First off, my example is in php but this is not a php question, just a question on testing best practices
So I have this function that I would like to test
public function createNewTodo(CreateTodoQuery $query): TodoResponseObject
{
$new_todo = TodoFactory::createNew($query->getUserId(), $query->getTitle())
->withDescription($query->getDescription());
$new_todo = $this->todo_repository->save($new_todo);
return TodoResponseObject::fromDomain($new_todo);
}
In order to test this function, I will need to stub out my dependency (todo_repository). I want to have one test that asserts that what I get back is an instance of a TodoResponseObject. Simple enough
Now the challenging bit: I want to assert that the todo object that gets created with the parameters set in the query. Since I'm going to be stubbing out the todo_repository, I can't actually do that, as my test will just assert on the values of what I configured my stub to return. I could do something like an assertCalledWith type deal, but then at that point I'm going into the anti-pattern of testing that is "testing implementation, not functionality".
So how best could I get around this, and what would be the best way to test this?
See Sandi Metz, Magic Tricks of Testing
If you want to test that your code sent the right message to the factory, then the usual answer is to use a test double (a mock, or a spy) that tracks the messages sent to it so that you can verify them later.
This might require changing the design of your code so that you can more easily substitute one factory implementation for another (for instance, by wrapping a decorator around the "real" factory method).
Another possibility is to split the factory invocation into a separate method, and test that method's handling of the parameters
public function createTodo(CreateTodoQuery $query) {
return TodoFactory::createNew($query->getUserId(), $query->getTitle())
->withDescription($query->getDescription());
}
Changing the design of your implementation so that it better fits with your testing is normal in tdd.
When using a spied object as test subject, If we don't want to call nested methods inside the method we are testing, Which of these (doReturn-when or when-thenReturn) can be used to mock those nested methods?
Is there a way to avoid getting invoked the real methods inside the method we are going to test?
In fact doesn't matter if you use doReturn-when or when-thenReturn method for this specific case, because considering a #Spy you will always call the real method.
You can avoid entering other methods by mocking them, but if you are using just Mockito it will be a problem (it doesn't have this approach, but PowerMock does). Particularly I disagree with this approach, because we are being too intrusive in our tests and private flow is a part of the whole flow, but you can do something like this:
SomeService mock = spy(SomeService.class);
doReturn(1).when(mock, "getNumber", ArgumentMatchers.anyInt());
For more details, you can verify PowerMock's official documentation. Also, is nice to know some basic unit testing concepts (stubs, mocks and so on).
I have just started to read Professional Test Driven Development with C#: Developing Real World Applications with TDD
I have a hard time understanding stubs, fakes and mocks. From what I understand so far, they are fake objects used for the purpose of unit testing your projects, and that a mock is a stub with conditional logic into it.
Another thing I think I have picked up is that mocks are somehow related with dependency injection, a concept which I only managed to understand yesterday.
What I do not get is why I would actually use them. I cannot seem to find any concrete examples online that explains them properly.
Can anyone please explain to me this concepts?
As I've read in the past, here's what I believe each term stands for
Stub
Here you are stubbing the result of a method to a known value, just to let the code run without issues. For example, let's say you had the following:
public int CalculateDiskSize(string networkShareName)
{
// This method does things on a network drive.
}
You don't care what the return value of this method is, it's not relevant. Plus it could cause an exception when executed if the network drive is not available. So you stub the result in order to avoid potential execution issues with the method.
So you end up doing something like:
sut.WhenCalled(() => sut.CalculateDiskSize()).Returns(10);
Fake
With a fake you are returning fake data, or creating a fake instance of an object. A classic example are repository classes. Take this method:
public int CalculateTotalSalary(IList<Employee> employees) { }
Normally the above method would be passed a collection of employees that were read from a database. However in your unit tests you don't want to access a database. So you create a fake employees list:
IList<Employee> fakeEmployees = new List<Employee>();
You can then add items to fakeEmployees and assert the expected results, in this case the total salary.
Mocks
When using mock objects you intend to verify some behaviour, or data, on those mock objects. Example:
You want to verify that a specific method was executed during a test run, here's a generic example using Moq mocking framework:
public void Test()
{
// Arrange.
var mock = new Mock<ISomething>();
mock.Expect(m => m.MethodToCheckIfCalled()).Verifiable();
var sut = new ThingToTest();
// Act.
sut.DoSomething(mock.Object);
// Assert
mock.Verify(m => m.MethodToCheckIfCalled());
}
Hopefully the above helps clarify things a bit.
EDIT:
Roy Osherove is a well-known advocate of Test Driven Development, and he has some excellent information on the topic. You may find it very useful :
http://artofunittesting.com/
They are all variations of the Test Double. Here is a very good reference that explains the differences between them: http://xunitpatterns.com/Test%20Double.html
Also, from Martin Fowler's post: http://martinfowler.com/articles/mocksArentStubs.html
Meszaros uses the term Test Double as the generic term for any kind of
pretend object used in place of a real object for testing purposes.
The name comes from the notion of a Stunt Double in movies. (One of
his aims was to avoid using any name that was already widely used.)
Meszaros then defined four particular kinds of double:
Dummy objects: are passed around but never actually used. Usually they
are just used to fill parameter lists.
Fake objects actually have working implementations, but usually take some shortcut which makes
them not suitable for production (an in memory database is a good
example).
Stubs provide canned answers to calls made during the test,
usually not responding at all to anything outside what's programmed in
for the test. Stubs may also record information about calls, such as
an email gateway stub that remembers the messages it 'sent', or maybe
only how many messages it 'sent'.
Mocks are what we are talking about here: objects pre-programmed with expectations which form a
specification of the calls they are expected to receive.
Of these kinds of doubles, only mocks insist upon behavior verification. The
other doubles can, and usually do, use state verification. Mocks
actually do behave like other doubles during the exercise phase, as
they need to make the SUT believe it's talking with its real
collaborators.
This PHP Unit's manual helped me a lot as introduction:
"Sometimes it is just plain hard to test the system under test (SUT) because it depends on other components that cannot be used in the test environment. This could be because they aren't available, they will not return the results needed for the test or because executing them would have undesirable side effects. In other cases, our test strategy requires us to have more control or visibility of the internal behavior of the SUT." More: https://phpunit.de/manual/current/en/test-doubles.html
And i find better "introductions" when looking for "test doubles" as mocks, fakes, stubs and the others are known.
I am using dependency injection to supply mocks for code outside of my class under test. I find myself writing alot of the same code over and over as I need to mock out AuthProvider, ConfigurationManager, etc. which are used in the method I want to test. The method contains branches (if-then-else) and therefore I have multiple tests in place to test all execution paths of the method. I am instantiating each of the mocks several times (once in each test method) but am wondering if this is the wrong way around?
Also I am putting up expectations for the mocks and preset responses which evidently are mostly copy-paste as such calls as to AuthProvider.Authenticate() are called in every method
In each method I setup a mock repository and at the end of each method I verify the mock repository. Should I prehaps have some sort of factory for creating these mocks along with setting their expectations and return values and if so how?
For implementation of mocks I am using RhinoMocks.
"instantiating each of the mocks several times" is not a problem. Objects are free.
Just be sure you aren't defining the mock classes numerous times. Classes are expensive.
Also, you have a "setUp" method in a TestCase that allows you to create a fixture that is used by all tests. Yes, it's rebuilt for each test. No, that's not a problem unless it's painfully slow.
Assuming you're using NUnit, you can use instance variables for your Mocks and reset them in Setup/Teardown. If you see repeated patterns then do what you do with production code: refactor and extract helper methods that express what you're trying to achieve (if there's no commonality at all, then there's a problem with the design of the production code).
If there are significant divisions in setup, consider writing more than one test class for your production class.
Finally, think about whether your production class is just too busy and some of the behaviour ought to be extracted out to a helper object.
Listen to the Tests!
Here is my take..
I would not use mock in the case... I would use a factory method to return a fake implementation of the class and use dependency injection to use this implementation instead.. this way you would avoid duplication and can reuse this implementation again n again... again this factory implementation need to be refactored properly i.e., no duplication..
Mocks, I guess should be used when you are testing some dynamic behavior.. something like.. did a method in sub-system was called when I perform some action on SUT.. and later on call verify() to verify this behavior... there is also a good article on Martin Folwer bliki Mock Aren't Stubs
You might want to look at using the AAA style of test so that you have multiple tests with a common setup. Here's a decent example.
Record and Replay frameworks like EasyMock fail if you dont set an expectation on a mock call. But frameworks like Mockito simply record all calls and let you verify only the ones that matter. So you dont have to set expectation on all methods in all tests.
And coming back to your Problem of instantiating Mocks in each test method, there's a better way than using setUp() method. Mockito provides a #Mock annotation. So you declare your variables(as fields) like:
#Mock Repository repositoryMock
and just call initMocks() in setUp(). All mock objects declared are automatically available in your tests without explicitly creating Mocks.
I know how I use these terms, but I'm wondering if there are accepted definitions for faking, mocking, and stubbing for unit tests? How do you define these for your tests? Describe situations where you might use each.
Here is how I use them:
Fake: a class that implements an interface but contains fixed data and no logic. Simply returns "good" or "bad" data depending on the implementation.
Mock: a class that implements an interface and allows the ability to dynamically set the values to return/exceptions to throw from particular methods and provides the ability to check if particular methods have been called/not called.
Stub: Like a mock class, except that it doesn't provide the ability to verify that methods have been called/not called.
Mocks and stubs can be hand generated or generated by a mocking framework. Fake classes are generated by hand. I use mocks primarily to verify interactions between my class and dependent classes. I use stubs once I have verified the interactions and am testing alternate paths through my code. I use fake classes primarily to abstract out data dependencies or when mocks/stubs are too tedious to set up each time.
You can get some information :
From Martin Fowler about Mock and Stub
Fake objects actually have working implementations, but usually take some shortcut which makes them not suitable for production
Stubs provide canned answers to calls made during the test, usually not responding at all to anything outside what's programmed in for the test. Stubs may also record information about calls, such as an email gateway stub that remembers the messages it 'sent', or maybe only how many messages it 'sent'.
Mocks are what we are talking about here: objects pre-programmed with expectations which form a specification of the calls they are expected to receive.
From xunitpattern:
Fake: We acquire or build a very lightweight implementation of the same functionality as provided by a component that the SUT depends on and instruct the SUT to use it instead of the real.
Stub : This implementation is configured to respond to calls from the SUT with the values (or exceptions) that will exercise the Untested Code (see Production Bugs on page X) within the SUT. A key indication for using a Test Stub is having Untested Code caused by the inability to control the indirect inputs of the SUT
Mock Object that implements the same interface as an object on which the SUT (System Under Test) depends. We can use a Mock Object as an observation point when we need to do Behavior Verification to avoid having an Untested Requirement (see Production Bugs on page X) caused by an inability to observe side-effects of invoking methods on the SUT.
Personally
I try to simplify by using : Mock and Stub. I use Mock when it's an object that returns a value that is set to the tested class. I use Stub to mimic an Interface or Abstract class to be tested. In fact, it doesn't really matter what you call it, they are all classes that aren't used in production, and are used as utility classes for testing.
Stub - an object that provides predefined answers to method calls.
Mock - an object on which you set expectations.
Fake - an object with limited capabilities (for the purposes of testing), e.g. a fake web service.
Test Double is the general term for stubs, mocks and fakes. But informally, you'll often hear people simply call them mocks.
I am surprised that this question has been around for so long and nobody has as yet provided an answer based on Roy Osherove's "The Art of Unit Testing".
In "3.1 Introducing stubs" defines a stub as:
A stub is a controllable replacement for an existing dependency
(or collaborator) in the system. By using a stub, you can test your code without
dealing with the dependency directly.
And defines the difference between stubs and mocks as:
The main thing to remember about mocks versus stubs is that mocks are just like stubs, but you assert against the mock object, whereas you do not assert against a stub.
Fake is just the name used for both stubs and mocks. For example when you don't care about the distinction between stubs and mocks.
The way Osherove's distinguishes between stubs and mocks, means that any class used as a fake for testing can be both a stub or a mock. Which it is for a specific test depends entirely on how you write the checks in your test.
When your test checks values in the class under test, or actually anywhere but the fake, the fake was used as a stub. It just provided values for the class under test to use, either directly through values returned by calls on it or indirectly through causing side effects (in some state) as a result of calls on it.
When your test checks values of the fake, it was used as a mock.
Example of a test where class FakeX is used as a stub:
const pleaseReturn5 = 5;
var fake = new FakeX(pleaseReturn5);
var cut = new ClassUnderTest(fake);
cut.SquareIt;
Assert.AreEqual(25, cut.SomeProperty);
The fake instance is used as a stub because the Assert doesn't use fake at all.
Example of a test where test class X is used as a mock:
const pleaseReturn5 = 5;
var fake = new FakeX(pleaseReturn5);
var cut = new ClassUnderTest(fake);
cut.SquareIt;
Assert.AreEqual(25, fake.SomeProperty);
In this case the Assert checks a value on fake, making that fake a mock.
Now, of course these examples are highly contrived, but I see great merit in this distinction. It makes you aware of how you are testing your stuff and where the dependencies of your test are.
I agree with Osherove's that
from a pure maintainability perspective, in my tests using mocks creates more trouble than not using them. That has been my experience, but I’m always learning something new.
Asserting against the fake is something you really want to avoid as it makes your tests highly dependent upon the implementation of a class that isn't the one under test at all. Which means that the tests for class ActualClassUnderTest can start breaking because the implementation for ClassUsedAsMock changed. And that sends up a foul smell to me. Tests for ActualClassUnderTest should preferably only break when ActualClassUnderTest is changed.
I realize that writing asserts against the fake is a common practice, especially when you are a mockist type of TDD subscriber. I guess I am firmly with Martin Fowler in the classicist camp (See Martin Fowler's "Mocks aren't Stubs") and like Osherove avoid interaction testing (which can only be done by asserting against the fake) as much as possible.
For fun reading on why you should avoid mocks as defined here, google for "fowler mockist classicist". You'll find a plethora of opinions.
As mentioned by the top-voted answer, Martin Fowler discusses these distinctions in Mocks Aren't Stubs, and in particular the subheading The Difference Between Mocks and Stubs, so make sure to read that article.
Rather than focusing on how these things are different, I think it's more enlightening to focus on why these are distinct concepts. Each exists for a different purpose.
Fakes
A fake is an implementation that behaves "naturally", but is not "real". These are fuzzy concepts and so different people have different understandings of what makes things a fake.
One example of a fake is an in-memory database (e.g. using sqlite with the :memory: store). You would never use this for production (since the data is not persisted), but it's perfectly adequate as a database to use in a testing environment. It's also much more lightweight than a "real" database.
As another example, perhaps you use some kind of object store (e.g. Amazon S3) in production, but in a test you can simply save objects to files on disk; then your "save to disk" implementation would be a fake. (Or you could even fake the "save to disk" operation by using an in-memory filesystem instead.)
As a third example, imagine an object that provides a cache API; an object that implements the correct interface but that simply performs no caching at all but always returns a cache miss would be a kind of fake.
The purpose of a fake is not to affect the behavior of the system under test, but rather to simplify the implementation of the test (by removing unnecessary or heavyweight dependencies).
Stubs
A stub is an implementation that behaves "unnaturally". It is preconfigured (usually by the test set-up) to respond to specific inputs with specific outputs.
The purpose of a stub is to get your system under test into a specific state. For example, if you are writing a test for some code that interacts with a REST API, you could stub out the REST API with an API that always returns a canned response, or that responds to an API request with a specific error. This way you could write tests that make assertions about how the system reacts to these states; for example, testing the response your users get if the API returns a 404 error.
A stub is usually implemented to only respond to the exact interactions you've told it to respond to. But the key feature that makes something a stub is its purpose: a stub is all about setting up your test case.
Mocks
A mock is similar to a stub, but with verification added in. The purpose of a mock is to make assertions about how your system under test interacted with the dependency.
For example, if you are writing a test for a system that uploads files to a website, you could build a mock that accepts a file and that you can use to assert that the uploaded file was correct. Or, on a smaller scale, it's common to use a mock of an object to verify that the system under test calls specific methods of the mocked object.
Mocks are tied to interaction testing, which is a specific testing methodology. People who prefer to test system state rather than system interactions will use mocks sparingly if at all.
Test doubles
Fakes, stubs, and mocks all belong to the category of test doubles. A test double is any object or system you use in a test instead of something else. Most automated software testing involves the use of test doubles of some kind or another. Some other kinds of test doubles include dummy values, spies, and I/O blackholes.
The thing that you assert on it is called a mock object.
Everything else that just helped the test run is a stub.
To illustrate the usage of stubs and mocks, I would like to also include an example based on Roy Osherove's "The Art of Unit Testing".
Imagine, we have a LogAnalyzer application which has the sole functionality of printing logs. It not only needs to talk to a web service, but if the web service throws an error, LogAnalyzer has to log the error to a different external dependency, sending it by email to the web service administrator.
Here’s the logic we’d like to test inside LogAnalyzer:
if(fileName.Length<8)
{
try
{
service.LogError("Filename too short:" + fileName);
}
catch (Exception e)
{
email.SendEmail("a","subject",e.Message);
}
}
How do you test that LogAnalyzer calls the email service correctly when the web service throws an exception?
Here are the questions we’re faced with:
How can we replace the web service?
How can we simulate an exception from the web service so that we can
test the call to the email service?
How will we know that the email service was called correctly or at
all?
We can deal with the first two questions by using a stub for the web service. To solve the third problem, we can use a mock object for the email service.
A fake is a generic term that can be used to describe either a stub or a mock.In our test, we’ll have two fakes. One will be the email service mock, which we’ll use to verify that the correct parameters were sent to the email service. The other will be a stub that we’ll use to simulate an exception thrown from the web service. It’s a stub because we won’t be using the web service fake to verify the test result, only to make sure the test runs correctly. The email service is a mock because we’ll assert against it that it was called correctly.
[TestFixture]
public class LogAnalyzer2Tests
{
[Test]
public void Analyze_WebServiceThrows_SendsEmail()
{
StubService stubService = new StubService();
stubService.ToThrow= new Exception("fake exception");
MockEmailService mockEmail = new MockEmailService();
LogAnalyzer2 log = new LogAnalyzer2();
log.Service = stubService
log.Email=mockEmail;
string tooShortFileName="abc.ext";
log.Analyze(tooShortFileName);
Assert.AreEqual("a",mockEmail.To); //MOCKING USED
Assert.AreEqual("fake exception",mockEmail.Body); //MOCKING USED
Assert.AreEqual("subject",mockEmail.Subject);
}
}
Unit testing - is an approach of testing where the unit(class, method) is under control.
Test double - is not a primary object(from OOP world). It is a realisation which is created temporary to test, check or during development. And they are created for closing dependencies of tested unit(method, class...)
Test doubles types:
fake object is a real implementation of interface(protocol) or an extend which is using an inheritance or other approaches which can be used to create - is dependency. Usually it is created by developer as a simplest solution to substitute some dependency
stub object is a bare object(0, nil and methods without logic) with extra state which is predefined(by developer) to define returned values. Usually it is created by framework
class StubA: A {
override func foo() -> String {
return "My Stub"
}
}
mock object is very similar to stub object but the extra state is changed during program execution to check if something happened(method was called, arguments, when, how often...).
class MockA: A {
var isFooCalled = false
override func foo() -> String {
isFooCalled = true
return "My Mock"
}
}
spy object is a real object with a "partial mocking". It means that you work with a non-double object except mocked behavior
dummy object is object which is necessary to run a test but no one variable or method of this object is not called.
stub vs mock
Martin Fowler said
There is a difference in that the stub uses state verification while the mock uses behavior verification.
[Mockito mock vs spy]
All of them are called Test Doubles and used to inject the dependencies that your test case needs.
Stub:
It already has a predefined behavior to set your expectation
for example, stub returns only the success case of your API response
A mock is a smarter stub. You verify your test passes through it.
so you could make amock that return either the success or failure success depending on the condition could be changed in your test case.
If you are familiar with Arrange-Act-Assert, then one way of explaining the difference between stub and mock that might be useful for you, is that stubs belong to the arrange section as they are for arranging input state, and mocks belong to the assert section as they are for asserting results against.
Dummies don't do anything. They are just for filling up parameter lists, so that you don't get undefined or null errors. They also exist to satisfy the type checker in statically typed languages, so that you can be allowed to compile and run.
Stub, Fakes and Mocks have different meanings across different sources. I suggest you to introduce your team internal terms and agree upon their meaning.
I think it is important to distinguish between two approaches:
- behaviour validation (implies behaviour substitution)
- end-state validation (implies behaviour emulation)
Consider email sending in case of error. When doing behaviour validation - you check that method Send of IEmailSender was executed once. And you need to emulate return result of this method, return Id of the sent message. So you say: "I expect that Send will be called. And I will just return dummy (or random) Id for any call". This is behaviour validation:
emailSender.Expect(es=>es.Send(anyThing)).Return((subject,body) => "dummyId")
When doing state validation you will need to create TestEmailSender that implements IEmailSender. And implement Send method - by saving input to some data structure that will be used for future state verification like array of some objects SentEmails and then it tests you will check that SentEmails contains expected email. This is state validation:
Assert.AreEqual(1, emailSender.SentEmails.Count)
From my readings I understood that Behaviour validation usually called Mocks.
And State validation usually called Stubs or Fakes.
It's a matter of making the tests expressive. I set expectations on a Mock if I want the test to describe a relationship between two objects. I stub return values if I'm setting up a supporting object to get me to the interesting behaviour in the test.
stub and fake are objects in that they can vary their response based on input parameters. the main difference between them is that a Fake is closer to a real-world implementation than a stub. Stubs contain basically hard-coded responses to an expected request. Let see an example:
public class MyUnitTest {
#Test
public void testConcatenate() {
StubDependency stubDependency = new StubDependency();
int result = stubDependency.toNumber("one", "two");
assertEquals("onetwo", result);
}
}
public class StubDependency() {
public int toNumber(string param) {
if (param == “one”) {
return 1;
}
if (param == “two”) {
return 2;
}
}
}
A mock is a step up from fakes and stubs. Mocks provide the same functionality as stubs but are more complex. They can have rules defined for them that dictate in what order methods on their API must be called. Most mocks can track how many times a method was called and can react based on that information. Mocks generally know the context of each call and can react differently in different situations. Because of this, mocks require some knowledge of the class they are mocking. a stub generally cannot track how many times a method was called or in what order a sequence of methods was called. A mock looks like:
public class MockADependency {
private int ShouldCallTwice;
private boolean ShouldCallAtEnd;
private boolean ShouldCallFirst;
public int StringToInteger(String s) {
if (s == "abc") {
return 1;
}
if (s == "xyz") {
return 2;
}
return 0;
}
public void ShouldCallFirst() {
if ((ShouldCallTwice > 0) || ShouldCallAtEnd)
throw new AssertionException("ShouldCallFirst not first thod called");
ShouldCallFirst = true;
}
public int ShouldCallTwice(string s) {
if (!ShouldCallFirst)
throw new AssertionException("ShouldCallTwice called before ShouldCallFirst");
if (ShouldCallAtEnd)
throw new AssertionException("ShouldCallTwice called after ShouldCallAtEnd");
if (ShouldCallTwice >= 2)
throw new AssertionException("ShouldCallTwice called more than twice");
ShouldCallTwice++;
return StringToInteger(s);
}
public void ShouldCallAtEnd() {
if (!ShouldCallFirst)
throw new AssertionException("ShouldCallAtEnd called before ShouldCallFirst");
if (ShouldCallTwice != 2) throw new AssertionException("ShouldCallTwice not called twice");
ShouldCallAtEnd = true;
}
}
According to the book "Unit Testing Principles, Practices, and Patterns by Vladimir Khorikov" :
Mocks: help to emulate and examine outcoming interactions. These interactions are calls the SUT makes to its dependencies to change their state. In other words it helps to examine the interaction (behaviour) of SUT and its dependencies. mocks could be :
Spy : created manually
Mocks : created using framework
Stubs: helps to emulate incoming interactions. These interactions are calls the SUT makes to its dependencies to get input data. IN other words it helps to test the data passed to SUT. It could be 3 types
Fake: is usually implemented to replace a dependency that doesn’t yet exist.
Dummy: is hard-coded value.
Stubs: Fledged dependency that you configure to return different values for different scenarios.
In xUnit Test Patterns book by Gerard Meszaros There is a nice table that gives a good insight about differences
I tend to use just 2 terms - Fake and Mock.
Mock only when using a mocking framework like Moq for example because it doesn't seem right to refer to it as a Fake when it's being created with new Mock<ISomething>() - while you can technically use a mocking framework to create Stubs or Fakes, it just seems kind of dumb to call it that in this situation - it has to be a Mock.
Fake for everything else. If a Fake can be summarised as an implementation with reduced capabilities, then I think a Stub could also be a Fake (and if not, who cares, everyone knows what I mean, and not once has anyone ever said "I think you'll find that's a Stub")