gl.glVertexAttribPointer(0, 3, Gl.GL_FLOAT, Gl.GL_FALSE, 0, voff);
Gl.glVertexAttribPointer(1, 2, Gl.GL_FLOAT, Gl.GL_FALSE, 0, coff);
Gl.glActiveTexture(Gl.GL_TEXTURE0);
Gl.glBindTexture(Gl.GL_TEXTURE_2D, fboc);
Gl.glUniform1i(tileLoc, 0);
Gl.glDrawArrays(Gl.GL_QUADS, 0, 4);
Gl.glBindTexture(Gl.GL_TEXTURE_2D, 0);
Gl.glBindBuffer(Gl.GL_ARRAY_BUFFER, 0);
Gl.glUseProgram(0);
The actual quad itself and the coords are got from:
private float[] v=new float[]{ -1.0f, -1.0f, 0.0f,
1.0f, -1.0f, 0.0f,
1.0f, 1.0f, 0.0f,
-1.0f, 1.0f, 0.0f,
0.0f, 0.0f,
1.0f, 0.0f,
1.0f, 1.0f,
0.0f, 1.0f
};
The binding and set up of the vbo's I leave to you.
The vertex shader:
#version 330
layout(location = 0) in vec3 pos;
layout(location = 1) in vec2 coord;
out vec2 coords;
void main() {
coords=coord.st;
gl_Position=vec4(pos, 1.0);
}
Because the position is raw, that is, not multiplied by any matrix the -1, -1::1, 1 of the quad fit into the viewport. Look for Alfonse's tutorial linked off any of his posts on openGL.org.