Yes I have seen a lots of posts about using the keywords virtual and override for destructors in C++. I also think I understand the usage:
if a base class has a virtual destructor and a derived class overrides it, if the signatures are different, the program will not compile due to override.
However I am wondering - or I have seen it also several times in someones code, that it is used like this:
class Base
{
public:
~Base();
};
class Derived : public Base
{
public:
~Derived() override;
};
Does this override on a destructor of a non-virtual function in the base class actually has any impact on the program / compiling or anything? Or is it just used wrongly in that case?
You code doesn't compile because Base::~Base is not virtual.
Oh ok, maybe I have overseen this: if the Base class derives from
another class, say SuperBase class - which has a virtual destructor,
then the destructor of Base would be virtual without using the keyword
right?
Correct. If a method is virtual in a base class, then the method in the child class with the same name and same signature will also be implicitly virtual. virtual keyword can be omitted.
A good practice is to always use the keyword override on a method intended to override. This has two big advantages: it makes it clear to a human reader that the method is virtual and overrides and it avoid some bugs where the method is indented to override, but it silently doesn't (e.g. const mismatch).
Destructors are a special case in the sense that that they override a parent virtual destructor, even if they have different names.
Related
Everyone knows that the desructor of base class usually has to be virtual. But what is about the destructor of derived class? In C++11 we have keyword "override" and ability to use the default destructor explicitly.
struct Parent
{
std::string a;
virtual ~Parent()
{
}
};
struct Child: public Parent
{
std::string b;
~Child() override = default;
};
Is it correct to use both keywords "override" and "=default" in the destructor of Child class? Will compiler generate correct virtual destructor in this case?
If yes, then can we think that it is good coding style, and we should always declare destructors of derived classes this way to ensure that base class destructors are virtual?
Is it correct to use both keywords "override" and "=default" in the destructor of Child class? Will compiler generate correct virtual destructor in this case?
Yes, it is correct. On any sane compiler, if the code compiles without error, this destructor definition will be a no-op: its absence must not change the behavior of the code.
can we think that it is good coding style
It's a matter of preference. To me, it only makes sense if the base class type is templated: it will enforce a requirement on the base class to have a virtual destructor, then. Otherwise, when the base type is fixed, I'd consider such code to be noise. It's not as if the base class will magically change. But if you have deadheaded teammates that like to change things without checking the code that depends on what they may be possibly breaking, it's best to leave the destructor definition in - as an extra layer of protection.
override is nothing more than a safety net. Destructor of the child class will always be virtual if base class destructor is virtual, no matter how it is declared - or not declared at all (i.e. using implicitly declared one).
According to the CppCoreGuidelines C.128 the destructor of the derived class should not be declared virtual or override.
If a base class destructor is declared virtual, one should avoid declaring derived class destructors virtual or override. Some code base and tools might insist on override for destructors, but that is not the recommendation of these guidelines.
UPDATE: To answer the question why we have a special case for destructors.
Method overriding is a language feature that allows a subclass or child class to provide a specific
implementation of a method that is already provided by one of its superclasses or parent classes. The implementation in the subclass overrides (replaces) the implementation in the superclass by providing a method that has same name, same parameters or signature, and same return type as the method in the parent class.
In other words, when you call an overridden method only the last implementation of that method (in the class hierarchy) is actually executed while all the destructors (from the last child to the root parent) must be called to properly release all the resources owned by the object.
Thus we don't really replace (override) the destructor, we add additional one into the chain of object destructors.
UPDATE: This CppCoreGuidelines C.128 rule was changed (by 1448, 1446 issues) in an effort to simplify already exhaustive list of exceptions. So the general rule can be summarized as:
For class users, all virtual functions including destructors are equally polymorphic.
Marking destructors override on state-owning subclasses is textbook hygiene that you should all be doing by routine (ref.).
There is (at least) one reason for using override here -- you ensure that the base class's destructor is always virtual. It will be a compilation error if the derived class's destructor believes it is overriding something, but there is nothing to override. It also gives you a convenient place to leave generated documentation, if you're doing that.
On the other hand, I can think of two reasons not to do this:
It's a little weird and backwards for the derived class to enforce behavior from the base class.
If you define a destuctor in the header (or if you make it inline), you do introduce the possibility for odd compilation errors. Let's say your class looks like this:
struct derived {
struct impl;
std::unique_ptr<derived::impl> m_impl;
~derived() override = default;
};
You will likely get a compiler error because the destructor (which is inline with the class here) will be looking for the destructor for the incomplete class, derived::impl.
This is my round-about way of saying that every line of code can become a liability, and perhaps it's best to just skip something if it functionally does nothing. If you really really need to enforce a virtual destructor in the base class from the parent class, someone suggested using static_assert in concert with std::has_virtual_destructor, which will produce more consistent results, IMHO.
I think "override" is kind of misleading on destructor.
When you override virtual function, you replace it.
The destructors are chained, so you can't override destructor literally
The CPP Reference says that override makes sure that the function is virtual and that it indeed overrides a virtual function. So the override keyword would make sure that the destructor is virtual.
If you specify override but not = default, then you will get a linker error.
You do not need to do anything. Leaving the Child dtor undefined works just fine:
#include <iostream>
struct Notify {
~Notify() { std::cout << "dtor" << std::endl; }
};
struct Parent {
std::string a;
virtual ~Parent() {}
};
struct Child : public Parent {
std::string b;
Notify n;
};
int main(int argc, char **argv) {
Parent *p = new Child();
delete p;
}
That will output dtor. If you remove the virtual at Parent::~Parent, though, it will not output anything because that is undefined behavior, as pointed out in the comments.
Good style would be to not mention Child::~Child at all. If you cannot trust that the base class declared it virtual, then your suggestion with override and = default will work; I would hope that there are better ways to ensure that instead of littering your code with those destructor declarations.
Though destructors are not inherited there is clear written in the Standard that virtual destructors of derived classes override destructors of base classes.
From the C++ Standard (10.3 Virtual functions)
6 Even though destructors are not inherited, a destructor in a derived
class overrides a base class destructor declared virtual; see 12.4 and
12.5.
On the other hand there is also written (9.2 Class member)
8 A virt-specifier-seq shall contain at most one of each virt-specifier.
A virt-specifier-seq shall appear only in the declaration of a
virtual member function (10.3).
Though destructors are called like special member functions nevertheless they are also member functions.
I am sure the C++ Standard should be edited such a way that it was unambiguous whether a destructor may have virt-specifier override. At present it is not clear.
This question already has answers here:
Closed 11 years ago.
Possible Duplicates:
Under what circumstances is it advantageous to give an implementation of a pure virtual function?
Why do we need a pure virtual destructor in C++?
Compiler doesn't force the Child class to implement a destructor when its Base has pure virtual destructor.
struct Base
{
virtual void foo () = 0;
virtual ~Base() = 0;
};
Base::~Base() {} // necessary
struct Child : Base
{
void foo() {}
//ok! no destructor needed to create objects of 'Child'
};
Funny part is that; compiler rather forces the Base to define a destructor body. Which is understood. (Demo for reference)
Then what is the purpose of having pure virtual destructor in Base class ? (Is it just to disallow Base creating objects?)
Sometimes an abstract base class has no virtual methods (= often called a “mixin”) or no methods at all (= often called a “type tag”).
To force those classes to be used as abstract base classes, at least one method needs to be pure virtual – but the classes don’t have virtual methods! So we make the destructor pure virtual instead.
It makes the class abstract. The existance of at least a pure virtual method is sufficient for a class to be abstract.
If you don't have any other pure virtual functions in Base, you have the option to make the destructor pure virtual so that the base class is still abstract.
It actually does force the derived class to implement a destructor, but the compiler will do that for you if you don't provide one.
Ok, maybe I could have phrased this better. The second paragraph is in reply to:
Compiler doesn't force the Child class to implement a destructor when its Base has pure virtual destructor.
I probably wanted to say that a virtual destructor (pure or not) causes the derived class to also have a virtual destructor, whether you write it or the compiler does.
Compiler doesn't force the Child class to implement a destructor when
its Base has pure virtual destructor.
No, Compiler does generate a default destructor for Child class (which in turn calls the implementation of pure virtual destructor of class Base) in case you don't define one explicitly.
This has probably been asked before on SO, but I was unable to find a similar question.
Consider the following class hierarchy:
class BritneySpears
{
public:
virtual ~BritneySpears();
};
class Daughter1 : public BritneySpears
{
public:
virtual ~Daughter1(); // Virtual specifier
};
class Daughter2 : public BritneySpears
{
public:
~Daughter2(); // No virtual specifier
};
Is there a difference between Daughter1 and Daughter2 classes ?
What are the consequences of specifying/not specifying virtual on a sub-class destructor/method ?
No you technically do not need to specify virtual. If the base method is virtual then C++ will automatically make the matching override method virtual.
However you should be marking them virtual. The method is virtual after all and it makes your code much clearer and easier to follow by other developers.
You do not need it, but marking it so may make your code clearer.
Note: if your base class has a virtual
destructor, then your destructor is
automatically virtual. You might need
an explicit destructor for other
reasons, but there's no need to
redeclare a destructor simply to make
sure it is virtual. No matter whether
you declare it with the virtual
keyword, declare it without the
virtual keyword, or don't declare it
at all, it's still virtual.
Virtual is automatically picked up on derived method overrides regardless of whether you specify it in the child class.
The main consequence is that without specifying virtual in the child it's harder to see from the child class definition that the method is in fact virtual. For this reason I always specify virtual in both parent and child classes.
I understand the need for a virtual destructor. But why do we need a pure virtual destructor? In one of the C++ articles, the author has mentioned that we use pure virtual destructor when we want to make a class abstract.
But we can make a class abstract by making any of the member functions as pure virtual.
So my questions are
When do we really make a destructor pure virtual? Can anybody give a good real time example?
When we are creating abstract classes is it a good practice to make the destructor also pure virtual? If yes..then why?
Probably the real reason that pure virtual destructors are allowed is that to prohibit them would mean adding another rule to the language and there's no need for this rule since no ill-effects can come from allowing a pure virtual destructor.
Nope, plain old virtual is enough.
If you create an object with default implementations for its virtual methods and want to make it abstract without forcing anyone to override any specific method, you can make the destructor pure virtual. I don't see much point in it but it's possible.
Note that since the compiler will generate an implicit destructor for derived classes, if the class's author does not do so, any derived classes will not be abstract. Therefore having the pure virtual destructor in the base class will not make any difference for the derived classes. It will only make the base class abstract (thanks for #kappa's comment).
One may also assume that every deriving class would probably need to have specific clean-up code and use the pure virtual destructor as a reminder to write one but this seems contrived (and unenforced).
Note: The destructor is the only method that even if it is pure virtual has to have an implementation in order to instantiate derived classes (yes pure virtual functions can have implementations, being pure virtual means derived classes must override this method, this is orthogonal to having an implementation).
struct foo {
virtual void bar() = 0;
};
void foo::bar() { /* default implementation */ }
class foof : public foo {
void bar() { foo::bar(); } // have to explicitly call default implementation.
};
All you need for an abstract class is at least one pure virtual function. Any function will do; but as it happens, the destructor is something that any class will have—so it's always there as a candidate. Furthermore, making the destructor pure virtual (as opposed to just virtual) has no behavioral side effects other than to make the class abstract. As such, a lot of style guides recommend that the pure virtual destuctor be used consistently to indicate that a class is abstract—if for no other reason than it provides a consistent place someone reading the code can look to see if the class is abstract.
If you want to create an abstract base class:
that can't be instantiated (yep, this is redundant with the term "abstract"!)
but needs virtual destructor behavior (you intend to carry around pointers to the ABC rather than pointers to the derived types, and delete through them)
but does not need any other virtual dispatch behavior for other methods (maybe there are no other methods? consider a simple protected "resource" container that needs a constructors/destructor/assignment but not much else)
...it's easiest to make the class abstract by making the destructor pure virtual and providing a definition (method body) for it.
For our hypothetical ABC:
You guarantee that it cannot be instantiated (even internal to the class itself, this is why private constructors may not be enough), you get the virtual behavior you want for the destructor, and you do not have to find and tag another method that doesn't need virtual dispatch as "virtual".
Here I want to tell when we need virtual destructor and when we need pure virtual destructor
class Base
{
public:
Base();
virtual ~Base() = 0; // Pure virtual, now no one can create the Base Object directly
};
Base::Base() { cout << "Base Constructor" << endl; }
Base::~Base() { cout << "Base Destructor" << endl; }
class Derived : public Base
{
public:
Derived();
~Derived();
};
Derived::Derived() { cout << "Derived Constructor" << endl; }
Derived::~Derived() { cout << "Derived Destructor" << endl; }
int _tmain(int argc, _TCHAR* argv[])
{
Base* pBase = new Derived();
delete pBase;
Base* pBase2 = new Base(); // Error 1 error C2259: 'Base' : cannot instantiate abstract class
}
When you want that no one should be able to create the object of Base class directly, use pure virtual destructor virtual ~Base() = 0. Usually at-least one pure virtual function is required, let's take virtual ~Base() = 0, as this function.
When you do not need above thing, only you need the safe destruction of Derived class object
Base* pBase = new Derived();
delete pBase;
pure virtual destructor is not required, only virtual destructor will do the job.
From the answers I have read to your question, I couldn't deduce a good reason to actually use a pure virtual destructor. For example, the following reason doesn't convince me at all:
Probably the real reason that pure virtual destructors are allowed is that to prohibit them would mean adding another rule to the language and there's no need for this rule since no ill-effects can come from allowing a pure virtual destructor.
In my opinion, pure virtual destructors can be useful. For example, assume you have two classes myClassA and myClassB in your code, and that myClassB inherits from myClassA. For the reasons mentioned by Scott Meyers in his book "More Effective C++", Item 33 "Making non-leaf classes abstract", it is better practice to actually create an abstract class myAbstractClass from which myClassA and myClassB inherit. This provides better abstraction and prevents some problems arising with, for example, object copies.
In the abstraction process (of creating class myAbstractClass), it can be that no method of myClassA or myClassB is a good candidate for being a pure virtual method (which is a prerequisite for myAbstractClass to be abstract). In this case, you define the abstract class's destructor pure virtual.
Hereafter a concrete example from some code I have myself written. I have two classes, Numerics/PhysicsParams which share common properties. I therefore let them inherit from the abstract class IParams. In this case, I had absolutely no method at hand that could be purely virtual. The setParameter method, for example, must have the same body for every subclass. The only choice that I have had was to make IParams' destructor pure virtual.
struct IParams
{
IParams(const ModelConfiguration& aModelConf);
virtual ~IParams() = 0;
void setParameter(const N_Configuration::Parameter& aParam);
std::map<std::string, std::string> m_Parameters;
};
struct NumericsParams : IParams
{
NumericsParams(const ModelConfiguration& aNumericsConf);
virtual ~NumericsParams();
double dt() const;
double ti() const;
double tf() const;
};
struct PhysicsParams : IParams
{
PhysicsParams(const N_Configuration::ModelConfiguration& aPhysicsConf);
virtual ~PhysicsParams();
double g() const;
double rho_i() const;
double rho_w() const;
};
If you want to stop instantiating of base class without making any change in your already implemented and tested derive class, you implement a pure virtual destructor in your base class.
You are getting into hypotheticals with these answers, so I will try to make a simpler, more down to earth explanation for clarity's sake.
The basic relationships of object oriented design are two:
IS-A and HAS-A. I did not make those up. That is what they are called.
IS-A indicates that a particular object identifies as being of the class that is above it in a class hierarchy. A banana object is a fruit object if it is a subclass of the fruit class. This means that anywhere a fruit class can be used, a banana can be used. It is not reflexive , though. You can not substitute a base class for a specific class if that specific class is called for.
Has-a indicated that an object is part of a composite class and that there is an ownership relationship. It means in C++ that it is a member object and as such the onus is on the owning class to dispose of it or hand ownership off before destructing itself.
These two concepts are easier to realize in single-inheritance languages than in a multiple inheritance model like c++, but the rules are essentially the same. The complication comes when the class identity is ambiguous, such as passing a Banana class pointer into a function that takes a Fruit class pointer.
Virtual functions are, firstly, a run-time thing. It is part of polymorphism in that it is used to decide which function to run at the time it is called in the running program.
The virtual keyword is a compiler directive to bind functions in a certain order if there is ambiguity about the class identity. Virtual functions are always in parent classes (as far as I know) and indicate to the compiler that binding of member functions to their names should take place with the subclass function first and the parent class function after.
A Fruit class could have a virtual function color() that returns "NONE" by default.
The Banana class color() function returns "YELLOW" or "BROWN".
But if the function taking a Fruit pointer calls color() on the Banana class sent to it -- which color() function gets invoked?
The function would normally call Fruit::color() for a Fruit object.
That would 99% of the time not be what was intended.
But if Fruit::color() was declared virtual then Banana:color() would be called for the object because the correct color() function would be bound to the Fruit pointer at the time of the call.
The runtime will check what object the pointer points to because it was marked virtual in the Fruit class definition.
This is different than overriding a function in a subclass. In that case
the Fruit pointer will call Fruit::color() if all it knows is that it IS-A pointer to Fruit.
So now to the idea of a "pure virtual function" comes up.
It is a rather unfortunate phrase as purity has nothing to do with it. It means that it is intended that the base class method is never to be called.
Indeed a pure virtual function can not be called. It must still be defined, however. A function signature must exist. Many coders make an empty implementation {} for completeness, but the compiler will generate one internally if not. In that case when the function is called even if the pointer is to Fruit , Banana::color() will be called as it is the only implementation of color() there is.
Now the final piece of the puzzle: constructors and destructors.
Pure virtual constructors are illegal, completely. That is just out.
But pure virtual destructors do work in the case that you want to forbid the creation of a base class instance. Only sub classes can be instantiated if the destructor of the base class is pure virtual.
the convention is to assign it to 0.
virtual ~Fruit() = 0; // pure virtual
Fruit::~Fruit(){} // destructor implementation
You do have to create an implementation in this case. The compiler knows this is what you are doing and makes sure you do it right, or it complains mightily that it can not link to all the functions it needs to compile. The errors can be confusing if you are not on the right track as to how you are modeling your class hierarchy.
So you are forbidden in this case to create instances of Fruit, but allowed to create instances of Banana.
A call to delete of the Fruit pointer that points to an instance of Banana
will call Banana::~Banana() first and then call Fuit::~Fruit(), always.
Because no matter what, when you call a subclass destructor, the base class destructor must follow.
Is it a bad model? It is more complicated in the design phase, yes, but it can ensure that correct linking is performed at run-time and that a subclass function is performed where there is ambiguity as to exactly which subclass is being accessed.
If you write C++ so that you only pass around exact class pointers with no generic nor ambiguous pointers, then virtual functions are not really needed.
But if you require run-time flexibility of types (as in Apple Banana Orange ==> Fruit ) functions become easier and more versatile with less redundant code.
You no longer have to write a function for each type of fruit, and you know that every fruit will respond to color() with its own correct function.
I hope this long-winded explanation solidifies the concept rather than confuses things. There are a lot of good examples out there to look at,
and look at enough and actually run them and mess with them and you will get it.
You asked for an example, and I believe the following provides a reason for a pure virtual destructor. I look forward to replies as to whether this is a good reason...
I do not want anyone to be able to throw the error_base type, but the exception types error_oh_shucks and error_oh_blast have identical functionality and I don't want to write it twice. The pImpl complexity is necessary to avoid exposing std::string to my clients, and the use of std::auto_ptr necessitates the copy constructor.
The public header contains the exception specifications that will be available to the client to distinguish different types of exception being thrown by my library:
// error.h
#include <exception>
#include <memory>
class exception_string;
class error_base : public std::exception {
public:
error_base(const char* error_message);
error_base(const error_base& other);
virtual ~error_base() = 0; // Not directly usable
virtual const char* what() const;
private:
std::auto_ptr<exception_string> error_message_;
};
template<class error_type>
class error : public error_base {
public:
error(const char* error_message) : error_base(error_message) {}
error(const error& other) : error_base(other) {}
~error() {}
};
// Neither should these classes be usable
class error_oh_shucks { virtual ~error_oh_shucks() = 0; }
class error_oh_blast { virtual ~error_oh_blast() = 0; }
And here is the shared implementation:
// error.cpp
#include "error.h"
#include "exception_string.h"
error_base::error_base(const char* error_message)
: error_message_(new exception_string(error_message)) {}
error_base::error_base(const error_base& other)
: error_message_(new exception_string(other.error_message_->get())) {}
error_base::~error_base() {}
const char* error_base::what() const {
return error_message_->get();
}
The exception_string class, kept private, hides std::string from my public interface:
// exception_string.h
#include <string>
class exception_string {
public:
exception_string(const char* message) : message_(message) {}
const char* get() const { return message_.c_str(); }
private:
std::string message_;
};
My code then throws an error as:
#include "error.h"
throw error<error_oh_shucks>("That didn't work");
The use of a template for error is a little gratuitous. It saves a bit of code at the expense of requiring clients to catch errors as:
// client.cpp
#include <error.h>
try {
} catch (const error<error_oh_shucks>&) {
} catch (const error<error_oh_blast>&) {
}
Maybe there is another REAL USE-CASE of pure virtual destructor which I actually can't see in other answers :)
At first, I completely agree with marked answer: It is because forbidding pure virtual destructor would need an extra rule in language specification. But it's still not the use case that Mark is calling for :)
First imagine this:
class Printable {
virtual void print() const = 0;
// virtual destructor should be here, but not to confuse with another problem
};
and something like:
class Printer {
void queDocument(unique_ptr<Printable> doc);
void printAll();
};
Simply - we have interface Printable and some "container" holding anything with this interface. I think here it is quite clear why print() method is pure virtual. It could have some body but in case there is no default implementation, pure virtual is an ideal "implementation" (="must be provided by a descendant class").
And now imagine exactly the same except it is not for printing but for destruction:
class Destroyable {
virtual ~Destroyable() = 0;
};
And also there could be a similar container:
class PostponedDestructor {
// Queues an object to be destroyed later.
void queObjectForDestruction(unique_ptr<Destroyable> obj);
// Destroys all already queued objects.
void destroyAll();
};
It's simplified use-case from my real application. The only difference here is that "special" method (destructor) was used instead of "normal" print(). But the reason why it is pure virtual is still the same - there is no default code for the method.
A bit confusing could be the fact that there MUST be some destructor effectively and compiler actually generates an empty code for it. But from the perspective of a programmer pure virtuality still means: "I don't have any default code, it must be provided by derived classes."
I think it's no any big idea here, just more explanation that pure virtuality works really uniformly - also for destructors.
This is a decade old topic :)
Read last 5 paragraphs of Item #7 on "Effective C++" book for details, starts from "Occasionally it can be convenient to give a class a pure virtual destructor...."
we need to make destructor virtual bacause of the fact that , if we dont make the destructor virtual then compiler will only destruct the contents of base class , n all the derived classes will remain un changed , bacuse compiler will not call the destructor of any other class except the base class.
When I declare a base class, should I declare all the functions in it as virtual, or should I have a set of virtual functions and a set of non-virtual functions which I am sure are not going to be inherited?
A function only needs to be virtual iff a derived class will implement that function in a different way.
For example:
class Base {
public:
void setI (int i) // No need for it to be virtual
{
m_i = i;
}
virtual ~Base () {} // Almost always a good idea
virtual bool isDerived1 () // Is overridden - so make it virtual
{
return false;
}
private:
int m_i;
};
class Derived1 : public Base {
public:
virtual ~Derived () {}
virtual bool isDerived1 () // Is overridden - so make it virtual
{
return true;
}
};
As a result, I would error the side of not having anything virtual unless you know in advance that you intend to override it or until you discover that you require the behaviour. The only exception to this is the destructor, for which its almost always the case that you want it to be virtual in a base class.
You should only make functions you intend and design to be overridden virtual. Making a method virtual is not free in terms of both maintenance and performance (maintenance being the much bigger issue IMHO).
Once a method is virtual it becomes harder to reason about any code which uses this method. Because instead of considering what one method call would do, you must consider what N method calls would do in that scenario. N represents the number of sub classes which override that method.
The one exception to this rule is destructors. They should be virtual in any class which is intended to be derived from. It's the only way to guarantee that the proper destructor is called during deallocation.
The non-virtual interface idiom (C++ Coding Standards item 39) says that a base class should have non-virtual interface methods, allowing the base class to guarantee invariants, and non-public virtual methods for customization of the base class behaviour by derived classes. The non-virtual interface methods call the virtual methods to provide the overridable behaviour.
I tend to make only the things I want to be overridable virtual. If my initial assumptions about what I will want to override turn out to be wrong, I go back and change the base class.
Oh, and obviously always make your destructor virtual if you're working on something that will be inherited from.
If you are creating a base class ( you are sure that somebody derives the class ) then you can do following things:
Make destructor virtual (a must for base class)
Define methods which should be
derived and make them virtual.
Define methods which need not be ( or
should not be) derived as
non-virtual.
If the functions are only for derived
class and not for base class then mark
them as protected.
Compiler wouldn't know which actual piece of code will be run when pointer of base type calls a virtual function. so the actual piece of code that would be run needs to be evaluated at run-time according to which object is pointed by base class pointer. So avoid the use of virtual function if the function is not gonne be overriden in an inherited class.
TLDR version:
"you should have a set of virtual functions and a set of non-virtual functions which you are sure are not going to be inherited." Because virtual functions causes a performance decrease at run-time.
The interface functions should be, in general, virtual. Functions that provide fixed functionality should not.
Why declare something virtual until you are really overriding it? I believe it's not a question of being sure or not. Follow the facts: is it overriden somewhere? No? Then it must not be virtual.