I'm trying to implement spline Catmull-Rom for image zooming using C++ and OpenCV.
I performed two tests, the first is image zooming (X2), and the second image reconstruction (zooming image decimated).
My problem is that in the image interpolated appear some white and black pixel (image1) when I displayed the value of pixels I found that white pixels have a negative value and the black one has a value greater than 255, also the image reconstructed appear blurred (image2 and image3).
float CalCurveInt(float t, float p0, float p1, float p2, float p3)
{
float t2 = t * t;
float t3 = t2 * t;
float x = 0.5f * ((2.0f * p1) +
(-p0 + p2) * t +
(2.0f * p0 - 5.0f * p1 + 4 * p2 - p3) * t2 +
(-p0 + 3.0f * p1 - 3.0f * p2 + p3) * t3);
return x;
}
Mat CalcCatmull(Mat &src, int zoom)
{
int v1, v2, v3, v4, Ptr, Xmax, Ymax;
float Result, t, c1, c2, c3, c4;
//------------------------------------------------------------
Xmax = src.cols;
Ymax = src.rows;
Size srcSize(zoom*Xmax, Ymax);
Mat dst(srcSize, CV_8UC1);
for (int j = 0; j < Ymax; j++)
{
Ptr = 0;
for (int i = 0; i < Xmax; i++)
{
v1 = i - 1; v2 = i; v3 = i + 1; v4 = i + 2;
if (i - 1 < 0) v1 = 0;
if (Xmax <= i + 1) v3 = Xmax - 1;
if (Xmax <= i + 2) v4 = Xmax - 1;
for (double J = 1; J <= zoom; J++)
{
t = J / zoom;
Result = 0.0;
c1 = src.at<uchar>(j, v1);
c2 = src.at<uchar>(j, v2);
c3 = src.at<uchar>(j, v3);
c4 = src.at<uchar>(j, v4);
Result = CalCurveInt(t, c1, c2, c3, c4);
dst.at<uchar>(j, Ptr) = abs(Result);
Ptr++;
}
}
}
//------------------------------------------------
Xmax = dst.cols;
Ymax = dst.rows;
Size srcSize1(Xmax, zoom*Ymax);
Mat dest(srcSize1, CV_8UC1);
for (int i = 0; i < Xmax; i++)
{
Ptr = 0;
for (int j = 0; j < Ymax; j++)
{
v1 = j - 1; v2 = j; v3 = j + 1; v4 = j + 2;
if (j - 1 < 0) v1 = 0;
if (Ymax <= j + 1) v3 = Ymax - 1;
if (Ymax <= j + 2) v4 = Ymax - 1;
for (double J = 1; J <= zoom; J++)
{
t = J / zoom;
Result = 0.0;
c1 = dst.at<uchar>(v1, i);
c2 = dst.at<uchar>(v2, i);
c3 = dst.at<uchar>(v3, i);
c4 = dst.at<uchar>(v4, i);
Result = CalCurveInt(t, c1, c2, c3, c4);
dest.at<uchar>(Ptr, i) = Result;
Ptr++;
}
}
}
return dest;
}
float zoom = 2.0;
int main()
{
Mat src = imread("fruits.png", CV_LOAD_IMAGE_GRAYSCALE);
int width = src.cols;
int hight = src.rows;
/*Image Decimation*/
Size srcdSize(int(width / zoom), int(hight / zoom));
Mat srcd;
pyrDown(src, srcd, srcdSize);
imshow("decimation", srcd);
Mat dst = CalcCatmull(srcd, zoom);
imshow("Image Source", src);
imshow("Image dest", dst);
imwrite("Image dest.png", dst);
waitKey(0);
return 0;
}
Thanks in advance.
My old implementation, seems it worked fine.
#include <iostream>
#include <vector>
#include <stdio.h>
#include <stdarg.h>
#include "opencv2/opencv.hpp"
#include "fstream"
#include "iostream"
using namespace std;
using namespace cv;
//-----------------------------------------------------------------------------------------------------
// Take 2 points, compute values between p1 and p2, p0 and p3 need for tangents computation
// on the bouunds. Parameter t - changes in range 0 to 1 (0 - we are in p1, 1 - we are in p2)
//-----------------------------------------------------------------------------------------------------
void PointOnCurve(Point2f &out, float t, Point2f p0, Point2f p1, Point2f p2, Point2f p3)
{
float t2 = t * t;
float t3 = t2 * t;
out.x = 0.5f * ( ( 2.0f * p1.x ) + ( -p0.x + p2.x ) * t +
( 2.0f * p0.x - 5.0f * p1.x + 4 * p2.x - p3.x ) * t2 +
( -p0.x + 3.0f * p1.x - 3.0f * p2.x + p3.x ) * t3 );
out.y = 0.5f * ( ( 2.0f * p1.y ) + ( -p0.y + p2.y ) * t +
( 2.0f * p0.y - 5.0f * p1.y + 4 * p2.y - p3.y ) * t2 +
( -p0.y + 3.0f * p1.y - 3.0f * p2.y + p3.y ) * t3 );
}
//-----------------------------------------------------------------------------------------------------
// interpolation of 4х4 patch
//
// S * S * S * S
// * * * * * * *
// S * S * S * S
// * * * * * * *
// S * S * S * S
// * * * * * * *
// S * S * S * S
//
// S- pixels of source imgage
//
// sequentially take 2 middle columns and computte D.
//
// S * 1 * 2 * S
// * * * * * * *
// S * 1 * 2 * S
// * * D * D * *
// S * 1 * 2 * S
// * * * * * * *
// S * 1 * 2 * S
//
// same for rows and we will have F
//
// S * S * S * S
// * * * * * * *
// 3 * 3 F 3 * 3
// * * D * D * *
// 4 * 4 F 4 * 4
// * * * * * * *
// S * S * S * S
//
// then compute diagonals and after averafing with neihbours will find С
//
// 1 * S * S * 2
// * * * * * * *
// S * 1 F 2 * S
// * * D C D * *
// S * 2 F 1 * S
// * * * * * * *
// 2 * S * S * 1
//-----------------------------------------------------------------------------------------------------
void PointOnSurface(Mat& src,Mat& dst)
{
float t=0.5;
Point2f out;
dst=Mat(3,3,CV_32FC1);
// Угловые точки результата совпадают с точками центральной ячейки исходного патча
dst.at<float>(0,0)=src.at<float>(1,1);
dst.at<float>(2,0)=src.at<float>(2,1);
dst.at<float>(0,2)=src.at<float>(1,2);
dst.at<float>(2,2)=src.at<float>(2,2);
Point2f p0;
Point2f p1;
Point2f p2;
Point2f p3;
p0.x=0;p0.y=src.at<float>(0,1);
p1.x=1;p1.y=src.at<float>(1,1);
p2.x=2;p2.y=src.at<float>(2,1);
p3.x=3;p3.y=src.at<float>(3,1);
PointOnCurve(out,t,p0,p1,p2,p3);
dst.at<float>(1,0)=out.y;
p0.x=0;p0.y=src.at<float>(0,2);
p1.x=1;p1.y=src.at<float>(1,2);
p2.x=2;p2.y=src.at<float>(2,2);
p3.x=3;p3.y=src.at<float>(3,2);
PointOnCurve(out,t,p0,p1,p2,p3);
dst.at<float>(1,2)=out.y;
p0.x=0;p0.y=src.at<float>(1,0);
p1.x=1;p1.y=src.at<float>(1,1);
p2.x=2;p2.y=src.at<float>(1,2);
p3.x=3;p3.y=src.at<float>(1,3);
PointOnCurve(out,t,p0,p1,p2,p3);
dst.at<float>(0,1)=out.y;
p0.x=0;p0.y=src.at<float>(2,0);
p1.x=1;p1.y=src.at<float>(2,1);
p2.x=2;p2.y=src.at<float>(2,2);
p3.x=3;p3.y=src.at<float>(2,3);
PointOnCurve(out,t,p0,p1,p2,p3);
dst.at<float>(2,1)=out.y;
// diagonals
// 1
p0.x=0;p0.y=src.at<float>(0,0);
p1.x=1;p1.y=src.at<float>(1,1);
p2.x=2;p2.y=src.at<float>(2,2);
p3.x=3;p3.y=src.at<float>(3,3);
PointOnCurve(out,t,p0,p1,p2,p3);
float d1=out.y;
// 2
p0.x=0;p0.y=src.at<float>(3,0);
p1.x=1;p1.y=src.at<float>(2,1);
p2.x=2;p2.y=src.at<float>(1,2);
p3.x=3;p3.y=src.at<float>(0,3);
PointOnCurve(out,t,p0,p1,p2,p3);
float d2=out.y;
// averaging
dst.at<float>(1,1)=1.0/6.0*(d1+d2+dst.at<float>(0,1)+dst.at<float>(1,0)+dst.at<float>(1,2)+dst.at<float>(2,1));
}
//-----------------------------------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------------------------------
//-----------------------------------------------------------------------------------------------------
void Scale2Times(Mat& src_img,Mat &dstImg)
{
Mat imgf,img;
Mat dst;
Mat src;
src_img.convertTo(imgf,CV_32FC1,1.0/255.0);
cv::copyMakeBorder(imgf,img,1,1,1,1,cv::BORDER_REFLECT);
dstImg=Mat(src_img.rows*2,src_img.cols*2,CV_32FC1);
for(int i=0;i<img.rows-4;i++)
{
for(int j=0;j<img.cols-4;j++)
{
img(Rect(j,i,4,4)).copyTo(src);
PointOnSurface(src,dst);
dst.copyTo(dstImg(Rect(2*j+1,2*i+1,3,3)));
}
}
dstImg=dstImg(Rect(0,0,dstImg.cols-2,dstImg.rows-2)).clone();
}
//-----------------------------------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------------------------------
int main( int argc, char** argv )
{
namedWindow("Src");
namedWindow("cvResize");
namedWindow("Catmul-Rom");
Mat Img=imread("C:\\ImagesForTest\\1.tiff",0);
imshow("Src",Img);
Mat dstImg;
Scale2Times(Img,dstImg);
imshow("Catmul-Rom",dstImg);
Mat ImgLin(Img.rows*2,Img.cols*2,CV_8UC1);
cv::resize(Img,ImgLin,Size(Img.cols*2,Img.rows*2),INTER_CUBIC);
imshow("cvResize",ImgLin);
waitKey(0);
//getchar();
return 0;
}
Related
I want to preface this post: This is perhaps more of a math question than a coding question.
I am developing a plant (lettuce) model which involves somewhat complex geometry. At this stage I have a surface curved in 2 dimensions but now I want to add waviness to this curved surface but am having a hard time envisioning how to do so. The surface is made of triangle primatives, the primatives take xyz vectors to encode location of vertices. I am using an API termed HELIOS to develop this procedural model of lettuce. I essentially created the surface with for loops and the sine function. Disclaimer: I do not have a strong background in geometry, computer graphics, or C++.
Here is the relevant code:
#include "Context.h"
#include "Visualizer.h"
using namespace helios;
using namespace std;
vector<uint> addLeaf(float leaf_length, float leaf_width, float leaf_bend_x, float leaf_bend_y, float rotation_z, float rotation_x, float displacement, float radius, Context* context ) {
std::vector<uint> UUIDs;
// float leaf_length = 10;
float Nz = 10; // params.s1_leaf_subdivisions ; number of times to split the dimension
float dz = leaf_length / Nz; // length of each subdivision
// float leaf_width = 10;
float Ny = 10; // params.s1_leaf_subdivisions ; number of times to split the dimension
float dy = leaf_width / Ny; // length of each subdivision
// leaf wave
// float A_3 = leaf_length * float(0.5); // Half waves on the leaf 10
// float A_2 = leaf_length * float(0.1); // amplitude 0.25
float A_3 = 1; // Half waves on the leaf 10
float A_2 = 1; // amplitude 0.25
float leaf_amplitude = leaf_length / float(10);
// the 2 * dx extends the sine wave a bit beyond 1/2 wavelength so base of leaves come together
for (int i = 0; i < Nz + (2 * dz); i++) {
for (float j = 0; j < Ny; j++) {
float z = i * dz; //for each subdivision in z define Z coord
float y = j * dy; //for each subdivision in y define y coord
float x = 0; // we will also need an x coord
float sz = dz; // the next step in z will be equal to a subdivision in z
float sy = dy; // the next step in y will be equal to a subdivision in y
float z_i = z * M_PI / (Nz * dz); // the second coord for z is z_i needed to define a triangle primitive
float sz_i = (z + sz) * M_PI / (Nz * dz); //
// this would be y_1 in sorghum model
float y_i = (y * M_PI / (Ny * dy)) / (A_3); // the second coord for y is y_i needed to define a triangle primitive
float sy_i = ((y + sy) * M_PI / (Ny * dy)) / (A_3);
//waviness of leaf
float leaf_wave_1;
float leaf_wave_2;
float leaf_wave_3;
float leaf_wave_4;
if (j == 0) {
leaf_wave_1 = A_2 * sin(z_i);
leaf_wave_2 = A_2 * sin(sz_i);
} else {
leaf_wave_1 = A_2 * sin(z_i);
leaf_wave_2 = A_2 * sin(sz_i);
}
// Now define x based on z,y and add leaf bend in x and y
x = leaf_bend_x * sin(z_i);
x = ((x*radius + displacement + (leaf_bend_y * sin(y_i))) / 2) + leaf_wave_1;
vec3 v0(x*radius + displacement, y, z);
x = leaf_bend_x * sin(sz_i);
x = ((x*radius + displacement + (leaf_bend_y * sin(y_i))) / 2) + leaf_wave_2;
vec3 v1(x*radius + displacement, y, z + sz);
if (j == Nz - 1) {
leaf_wave_3 = sin(sz_i) * A_2;
leaf_wave_4 = sin(z_i) * A_2;
} else {
leaf_wave_3 = sin(sz_i) * A_2;
leaf_wave_4 = sin(z_i) * A_2;
}
x = leaf_bend_x * sin(sz_i);
x = ((x*radius + displacement + (leaf_bend_y * sin(sy_i))) / 2) + leaf_wave_3 ;
vec3 v2(x*radius + displacement, y + sy, z + sz);
x = leaf_bend_x * sin(z_i);
x = ((x*radius + displacement + (leaf_bend_y * sin(sy_i))) / 2) + leaf_wave_4 ;
vec3 v3(x*radius + displacement, y + sy, z);
// set of two triangles which form a rectangle or square as subunits of leaf
UUIDs.push_back(context->addTriangle(v0, v1, v2, RGB::cyan));
UUIDs.push_back(context->addTriangle(v0, v2, v3, RGB::magenta));
}
}
return UUIDs;
}
// call to functions and build lettuce geometries
int main( void ){
Context context;
float leaf_length = 10;
float leaf_width = 10;
float radius = 1; // additional control leaf curvature
// add leaves one by one; 'i' here is # of leaves external to whorl
for (int i = 0; i < 6; i++) {
if (i == 0)addLeaf(leaf_length, leaf_width, 0.5*leaf_length, 0.5*leaf_width, 4 * M_PI / 9*i, 0, i/5, radius, &context);
// if (i == 1)addLeaf(leaf_length, leaf_width, 0.5*leaf_length, 0.5*leaf_width, 4 * M_PI / 9*i, -M_PI/ 20, i/5, radius, &context);
// if (i == 2)addLeaf(leaf_length, leaf_width, 0.5*leaf_length, 0.5*leaf_width, 4 * M_PI / 9*i, -M_PI/ 10, i/5, radius, &context);
// if (i == 3)addLeaf(leaf_length, leaf_width, 0.5*leaf_length, 0.5*leaf_width, 4 * M_PI / 9*i, -M_PI/ 9, i/5, radius, &context);
// if (i == 4)addLeaf(leaf_length, leaf_width, 0.5*leaf_length, 0.5*leaf_width, 4 * M_PI / 9*i, -M_PI/ 7, i/5, radius, &context);
// if (i == 5)addLeaf(leaf_length, leaf_width, 0.5*leaf_length, 0.5*leaf_width, 4 * M_PI / 9*i, -M_PI/ 5, i/5, radius, &context);
}
Visualizer visualizer(800);
visualizer.buildContextGeometry(&context);
visualizer.setLightingModel(Visualizer::LIGHTING_PHONG);
visualizer.plotInteractive();
}
I tried to use a sine function and an additional for loop to create a series of values to add to the X coordinate of the triangles but did not obtain the result I was looking for.
This is how you can create a Wave Geometry.
you can keep updating the m_fTime values to animate the wave.
// m_iWaveFlowOut -> value to be either 0 or 1
//m_fFrequency -> Number of waves
//m_fAmplitude -> Amplitude of wave
void Generate()
{
const int n8 = m_iNSegments * 8; // size of VBO gfx data
const int sz0 = m_iMSegments * n8; // size of VBO gfx data
const int sz1 = (m_iMSegments - 1) * (m_iNSegments - 1) * 6;// size of indices
verticesRect.clear();
indicesRect.clear();
int a,i, j, k, b;
float x, y, z, dx, dy, l;
glm::vec3 u, v, nor;
dx = 2.0 * ( m_fWidth / float(m_iNSegments - 1));
dy = 2.0 * ( m_fHeight / float(m_iMSegments - 1));
for (a = 0, y = -m_fHeight, j = 0; j < m_iMSegments; j++, y += dy)
for (x = -m_fWidth, i = 0; i < m_iNSegments; i++, x += dx)
{
float dist = glm::length(glm::vec2(x + m_fxOffset, y + m_fyOffset));
float attenuation, kc, kq;
kc = 1.0; kq = 0.0;
attenuation = 1.0f;
if (m_bUseAttenuation) {
attenuation = 1.0 / (kc + (this->m_fKl * dist) + (kq * pow(dist, 2)));
if (attenuation > 1.0) attenuation = 1.0;
}
switch (m_WAVETYPE)
{
case Sum_Wave2::WAVE2_TYPE::COS:
z = (-m_fAmplitude * attenuation) * cos(((x + m_fxOffset) / m_fFrequency) + m_fTime * m_iWaveFlowOut);
break;
case Sum_Wave2::WAVE2_TYPE::SIN:
z = (-m_fAmplitude * attenuation) * sin(((y + m_fyOffset) / m_fFrequency) + m_fTime * m_iWaveFlowOut);
break;
case Sum_Wave2::WAVE2_TYPE::RING:
z = (-m_fAmplitude * attenuation) * sin((glm::length(glm::vec2(x + m_fxOffset, y + m_fyOffset)) + m_fTime * m_iWaveFlowOut) / m_fFrequency);
break;
default:
z = 0.0;
break;
}
verticesRect.push_back(x); a++;
verticesRect.push_back(y); a++;
verticesRect.push_back(z); a++;
// Normal ( will be recomputed later)
verticesRect.push_back(0.0); a++;
verticesRect.push_back(0.0); a++;
verticesRect.push_back(1.0); a++;
// TexCoord
verticesRect.push_back((x + m_fWidth) / (m_fWidth + m_fWidth)); a++;
verticesRect.push_back((y + m_fHeight) / (m_fHeight + m_fHeight)); a++;
}
// triangulation indices
for(a = 0, j = 1; j < m_iMSegments; j++ )
for (i = 1; i < m_iNSegments; i++)
{
b = ((m_iNSegments * j) + i) * 8;
// First triangle per quad
indicesRect.push_back(b - 8); a++;
indicesRect.push_back(b - 8 - n8); a++;
indicesRect.push_back(b); a++;
// Second triangle per quad
indicesRect.push_back(b - 8 - n8); a++;
indicesRect.push_back(b - n8); a++;
indicesRect.push_back(b); a++;
// recompute inner normals
for (k = 0; k < 3; k++) {
u[k] = verticesRect[indicesRect[a - 6] + k] - verticesRect[indicesRect[a - 4] + k];
v[k] = verticesRect[indicesRect[a - 5] + k] - verticesRect[indicesRect[a - 4] + k];
}
glm::vec3 cross1 = crossProduct(u, v);
cross1 = glm::normalize(cross1);
for (k = 0; k < 3; k++) {
u[k] = verticesRect[indicesRect[a - 3] + k] - verticesRect[indicesRect[a - 1] + k];
v[k] = verticesRect[indicesRect[a - 2] + k] - verticesRect[indicesRect[a - 1] + k];
}
glm::vec3 cross2 = crossProduct(u, v);
cross2 = glm::normalize(cross2);
for (k = 0; k < 3; k++) {
verticesRect[indicesRect[a - 1] + 3 + k] = 0.5 * (cross1[k] + cross2[k]);
}
}
for (i = 0; i < sz1; i++) {
indicesRect[i] = indicesRect[i] /= 8;
}
}
I am making a 3D game using SFML. I want to use normals to check if the triangle need to be draw in a terrain (triangle) mesh.Here is my code:
vec3d line1, line2, normal;
line1.x = terrain.tris[i].p[0].x - terrain.tris[i].p[1].x;
line1.y = terrain.tris[i].p[0].y - terrain.tris[i].p[1].y;
line1.z = terrain.tris[i].p[0].z - terrain.tris[i].p[1].z;
line2.x = terrain.tris[i].p[1].x - terrain.tris[i].p[2].x;
line2.y = terrain.tris[i].p[1].y - terrain.tris[i].p[2].y;
line2.z = terrain.tris[i].p[1].z - terrain.tris[i].p[2].z;
normal.x = line1.y * line2.z - line1.z * line2.y;
normal.y = line1.z * line2.x - line1.x * line2.z;
normal.z = line1.x * line2.y - line1.y * line2.x;
vec3d vCameraRay = Vector_Sub(terrain.tris[i].p[0], cam.pos);
if (Vector_DotProduct(normal, vCameraRay) < 0.0f){
do_something();
}
Vector_DotProduct:
float Vector_DotProduct(vec3d& v1, vec3d& v2) {
return v1.x * v2.x + v1.y * v2.y + v1.z * v2.z;
}
Vector_sub:
vec3d Vector_Sub(vec3d& v1, vec3d& v2) {
return { v1.x - v2.x, v1.y - v2.y, v1.z - v2.z };
}
And the vec3d is just a struct that contains
float x, y, z;
But whenever I run the program, I always get this
problem
The triangles that should be displayed was considered "Not visable" by my program(The normal of it is wrong), but the calculation seems right to me!
The code for producing triangle grid:
for (int i = 0; i < 2; i++) {
for (int y = 0; y < wds; y++) {
for (int x = 0; x < wds; x++) {
if (x + 1 < wds && y + 1 < wds) {
vec3d point[3];
switch (i) {
case 0:
point[0] = { (float)(y + 1) * scl + p.x, height * h[y + 1][x + 1], (float)(x + 1) * scl + p.z };
point[1] = { (float)y * scl + p.x, height * h[y][x], (float)x * scl + p.z };
point[2] = { (float)y * scl + p.x, height * h[y][x + 1], (float)(x + 1) * scl + p.z };
break;
case 1:
point[0] = { (float)(y + 1) * scl + p.x, height * h[y + 1][x + 1], (float)(x + 1) * scl + p.z };
point[2] = { (float)y * scl + p.x, height * h[y][x], (float)x * scl + p.z };
point[1] = { (float)(y + 1) * scl + p.x, height * h[y + 1][x], (float)x * scl + p.z };
break;
};
triangle out = { point[0], point[1], point[2] };
tris.push_back(out);
}
}
}
}
The wds is for the size of the grid(side length), the scl is the size of per grid, the h is the height map(two dimentions), and p is the position of the upper left corner.
My 3D point to camera point code:
float mx = p.x - pos.x;
float my = p.y - pos.y;
float mz = p.z - pos.z;
float dx = cos(rot.y) * (sin(rot.z) * my + cos(rot.z) * mx) - sin(rot.y) * mz;
float dy = sin(rot.x) * (cos(rot.y) * mz + sin(rot.y) * (sin(rot.z) * my + cos(rot.z) * mx)) + cos(rot.x) * (cos(rot.z) * my + sin(rot.z) * mx);
float dz = cos(rot.x) * (cos(rot.y) * mz + sin(rot.y) * (sin(rot.z) * my + cos(rot.z) * mx)) - sin(rot.x) * (cos(rot.z) * my + sin(rot.z) * mx);
return { dx, dy, dz };
The rot is the rotation of the camera, p is the position of the camera, and the pos is the 3D point I want to transfer to camera point.
I have been working on this problem for almost a week, but nothing seems to work.It will be a lot of help if you guys can find the problem. Thanks in advance!
Full Code
Init.h:
#ifndef _INIT_H_
#define _INIT_H_
#define WIDTH 1200
#define HEIGHT 800
#endif
Noise.h: noice function
#pragma once
#ifndef _NOISE_H_
#define _NOISE_H_
extern int primeIndex;
extern int numOctaves;
extern double persistence;
extern int primes[10][3];
#endif
#include <math.h>
float Noise(int i, int x, int y);
float SmoothedNoise(int i, int x, int y);
float Interpolate(float a, float b, float x);
float InterpolatedNoise(int i, float x, float y);
float noise(float x, float y);
Noise.cpp:
#include "Noise.h"
int primeIndex = 0;
int numOctaves = 7;
double persistence = 0.5;
int primes[10][3] = {
{ 995615039, 600173719, 701464987 },
{ 831731269, 162318869, 136250887 },
{ 174329291, 946737083, 245679977 },
{ 362489573, 795918041, 350777237 },
{ 457025711, 880830799, 909678923 },
{ 787070341, 177340217, 593320781 },
{ 405493717, 291031019, 391950901 },
{ 458904767, 676625681, 424452397 },
{ 531736441, 939683957, 810651871 },
{ 997169939, 842027887, 423882827 }
};
float Noise(int i, int x, int y) {
int n = x + y * 57;
n = (n << 13) ^ n;
int a = primes[i][0], b = primes[i][1], c = primes[i][2];
int t = (n * (n * n * a + b) + c) & 0x7fffffff;
return 1.0 - (float)(t) / 1073741824.0;
}
float SmoothedNoise(int i, int x, int y) {
float corners = (Noise(i, x - 1, y - 1) + Noise(i, x + 1, y - 1) +
Noise(i, x - 1, y + 1) + Noise(i, x + 1, y + 1)) / 16,
sides = (Noise(i, x - 1, y) + Noise(i, x + 1, y) + Noise(i, x, y - 1) +
Noise(i, x, y + 1)) / 8,
center = Noise(i, x, y) / 4;
return corners + sides + center;
}
float Interpolate(float a, float b, float x) {
float ft = x * 3.1415927,
f = (1 - cos(ft)) * 0.5;
return a * (1 - f) + b * f;
}
float InterpolatedNoise(int i, float x, float y) {
int integer_X = x;
float fractional_X = x - integer_X;
int integer_Y = y;
float fractional_Y = y - integer_Y;
float v1 = SmoothedNoise(i, integer_X, integer_Y),
v2 = SmoothedNoise(i, integer_X + 1, integer_Y),
v3 = SmoothedNoise(i, integer_X, integer_Y + 1),
v4 = SmoothedNoise(i, integer_X + 1, integer_Y + 1),
i1 = Interpolate(v1, v2, fractional_X),
i2 = Interpolate(v3, v4, fractional_X);
return Interpolate(i1, i2, fractional_Y);
}
float noise(float x, float y) {
float total = 0,
frequency = pow(2, numOctaves),
amplitude = 1;
for (int i = 0; i < numOctaves; ++i) {
frequency /= 2;
amplitude *= persistence;
total += InterpolatedNoise((primeIndex + i) % 10,
x / frequency, y / frequency) * amplitude;
}
return total / frequency;
}
Struct.h:
#pragma once
#ifndef _STRUCT_H_
#define _STRUCT_H_
#endif
#include <vector>
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <list>
#include "Init.h"
struct vec3d {
float x = 0;
float y = 0;
float z = 0;
};
struct vec2d {
float x = 0;
float y = 0;
};
struct triangle {
vec3d p[3];
int color[3] = { 255, 255, 255 };
vec3d normal;
};
Terrain.h: terrain generation
#pragma once
#ifndef _TERRAIN_H_
#define _TERRAIN_H_
#endif
#include <vector>
#include "Struct.h"
#include "Noise.h"
#define wds 50
#define scl 20
#define width 1000
#define height 120
struct Terrain {
public:
std::vector<triangle> tris;
vec3d p = { -width / 2, 0.0f, -width / 2 };
float h[wds][wds];
void triangle_Strip();
};
Terrain.cpp:
#include "Terrain.h"
void Terrain::make_value() {
for (int y = 0; y < wds; y++) {
for (int x = 0; x < wds; x++) {
int a = abs(p.z / scl + x), b = abs(p.x / scl + y);
h[y][x] = noise(a, b) * 30;
}
}
}
void Terrain::triangle_Strip() {
tris.clear();
for (int i = 0; i < 2; i++) {
for (int y = 0; y < wds; y++) {
for (int x = 0; x < wds; x++) {
if (x + 1 < wds && y + 1 < wds) {
vec3d point[3];
switch (i) {
case 0:
point[0] = { (float)(y + 1) * scl + p.x, height * h[y + 1][x + 1], (float)(x + 1) * scl + p.z };
point[1] = { (float)y * scl + p.x, height * h[y][x], (float)x * scl + p.z };
point[2] = { (float)y * scl + p.x, height * h[y][x + 1], (float)(x + 1) * scl + p.z };
break;
case 1:
point[0] = { (float)(y + 1) * scl + p.x, height * h[y + 1][x + 1], (float)(x + 1) * scl + p.z };
point[2] = { (float)y * scl + p.x, height * h[y][x], (float)x * scl + p.z };
point[1] = { (float)(y + 1) * scl + p.x, height * h[y + 1][x], (float)x * scl + p.z };
break;
};
triangle out = { point[0], point[1], point[2] };
tris.push_back(out);
}
}
}
}
}
Camera.h: camera class, get3dcoord which is get camera point, get2dcoord which is get screen point
#pragma once
#ifndef _CAMERA_H_
#define _CAMERA_H_
#endif
#include "Mat.h"
#include "Init.h"
#include "Struct.h"
class Cam {
public:
vec3d pos;
vec3d rot;
float fov;
float speed;
Cam(vec3d p, vec3d r, float f, float s);
vec3d get3dcoord(vec3d p);
vec3d get2dcoord(vec3d p);
};
Camera.cpp:
#include "Camera.h"
Cam::Cam(vec3d p, vec3d r, float f, float s) {
pos = p;
rot = r;
fov = f;
speed = s;
}
vec3d Cam::get3dcoord(vec3d p) {
float mx = p.x - pos.x;
float my = p.y - pos.y;
float mz = p.z - pos.z;
float dx = cos(rot.y) * (sin(rot.z) * my + cos(rot.z) * mx) - sin(rot.y) * mz;
float dy = sin(rot.x) * (cos(rot.y) * mz + sin(rot.y) * (sin(rot.z) * my + cos(rot.z) * mx)) + cos(rot.x) * (cos(rot.z) * my + sin(rot.z) * mx);
float dz = cos(rot.x) * (cos(rot.y) * mz + sin(rot.y) * (sin(rot.z) * my + cos(rot.z) * mx)) - sin(rot.x) * (cos(rot.z) * my + sin(rot.z) * mx);
return { dx, dy, dz };
}
vec3d Cam::get2dcoord(vec3d p) {
float e = (float)tan(fov / 2) * (float)(WIDTH / 2);
float x = (WIDTH / 2) + (e * p.x) / p.z;
float y = (HEIGHT / 2) + (e * p.y) / p.z;
return { x, y, 0 };
}
3D engine.h: main
#pragma once
#ifndef _3D_ENGINE_H_
#define _3D_ENGINE_H_
#endif
#include <SFML/Graphics.hpp>
#include <SFML/System.hpp>
#include <SFML/Window.hpp>
#include <iostream>
#include <stdlib.h>
#include <sstream>
#include <list>
#include "Struct.h"
#include "Camera.h"
#include "Init.h"
#include "Noise.h"
#include "Terrain.h"
#define endl "\n"
void draw_triangle(vec3d p1, vec3d p2, vec3d p3, int color[]);
vec3d Vector_Sub(vec3d& v1, vec3d& v2);
float Vector_DotProduct(vec3d& v1, vec3d& v2);
3D engine.cpp:
#include "3D engine.h"
sf::RenderWindow window(sf::VideoMode(WIDTH, HEIGHT), "3D game in progress");
const sf::Vector2i windowCenter(WIDTH / 2, HEIGHT / 2);
Cam cam({ 0.0f, -40.0f, 0.0f }, { 0.0f, 0.0f, 0.0f }, 90, 2.0f);
Terrain terrain;
sf::VertexArray TriangleToDraw(sf::Triangles);
void draw_triangle(vec3d p1, vec3d p2, vec3d p3, int color[]) {
sf::VertexArray tri(sf::Triangles, 3);
tri[0].position = sf::Vector2f(p1.x, p1.y);
tri[1].position = sf::Vector2f(p2.x, p2.y);
tri[2].position = sf::Vector2f(p3.x, p3.y);
tri[0].color = sf::Color((int)color[0], (int)color[1], (int)color[2]);
tri[1].color = sf::Color((int)color[0], (int)color[1], (int)color[2]);
tri[2].color = sf::Color((int)color[0], (int)color[1], (int)color[2]);
TriangleToDraw.append(tri[0]);
TriangleToDraw.append(tri[1]);
TriangleToDraw.append(tri[2]);
}
vec3d Vector_Sub(vec3d& v1, vec3d& v2) {
return { v1.x - v2.x, v1.y - v2.y, v1.z - v2.z };
}
float Vector_DotProduct(vec3d& v1, vec3d& v2) {
return v1.x * v2.x + v1.y * v2.y + v1.z * v2.z;
}
int main() {
window.setMouseCursorVisible(false);
sf::Mouse::setPosition(windowCenter, window);
terrain.make_value();
terrain.triangle_Strip();
while (window.isOpen()) {
TriangleToDraw.clear();
sf::Event event;
while (window.pollEvent(event)) {
if (event.type == sf::Event::Closed) {
window.close();
}
if ((event.type == sf::Event::MouseLeft || event.type == sf::Event::MouseMoved) && sf::Mouse::getPosition(window) != windowCenter) {
sf::Vector2i pos = sf::Mouse::getPosition(window);
int x_a = pos.x;
int y_a = pos.y;
float movex = (float)(x_a - windowCenter.x) / 500.0f;
float movey = (float)(y_a - windowCenter.y) / 500.0f;
cam.rot.x -= movey;
cam.rot.y += movex;
sf::Mouse::setPosition(windowCenter, window);
}
}
float x = sin(cam.rot.y) * cam.speed; float z = cos(cam.rot.y) * cam.speed;
if (sf::Keyboard::isKeyPressed(sf::Keyboard::W)) { cam.pos.x -= x; cam.pos.z -= z; /*terrain.p.x -= x; terrain.p.z -= z;*/ }
if (sf::Keyboard::isKeyPressed(sf::Keyboard::S)) { cam.pos.x += x; cam.pos.z += z; /*terrain.p.x += x; terrain.p.z += z;*/ }
if (sf::Keyboard::isKeyPressed(sf::Keyboard::A)) { cam.pos.x += z; cam.pos.z -= x; /*terrain.p.x += z; terrain.p.z -= x;*/ }
if (sf::Keyboard::isKeyPressed(sf::Keyboard::D)) { cam.pos.x -= z; cam.pos.z += x; /*terrain.p.x -= z; terrain.p.z += x;*/ }
if (sf::Keyboard::isKeyPressed(sf::Keyboard::Space)) cam.pos.y += cam.speed;
if (sf::Keyboard::isKeyPressed(sf::Keyboard::LSHIFT)) cam.pos.y -= cam.speed;
window.clear(sf::Color(0, 0, 0));
std::vector<triangle> triangles;
for (int i = 0, len = terrain.tris.size(); i < len; i++) {
std::vector<vec3d> projected(3);
for (int r = 0; r < 3; r++) projected[r] = cam.get3dcoord(terrain.tris[i].p[r]);
vec3d line1, line2, normal;
line1.x = projected[0].x - projected[1].x;
line1.y = projected[0].y - projected[1].y;
line1.z = projected[0].z - projected[1].z;
line2.x = projected[1].x - projected[2].x;
line2.y = projected[1].y - projected[2].y;
line2.z = projected[1].z - projected[2].z;
normal.x = line1.y * line2.z - line1.z * line2.y;
normal.y = line1.z * line2.x - line1.x * line2.z;
normal.z = line1.x * line2.y - line1.y * line2.x;
float l = sqrtf(normal.x * normal.x + normal.y * normal.y + normal.z * normal.z);
normal.x /= l; normal.y /= l; normal.z /= l;
vec3d vCameraRay1 = Vector_Sub(projected[0], cam.pos);
if (Vector_DotProduct(normal, vCameraRay1) < 0.0f && projected[0].z < 0.0f && projected[1].z < 0.0f && projected[2].z < 0.0f/*avoid points behind the camera to be projected*/) {
vec3d light = { 0.0f, 0.0f, 1.0f };
float lNormal = sqrtf(powf(light.x, 2) + powf(light.y, 2) + powf(light.z, 2));
light.x /= lNormal; light.y /= lNormal; light.z /= lNormal;
float dp = std::max(0.3f, Vector_DotProduct(light, normal));
int c = 255 * dp;
triangles.push_back({projected[0], projected[1], projected[2], {c, c, c}});
}
}
std::sort(triangles.begin(), triangles.end(), [](triangle& t1, triangle& t2)
{
float z1 = (t1.p[0].z + t1.p[1].z + t1.p[2].z) / 3.0f;
float z2 = (t2.p[0].z + t2.p[1].z + t2.p[2].z) / 3.0f;
return z1 < z2;
});
for (triangle tri : triangles) {
draw_triangle(cam.get2dcoord(tri.p[0]), cam.get2dcoord(tri.p[1]), cam.get2dcoord(tri.p[2]), tri.color);
}
window.draw(TriangleToDraw);
window.display();
}
return 0;
}
One of the triangle that had the wrong normal:
Normal: -0.08
vCameraRay: -588.2, 19.0, -662.5
Vector Dotproduct: -74.7
Triangle Point1: 19.03, -35.10, -75.69
Triangle Point2: -1.28, -27.57, -92.94
Triangle Point3: -0.96, -25.79, -71.35
Camera position: 2.20, 627.26, 0.03
One of the triangle that had the wrong Dot Product:
Normal: 0.59
vCameraRay: 468.41, 13.59, -634.75
Vector DotProduct: -55.05
Triangle Point1: 13.59, -7.29, -55.05
Triangle Point2: 19.19, 7.04, -37.72
Trianlge Point3: 0.00, 9.75, -28.36
Camera pos: 0.00, 627.45, 0.00
Let's say AB1, AB2, CD1, CD2. AB1&AB2 and CD1&CD2 3D Points makes a Line Segment. And the Said Line segments are Not in the same Plane.
AP is a point Line segment AB1&AB2,
BP is a point Line segment CD1&CD2.
Point1 and Point2 Closest To each other (Shortest distance between the two line segment)
Now, how can I Find the said two points Point1 and Point2? What method should I use?
Below is only partially solved For full solution please See this answer here... because This function does not work when Two Line is on the same plane...
Thanks to #MBo I have come across Geometry GoldMine of Code and Explanations! They have Many Source Code Contributors! i picked one from there here it is clean and great!
bool CalculateLineLineIntersection(Vector3D p1, Vector3D p2, Vector3D p3, Vector3D p4, Vector3D& resultSegmentPoint1, Vector3D& resultSegmentPoint2)
{
// Algorithm is ported from the C algorithm of
// Paul Bourke at http://local.wasp.uwa.edu.au/~pbourke/geometry/lineline3d/
resultSegmentPoint1 = { 0,0,0 };
resultSegmentPoint2 = { 0,0,0 };
Vector3D p13 = VectorMinus(p1, p3);
Vector3D p43 = VectorMinus(p4, p3);
/*if (p43.LengthSq() < Math.Epsilon) {
return false;
}*/
Vector3D p21 = VectorMinus(p2, p1);
/*if (p21.LengthSq() < Math.Epsilon) {
return false;
}*/
double d1343 = p13.x * (double)p43.x + (double)p13.y * p43.y + (double)p13.z * p43.z;
double d4321 = p43.x * (double)p21.x + (double)p43.y * p21.y + (double)p43.z * p21.z;
double d1321 = p13.x * (double)p21.x + (double)p13.y * p21.y + (double)p13.z * p21.z;
double d4343 = p43.x * (double)p43.x + (double)p43.y * p43.y + (double)p43.z * p43.z;
double d2121 = p21.x * (double)p21.x + (double)p21.y * p21.y + (double)p21.z * p21.z;
double denom = d2121 * d4343 - d4321 * d4321;
/*if (Math.Abs(denom) < Math.Epsilon) {
return false;
}*/
double numer = d1343 * d4321 - d1321 * d4343;
double mua = numer / denom;
double mub = (d1343 + d4321 * (mua)) / d4343;
resultSegmentPoint1.x = (float)(p1.x + mua * p21.x);
resultSegmentPoint1.y = (float)(p1.y + mua * p21.y);
resultSegmentPoint1.z = (float)(p1.z + mua * p21.z);
resultSegmentPoint2.x = (float)(p3.x + mub * p43.x);
resultSegmentPoint2.y = (float)(p3.y + mub * p43.y);
resultSegmentPoint2.z = (float)(p3.z + mub * p43.z);
return true;
}
So Far I have Tried All these Below which works only when both Line segments have the same Magnitude...
Link 1
Link 2
I tried Calculating the centroid of both line segments and calculating the nearest Point on Segment From the midpoint. (I know how to calculate the Closest Point line segment from another Point)
But This only works when Both Line segments are of equal length AND each of Both the Linesegment's MidPoint is perpendicular to Each other and the centroid...
NOTE:Visual Geometry Geogbra3D for a visual representation of these Points
NOTE:AB1CD means From Point AB1 to Line CD(not segment)
AB1 = (6.550000, -7.540000, 0.000000 )
AB2 = (4.540000, -3.870000, 6.000000 )
CD1 = (0.000000, 8.000000, 3.530000 )
CD2 = (0.030000, -7.240000, -1.340000 )
PointCD1AB = (3.117523, -1.272742, 10.246199 )
PointCD2AB = (6.318374, -7.117081, 0.691420 )
PointAB1CD = (0.029794, -7.135321, -1.306549 )
PointAB2CD = (0.019807, -2.062110, 0.314614 )
Magntidue of PointCD1AB - P1LineSegmentCD = 11.866340
Magntidue of PointCD2AB - P2LineSegmentCD = 6.609495
Magntidue of PointAB1CD - P1LineSegmentAB = 6.662127
Magntidue of PointAB2CD - P2LineSegmentAB = 9.186399
Magntidue of PointCD1AB - PointAB1CD = 13.318028
Magntidue of PointCD2AB - PointAB2CD = 8.084965
Magntidue of PointCD1AB - PointAB2CD = 10.433375
Magntidue of PointCD2AB - PointAB1CD = 6.598368
Actual Shortest Point are
Point1 = (0.01, 1.59, 1.48 )
Point2 = (-1.23, 1.11, 3.13 )
Magnitude of Point1 And Point2 = 2.1190799890518526
For the Above Data, I used this Below Function
void NearestPointBetweenTwoLineSegmentOfVariedLength(Vector3D P1LineSegmentAB, Vector3D P2LineSegmentAB, Vector3D P1LineSegmentCD, Vector3D P2LineSegmentCD, Vector3D Testing)
{
/* float Line1Mag = Magnitude(VectorMinus(P1LineSegmentAB, P2LineSegmentAB));
float Line2Mag = Magnitude(VectorMinus(P1LineSegmentCD, P2LineSegmentCD));
P2LineSegmentAB = VectorMinus(P2LineSegmentAB, P1LineSegmentAB);
P1LineSegmentCD = VectorMinus(P1LineSegmentCD, P1LineSegmentAB);
P2LineSegmentCD = VectorMinus(P2LineSegmentCD, P1LineSegmentAB);
P1LineSegmentAB = VectorMinus(P1LineSegmentAB, P1LineSegmentAB);
Vector3D P1P2UnitDirection = GetUnitVector(P2LineSegmentAB, { 0,0,0 });
AngleBetweenTwoVectorsWithCommonUnitVectorAngleOfSecondArgument(P1LineSegmentAB, P2LineSegmentAB, P1P2UnitDirection);*/
Vector3D ReturnVal;
Vector3D PointCD1AB;
Vector3D PointCD2AB;
Vector3D PointAB1CD;
Vector3D PointAB2CD;
NearestPointOnLineFromPoint(P1LineSegmentCD, P1LineSegmentAB, P2LineSegmentAB, PointCD1AB, false);
PrintVector3Dfor(VectorMinus(PointCD1AB, Testing), "PointCD1AB", true);
NearestPointOnLineFromPoint(P2LineSegmentCD, P1LineSegmentAB, P2LineSegmentAB, PointCD2AB, false);
PrintVector3Dfor(VectorMinus(PointCD2AB, Testing), "PointCD2AB", true);
NearestPointOnLineFromPoint(P1LineSegmentAB, P1LineSegmentCD, P2LineSegmentCD, PointAB1CD, false);
PrintVector3Dfor(VectorMinus(PointAB1CD, Testing), "PointAB1CD", true);
NearestPointOnLineFromPoint(P2LineSegmentAB, P1LineSegmentCD, P2LineSegmentCD, PointAB2CD, false);
PrintVector3Dfor(VectorMinus(PointAB2CD, Testing), "PointAB2CD", true);
float m1 = Magnitude(VectorMinus(PointCD1AB, P1LineSegmentCD));
float m2 = Magnitude(VectorMinus(PointCD2AB, P2LineSegmentCD));
float m3 = Magnitude(VectorMinus(PointAB1CD, P1LineSegmentAB));
float m4 = Magnitude(VectorMinus(PointAB1CD, P2LineSegmentAB));
float m5 = Magnitude(VectorMinus(PointCD1AB, PointAB1CD));
float m6 = Magnitude(VectorMinus(PointCD2AB, PointAB2CD));
float m7 = Magnitude(VectorMinus(PointCD1AB, PointAB2CD));
float m8 = Magnitude(VectorMinus(PointCD2AB, PointAB1CD));
Printfloatfor(m1, "Magntidue of PointCD1AB - P1LineSegmentCD");
Printfloatfor(m2, "Magntidue of PointCD2AB - P2LineSegmentCD");
Printfloatfor(m3, "Magntidue of PointAB1CD - P1LineSegmentAB");
Printfloatfor(m4, "Magntidue of PointAB2CD - P2LineSegmentAB");
Printfloatfor(m5, "Magntidue of PointCD1AB - PointAB1CD");
Printfloatfor(m6, "Magntidue of PointCD2AB - PointAB2CD");
Printfloatfor(m7, "Magntidue of PointCD1AB - PointAB2CD");
Printfloatfor(m8, "Magntidue of PointCD2AB - PointAB1CD");
//NearestPointBetweenTwoLineSegmentOfSameLength1(P1LineSegmentAB, P2LineSegmentAB, P1LineSegmentCD, P2LineSegmentCD);
//NearestPointBetweenTwoLineSegmentOfSameLength2(P1LineSegmentAB, P2LineSegmentAB, P1LineSegmentCD, P2LineSegmentCD);
//NearestPointBetweenTwoLineSegmentOfSameLength3(P1LineSegmentAB, P2LineSegmentAB, P1LineSegmentCD, P2LineSegmentCD);
}
void NearestPointOnLineFromPoint(Vector3D Point, Vector3D LineSegmentStart, Vector3D LineSegmentEnd, Vector3D& ReturnVector, bool ClampTheValue)
{
//Get Heading Direction of Capsule from Origin To End
Vector3D CapsuleHeading = VectorMinus(LineSegmentEnd, LineSegmentStart);
float MagnitudeOfLineSegment = Magnitude(CapsuleHeading);
CapsuleHeading = VectorDivide(CapsuleHeading, MagnitudeOfLineSegment);
// Project From Point to Origin
Vector3D Projection = VectorMinus(Point, LineSegmentStart);
float DotProd = DotProduct(Projection, CapsuleHeading);
if (ClampTheValue)
{
DotProd = Clamp(DotProd, 0.0f, MagnitudeOfLineSegment);
}
ReturnVector = VectorAdd(LineSegmentStart, VectorMultiply(CapsuleHeading, DotProd));
}
I have Converted This Code from C# to C++ and it is not working as intended... I don't know if there is a problem with my code conversion or a problem within the code itself?
Vector3D ClampPointToLine(Vector3D pointToClamp, Vector3D LineStart, Vector3D LineEnd)
{
Vector3D clampedPoint = {0,0,0};
double minX, minY, minZ, maxX, maxY, maxZ;
if (LineStart.x <= LineEnd.x)
{
minX = LineStart.x;
maxX = LineEnd.x;
}
else
{
minX = LineEnd.x;
maxX = LineStart.x;
}
if (LineStart.y <= LineEnd.y)
{
minY = LineStart.y;
maxY = LineEnd.y;
}
else
{
minY = LineEnd.y;
maxY = LineStart.y;
}
if (LineStart.z <= LineEnd.z)
{
minZ = LineStart.z;
maxZ = LineEnd.z;
}
else
{
minZ = LineEnd.z;
maxZ = LineStart.z;
}
clampedPoint.x = (pointToClamp.x < minX) ? minX : (pointToClamp.x > maxX) ? maxX : pointToClamp.x;
clampedPoint.y = (pointToClamp.y < minY) ? minY : (pointToClamp.y > maxY) ? maxY : pointToClamp.y;
clampedPoint.z = (pointToClamp.z < minZ) ? minZ : (pointToClamp.z > maxZ) ? maxZ : pointToClamp.z;
return clampedPoint;
}
void distBetweenLines(Vector3D p1, Vector3D p2, Vector3D p3, Vector3D p4, Vector3D& ClosestPointOnLineP1P2, Vector3D& ClosestPointOnLineP3P4)
{
Vector3D d1;
Vector3D d2;
d1 = VectorMinus(p2, p1);
d2 = VectorMinus(p4, p3);
double eq1nCoeff = (d1.x * d2.x) + (d1.y * d2.y) + (d1.z * d2.z);
double eq1mCoeff = (-(powf(d1.x, 2)) - (powf(d1.y, 2)) - (powf(d1.z, 2)));
double eq1Const = ((d1.x * p3.x) - (d1.x * p1.x) + (d1.y * p3.y) - (d1.y * p1.y) + (d1.z * p3.z) - (d1.z * p1.z));
double eq2nCoeff = ((powf(d2.x, 2)) + (powf(d2.y, 2)) + (powf(d2.z, 2)));
double eq2mCoeff = -(d1.x * d2.x) - (d1.y * d2.y) - (d1.z * d2.z);
double eq2Const = ((d2.x * p3.x) - (d2.x * p1.x) + (d2.y * p3.y) - (d2.y * p2.y) + (d2.z * p3.z) - (d2.z * p1.z));
double M[2][3] = { { eq1nCoeff, eq1mCoeff, -eq1Const }, { eq2nCoeff, eq2mCoeff, -eq2Const } };
int rowCount = 2;
// pivoting
for (int col = 0; col + 1 < rowCount; col++) if (M[col, col] == 0)
// check for zero coefficients
{
// find non-zero coefficient
int swapRow = col + 1;
for (; swapRow < rowCount; swapRow++) if (M[swapRow, col] != 0) break;
if (M[swapRow, col] != 0) // found a non-zero coefficient?
{
// yes, then swap it with the above
double tmp[2];
for (int i = 0; i < rowCount + 1; i++)
{
tmp[i] = M[swapRow][i];
M[swapRow][i] = M[col][i];
M[col][i] = tmp[i];
}
}
else
{
std::cout << "\n the matrix has no unique solution";
return; // no, then the matrix has no unique solution
}
}
// elimination
for (int sourceRow = 0; sourceRow + 1 < rowCount; sourceRow++)
{
for (int destRow = sourceRow + 1; destRow < rowCount; destRow++)
{
double df = M[sourceRow][sourceRow];
double sf = M[destRow][sourceRow];
for (int i = 0; i < rowCount + 1; i++)
M[destRow][i] = M[destRow][i] * df - M[sourceRow][i] * sf;
}
}
// back-insertion
for (int row = rowCount - 1; row >= 0; row--)
{
double f = M[row][row];
if (f == 0) return;
for (int i = 0; i < rowCount + 1; i++) M[row][i] /= f;
for (int destRow = 0; destRow < row; destRow++)
{
M[destRow][rowCount] -= M[destRow][row] * M[row][rowCount]; M[destRow][row] = 0;
}
}
double n = M[0][2];
double m = M[1][2];
Vector3D i1 = { p1.x + (m * d1.x), p1.y + (m * d1.y), p1.z + (m * d1.z) };
Vector3D i2 = { p3.x + (n * d2.x), p3.y + (n * d2.y), p3.z + (n * d2.z) };
Vector3D i1Clamped = ClampPointToLine(i1, p1, p2);
Vector3D i2Clamped = ClampPointToLine(i2, p3, p4);
ClosestPointOnLineP1P2 = i1Clamped;
ClosestPointOnLineP3P4 = i2Clamped;
return;
}
Your problem is to find the shortest connection P1P2 between two line segments AB and CD. Let us define l1 as the line which goes through the points A and B and l2 as the line which goes through C and D.
You can split this problem up into several subtasks:
finding the shortest connection between the lines l1 and l2.
finding the shortest connection from either of the points A, B to segment CD (likewise for C,D to segment AB).
Let's start with the first subtask. THe line l1, going through A and B, can be parametrised by a single scalar, say sc,
l1(sc) = u*sc + A
with the direction vector u=(B-A).
As a consequence, we also have l1(0) = A and l(1) = B. Now, we want to find the minimal distance between this line and another line going through C and D, i.e.
l2(c) = v*tc + C
with v = D-C. In analogy to the other line, we have have l2(0) = C and l(1) = D. Now, we define
f(sc, tc) = 1/2*|l1(sc)-l2(tc)|^2
which is nothing but half the distance between the two lines squared. If we now want to minimise this function, we need to satisfy
df/dsc = 0 and df/dtc = 0
You'll find that
df/dsc = [u*sc - v*tc + (A-C)]*u and df/dtc = [u*sc - v*tc + (A-C)]*(-v)
Introducing w=A-C and arranging in vectors and matrices yields:
[ u*u -v*u] * [sc] = -[ w*u]
[-u*v v*v] [tc] [-w*v]
m * result = -rhs
The solution of the linear system is result = -m^(⁻1)* rhs, where m^(⁻1) is the inverse of m. If a and c are less than 0 or greater than 1, the closest point of the lines is outside the segments AB and CD. You might return these values as well.
The second subtask is closely related to this problem, but we minimise
f(sc) = 1/2*|l1(sc)-P|^2 and g(tc) = 1/2*|l2(tc)-P|^2
which directly yields
sc = -(A-P)*u/(u*u) and rc = -(C-P)*v/(v*v)
If sc < 0 we set sc = 0 or if sc > 1 we set sc = 1 (and likewise for tc) in order to get points on the segments.
Here is the implementation, which I took from here and modified it.
First, we define some helpers, i.e. vectors and some basic mathematical relations.
template <int dim>
struct Vector
{
std::array<double, dim> components;
};
using Vector2D = Vector<2>;
using Vector3D = Vector<3>;
// subtract
template <int dim>
Vector<dim> operator-(const Vector<dim> &u, const Vector<dim> &v) {
Vector<dim> result(u);
for (int i = 0; i < dim; ++i)
result.components[i] -= v.components[i];
return result;
}
// add
template <int dim>
Vector<dim> operator+(const Vector<dim> &u, const Vector<dim> &v) {
Vector<dim> result(u);
for (int i = 0; i < dim; ++i)
result.components[i] += v.components[i];
return result;
}
// negate
template <int dim>
Vector<dim> operator-(const Vector<dim> &u) {
Vector<dim> result;
for (int i = 0; i < dim; ++i)
result.components[i] = -u.components[i];
return result;
}
// scalar product
template <int dim>
double operator*(const Vector<dim> &u, const Vector<dim> &v) {
double result = 0;
for (int i = 0; i < dim; ++i)
result += u.components[i] * v.components[i];
return result;
}
// scale
template <int dim>
Vector<dim> operator*(const Vector<dim> &u, const double s) {
Vector<dim> result(u);
for (int i = 0; i < dim; ++i)
result.components[i] *= s;
return result;
}
// scale
template <int dim>
Vector<dim> operator*(const double s, const Vector<dim> &u) {
return u*s;
}
// ostream
template <int dim>
std::ostream& operator<< (std::ostream& out, const Vector<dim> &u) {
out << "(";
for (auto c : u.components)
out << std::setw(15) << c ;
out << ")";
return out;
}
This function does the actual work:
std::pair<Vector3D, Vector3D>
shortest_connection_segment_to_segment(const Vector3D A, const Vector3D B,
const Vector3D C, const Vector3D D)
{
Vector3D u = B - A;
Vector3D v = D - C;
Vector3D w = A - C;
double a = u*u; // always >= 0
double b = u*v;
double c = v*v; // always >= 0
double d = u*w;
double e = v*w;
double sc, sN, sD = a*c - b*b; // sc = sN / sD, sD >= 0
double tc, tN, tD = a*c - b*b; // tc = tN / tD, tD >= 0
double tol = 1e-15;
// compute the line parameters of the two closest points
if (sD < tol) { // the lines are almost parallel
sN = 0.0; // force using point A on segment AB
sD = 1.0; // to prevent possible division by 0.0 later
tN = e;
tD = c;
}
else { // get the closest points on the infinite lines
sN = (b*e - c*d);
tN = (a*e - b*d);
if (sN < 0.0) { // sc < 0 => the s=0 edge is visible
sN = 0.0; // compute shortest connection of A to segment CD
tN = e;
tD = c;
}
else if (sN > sD) { // sc > 1 => the s=1 edge is visible
sN = sD; // compute shortest connection of B to segment CD
tN = e + b;
tD = c;
}
}
if (tN < 0.0) { // tc < 0 => the t=0 edge is visible
tN = 0.0;
// recompute sc for this edge
if (-d < 0.0) // compute shortest connection of C to segment AB
sN = 0.0;
else if (-d > a)
sN = sD;
else {
sN = -d;
sD = a;
}
}
else if (tN > tD) { // tc > 1 => the t=1 edge is visible
tN = tD;
// recompute sc for this edge
if ((-d + b) < 0.0) // compute shortest connection of D to segment AB
sN = 0;
else if ((-d + b) > a)
sN = sD;
else {
sN = (-d + b);
sD = a;
}
}
// finally do the division to get sc and tc
sc = (fabs(sN) < tol ? 0.0 : sN / sD);
tc = (fabs(tN) < tol ? 0.0 : tN / tD);
Vector3D P1 = A + (sc * u);
Vector3D P2 = C + (tc * v);
return {P1, P2}; // return the closest distance
}
Usage:
int main() {
Vector3D A = {-7.54, 6.55, 0 };
Vector3D B = {4.54, -3.87, 6.0 };
Vector3D C = {0.0, 8.0, 3.53 };
Vector3D D = {0.03, -7.24, -1.34 };
auto [P1, P2] = shortest_connection_segment_to_segment (A, B, C, D);
std::cout << "P1 = " << P1 << std::endl;
std::cout << "P2 = " << P2 << std::endl;
return 0;
}
This prints
P1 = ( -1.24635 1.1212 3.12599)
P2 = ( 0.0125125 1.64365 1.49881)
live demo.
Note that this code still requires more testing.
Below Is a "Compact" version of the code from #StefanKssmr which is Here, This "Compact" version can easily be ported to OpenCL
Many thanks to #StefanKssmr for posting the Correct Answer,
void NearestPointBetweenTwoLineSegment(Vector3D AB1, Vector3D AB2, Vector3D CD1, Vector3D CD2, Vector3D& resultSegmentPoint1, Vector3D& resultSegmentPoint2)
{
Vector3D u = VectorMinus(AB2, AB1);
Vector3D v = VectorMinus(CD2, CD1);
Vector3D w = VectorMinus(AB1, CD1);
double a = DotProduct(u, u); // always >= 0
double b = DotProduct(u, v);
double c = DotProduct(v, v); // always >= 0
double d = DotProduct(u, w);
double e = DotProduct(v, w);
double sN, sD = (a * c) - (b * b); // sc = sN / sD, default sD = D >= 0
double tN, tD = (a * c) - (b * b); // tc = tN / tD, default tD = D >= 0
float Temp1;
float Temp2;
float Temp3;// Unfortuantely i have no choice but to use this...
//Part 1
Temp1 = (sD < 1e-6f) ? 1.0f : 0.0f;
sN = (1.0f - Temp1) * (b * e - c * d);
sD = ((1.0f - Temp1) * sD) + Temp1;
tN = (Temp1 * e) + ((1.0f - Temp1) * ((a * e) - (b * d)));
tD = (Temp1 * c) + ((1.0f - Temp1) * tD);
Temp2 = (sN < 0.0f) ? 1.0f : 0.0f;
Temp2 = Temp2 * (1.0f - Temp1);
sN = ((1.0f - Temp2) * sN);
tN = ((1.0f - Temp2) * tN) + (Temp2 * e);
tD = ((1.0f - Temp2) * tD) + (Temp2 * c);
Temp2 = ((sN > sD) ? 1.0f : 0.0f) * (1.0f - Temp2);
Temp2 = Temp2 * (1.0f - Temp1);
sN = ((1.0f - Temp2) * sN) + (Temp2 * sD);
tN = ((1.0f - Temp2) * tN) + (Temp2 * (e + b));
tD = ((1.0f - Temp2) * tD) + (Temp2 * c);
//Part 2.1
Temp1 = (tN < 0.0f) ? 1.0f : 0.0f;
tN = tN * (1.0f - Temp1);
Temp2 = (((-d) < 0.0) ? 1.0f : 0.0f) * Temp1;
sN = (1.0f - Temp2) * sN;//sN = (Temp2 * 0) + ((1.0f - Temp2) * sN);
Temp3 = ((((-d) > a) ? 1.0f : 0.0f) * (1.0f - Temp2)) * (Temp1);
sN = (Temp3 * sD) + ((1.0f - Temp3) * (sN));
Temp2 = (1.0f - Temp3) * (1.0f - Temp2) * (Temp1);
sN = (Temp2 * (-d)) + ((1.0f - Temp2) * (sN));
sD = (Temp2 * a) + ((1.0f - Temp2) * (sD));
//Part 2.2
Temp1 = ((tN > tD) ? 1.0f : 0.0f) * (1.0f - Temp1);
tN = ((1.0f - Temp1) * tN) + (Temp1 * tD);
Temp2 = (((-d + b) < 0.0) ? 1.0f : 0.0f) * Temp1;
sN = (1.0f - Temp2) * sN;//sN = (Temp2 * 0) + ((1.0f - Temp2) * sN);
Temp3 = ((((-d + b) > a) ? 1.0f : 0.0f) * (1.0f - Temp2)) * (Temp1);
sN = (Temp3 * sD) + ((1.0f - Temp3) * (sN));
Temp2 = (1.0f - Temp3) * (1.0f - Temp2) * (Temp1);
sN = (Temp2 * (-d)) + ((1.0f - Temp2) * (sN));
sD = (Temp2 * a) + ((1.0f - Temp2) * (sD));
resultSegmentPoint1 = VectorAdd(AB1, VectorMultiply(u, (fabs(sN) < 1e-6f ? 0.0 : sN / sD)));
resultSegmentPoint2 = VectorAdd(CD1, VectorMultiply(v, (fabs(tN) < 1e-6f ? 0.0 : tN / tD)));
}
I need to obtain some data from an openGL rotation matrix. I need to obtain the equivalent euler angles (already did it), the equivalent quaternion (did it, but just copying it from the Internet) and the equivalent axis-angle.
I dont know if a rotation matrix can be expresed as a single rotation of a certain angle around an certain vector. Are these equivalent? If they are, how can I obtain one from the other?
Also, i would like to understand better the meaning of a quaternion, and the insides of a rotation matrix. Where should i go to learn about this?
Yes any rotation matrix/unit quaternion is equivalent to a rotation around a single axis. If we call this axis n and the angle theta then the quaternion for this rotation is:
[n * sin(theta / 2) cos(theta / 2)]
To reconstruct this use acos on the w element of the quaternion to get theta / 2. After you have theta you can divide x,y and z component with sin(theta / 2) to reconstruct the axis.
Here's a function which converts a 3x3 matrix into an axis, angle (using a quatention, so perhaps theres a more efficient way which bypasses that step).
void axis_angle_from_mat3(float r_axis[3], float *r_angle, float mat[3][3])
{
float q[4];
/* -------------------------------------------------------------------- */
/* matrix to quaternion */
double tr, s;
float tmat[3][3];
/* work on a copy */
memcpy(tmat, mat, sizeof(tmat));
/* normalize the matrix */
int i;
for (i = 0; i < 3; i++) {
float d = (tmat[i][0] * tmat[i][0] + tmat[i][1] * tmat[i][1] + tmat[i][2] * tmat[i][2]);
if (d > 1.0e-35f) {
d = sqrtf(d);
tmat[i][0] /= d;
tmat[i][1] /= d;
tmat[i][2] /= d;
}
else {
tmat[i][0] = 0.0f;
tmat[i][1] = 0.0f;
tmat[i][2] = 0.0f;
d = 0.0f;
}
}
tr = 0.25 * (double)(1.0f + tmat[0][0] + tmat[1][1] + tmat[2][2]);
if (tr > (double)1e-4f) {
s = sqrt(tr);
q[0] = (float)s;
s = 1.0 / (4.0 * s);
q[1] = (float)((double)(tmat[1][2] - tmat[2][1]) * s);
q[2] = (float)((double)(tmat[2][0] - tmat[0][2]) * s);
q[3] = (float)((double)(tmat[0][1] - tmat[1][0]) * s);
}
else {
if (tmat[0][0] > tmat[1][1] && tmat[0][0] > tmat[2][2]) {
s = 2.0f * sqrtf(1.0f + tmat[0][0] - tmat[1][1] - tmat[2][2]);
q[1] = (float)(0.25 * s);
s = 1.0 / s;
q[0] = (float)((double)(tmat[1][2] - tmat[2][1]) * s);
q[2] = (float)((double)(tmat[1][0] + tmat[0][1]) * s);
q[3] = (float)((double)(tmat[2][0] + tmat[0][2]) * s);
}
else if (tmat[1][1] > tmat[2][2]) {
s = 2.0f * sqrtf(1.0f + tmat[1][1] - tmat[0][0] - tmat[2][2]);
q[2] = (float)(0.25 * s);
s = 1.0 / s;
q[0] = (float)((double)(tmat[2][0] - tmat[0][2]) * s);
q[1] = (float)((double)(tmat[1][0] + tmat[0][1]) * s);
q[3] = (float)((double)(tmat[2][1] + tmat[1][2]) * s);
}
else {
s = 2.0f * sqrtf(1.0f + tmat[2][2] - tmat[0][0] - tmat[1][1]);
q[3] = (float)(0.25 * s);
s = 1.0 / s;
q[0] = (float)((double)(tmat[0][1] - tmat[1][0]) * s);
q[1] = (float)((double)(tmat[2][0] + tmat[0][2]) * s);
q[2] = (float)((double)(tmat[2][1] + tmat[1][2]) * s);
}
}
/* normalize the quat */
float len;
len = sqrtf(q[0] * q[0] + q[1] * q[1] + q[2] * q[2] + q[3] * q[3]);
if (len != 0.0f) {
q[0] /= len;
q[1] /= len;
q[2] /= len;
q[3] /= len;
}
else {
q[1] = 1.0f;
q[0] = q[2] = q[3] = 0.0f;
}
/* -------------------------------------------------------------------- */
/* quaternion to axis angle */
float ha, si;
ha = acosf(q[0]);
si = sinf(ha);
*r_angle = ha * 2;
if (fabsf(si) < FLT_EPSILON)
si = 1.0f;
r_axis[0] = q[1] / si;
r_axis[1] = q[2] / si;
r_axis[2] = q[3] / si;
}
I'm working on an algorithm to generate point to point linear gradients. I have a rough proof of concept implementation done:
GLuint OGLENGINEFUNCTIONS::CreateGradient( std::vector<ARGBCOLORF> &input,POINTFLOAT start, POINTFLOAT end, int width, int height,bool radial )
{
std::vector<POINT> pol;
std::vector<GLubyte> pdata(width * height * 4);
std::vector<POINTFLOAT> linearpts;
std::vector<float> lookup;
float distance = GetDistance(start,end);
RoundNumber(distance);
POINTFLOAT temp;
float incr = 1 / (distance + 1);
for(int l = 0; l < 100; l ++)
{
POINTFLOAT outA;
POINTFLOAT OutB;
float dirlen;
float perplen;
POINTFLOAT dir;
POINTFLOAT ndir;
POINTFLOAT perp;
POINTFLOAT nperp;
POINTFLOAT perpoffset;
POINTFLOAT diroffset;
dir.x = end.x - start.x;
dir.y = end.y - start.y;
dirlen = sqrt((dir.x * dir.x) + (dir.y * dir.y));
ndir.x = static_cast<float>(dir.x * 1.0 / dirlen);
ndir.y = static_cast<float>(dir.y * 1.0 / dirlen);
perp.x = dir.y;
perp.y = -dir.x;
perplen = sqrt((perp.x * perp.x) + (perp.y * perp.y));
nperp.x = static_cast<float>(perp.x * 1.0 / perplen);
nperp.y = static_cast<float>(perp.y * 1.0 / perplen);
perpoffset.x = static_cast<float>(nperp.x * l * 0.5);
perpoffset.y = static_cast<float>(nperp.y * l * 0.5);
diroffset.x = static_cast<float>(ndir.x * 0 * 0.5);
diroffset.y = static_cast<float>(ndir.y * 0 * 0.5);
outA.x = end.x + perpoffset.x + diroffset.x;
outA.y = end.y + perpoffset.y + diroffset.y;
OutB.x = start.x + perpoffset.x - diroffset.x;
OutB.y = start.y + perpoffset.y - diroffset.y;
for (float i = 0; i < 1; i += incr)
{
temp = GetLinearBezier(i,outA,OutB);
RoundNumber(temp.x);
RoundNumber(temp.y);
linearpts.push_back(temp);
lookup.push_back(i);
}
for (unsigned int j = 0; j < linearpts.size(); j++) {
if(linearpts[j].x < width && linearpts[j].x >= 0 &&
linearpts[j].y < height && linearpts[j].y >=0)
{
pdata[linearpts[j].x * 4 * width + linearpts[j].y * 4 + 0] = (GLubyte) j;
pdata[linearpts[j].x * 4 * width + linearpts[j].y * 4 + 1] = (GLubyte) j;
pdata[linearpts[j].x * 4 * width + linearpts[j].y * 4 + 2] = (GLubyte) j;
pdata[linearpts[j].x * 4 * width + linearpts[j].y * 4 + 3] = (GLubyte) 255;
}
}
lookup.clear();
linearpts.clear();
}
return CreateTexture(pdata,width,height);
}
It works as I would expect most of the time, but at certain angles it produces little white dots. I can't figure out what does this.
This is what it looks like at most angles (good) http://img9.imageshack.us/img9/5922/goodgradient.png
But once in a while it looks like this (bad): http://img155.imageshack.us/img155/760/badgradient.png
What could be causing the white dots?
Is there maybe also a better way to generate my gradients if no solution is possible for this?
Thanks
I think you have a bug indexing into the pdata byte vector. Your x domain is [0, width) but when you multiply out the indices you're doing x * 4 * width. It should probably be x * 4 + y * 4 * width or x * 4 * height + y * 4 depending on whether you're data is arranged row or column major.