I found this post when i try to understand what xvalue, glvalue and prvalue values are.
I also intuitively think that, under the hood, this is passed to member function like :
void SomeClass::func(SomeClass* this, int a, int b)
but as stated in the answer and the standard, this should be prvalue so my assumption was wrong.
I tried to mimic this as prvalue
template<typename T>
T* possible_this_impl() {
T* ref { nullptr };
// Somehow retrieve the currently referred object
return ref;
}
struct foo {
int a_non_static_member_function() {
possible_this_impl<foo>(); // Now it is a prvalue
possible_this_impl<foo>()->x;
possible_this_impl<foo>()->y;
}
public:
int x {};
int y {};
};
int main()
{
foo f;
f.a_non_static_member_function();
}
But actually, I wonder what could be possible implementation of this ? Could anyone enlighten me ?
Note: No need very deep explanation but maybe a simple explanation could be enough.
Is returning an object by (constant) reference from a c++-function generally exception safe - no matter which kind of object (e.g. class object with throwing copy-ctor) is returned? Two example cases:
Example1:
const T& f(const T& parm) {exception_safe_code; return parm;}
Example2:
template <typename T> struct X{ T t; T& get(){return t;} };
Assuming that you're returning a reference to an object that will still be alive outside of the function scope, and that the function doesn't have any potentially-throwing code before the return, then... yes, returning a reference cannot ever throw an exception.
struct Foo
{
std::string x;
const auto& get_x() noexcept { return x; }
// ^^^^^^^^
// Safe and recommended.
};
You added some examples - both f and get are exception-safe and can be marked as noexcept.
I have to store arguments (parameter pack), and pass the arguments to another function.
As a result, I cannot use lambda. And a good choice is std::bind.
But for this code
struct A{};
void test(A &&){}
int main()
{
A a;
test(move(a)); //work
bind(test,a)(); //compile fail; copy a to std::bind, pass a to test
}
According to standard, all variables stored in std::bind will be pass as lvalue to function. (The C++ standard doesn't say that, by I think that is what it means.)
And that means I cannot use a function (has rvalue reference in parameter) with std::bind.
One solution is to change test(A &&) to test(A &), but this only works for your project (and make it strange while you not only need to call test by std::thread but also need to call test by plain sequential call).
So, is there any ways to solve this problem?
You can create wrapper which will be convertible to the rvalue reference (like reference_wrapper/l-value references) and use it with bind:
It cal look like that:
#include <iostream>
#include <functional>
struct A{};
void test(A &&){ std::cout << "Works!\n"; }
template <typename T>
struct rvalue_holder
{
T value;
explicit rvalue_holder(T&& arg): value(arg) {}
operator T&&()
{
return std::move(value);
}
};
template <typename T>
rvalue_holder<T> rval(T && val)
{
return rvalue_holder<T>(std::move(val));
}
int main()
{
A a;
test(std::move(a)); //work
auto foo = std::bind(test, rval(std::move(a))); //works
foo();
}
http://coliru.stacked-crooked.com/a/56220bc89a32c860
Note: both rvalue_holder and especially rval need further work to ensure efficiency, robustness and desired behavior in all cases.
Imagine you have a number of overloaded methods that (before C++11) looked like this:
class MyClass {
public:
void f(const MyBigType& a, int id);
void f(const MyBigType& a, string name);
void f(const MyBigType& a, int b, int c, int d);
// ...
};
This function makes a copy of a (MyBigType), so I want to add an optimization by providing a version of f that moves a instead of copying it.
My problem is that now the number of f overloads will duplicate:
class MyClass {
public:
void f(const MyBigType& a, int id);
void f(const MyBigType& a, string name);
void f(const MyBigType& a, int b, int c, int d);
// ...
void f(MyBigType&& a, int id);
void f(MyBigType&& a, string name);
void f(MyBigType&& a, int b, int c, int d);
// ...
};
If I had more parameters that could be moved, it would be unpractical to provide all the overloads.
Has anyone dealt with this issue? Is there a good solution/pattern to solve this problem?
Thanks!
Herb Sutter talks about something similar in a cppcon talk
This can be done but probably shouldn't. You can get the effect out using universal references and templates, but you want to constrain the type to MyBigType and things that are implicitly convertible to MyBigType. With some tmp tricks, you can do this:
class MyClass {
public:
template <typename T>
typename std::enable_if<std::is_convertible<T, MyBigType>::value, void>::type
f(T&& a, int id);
};
The only template parameter will match against the actual type of the parameter, the enable_if return type disallows incompatible types. I'll take it apart piece by piece
std::is_convertible<T, MyBigType>::value
This compile time expression will evaluate to true if T can be converted implicitly to a MyBigType. For example, if MyBigType were a std::string and T were a char* the expression would be true, but if T were an int it would be false.
typename std::enable_if<..., void>::type // where the ... is the above
this expression will result in void in the case that the is_convertible expression is true. When it's false, the expression will be malformed, so the template will be thrown out.
Inside the body of the function you'll need to use perfect forwarding, if you are planning on copy assigning or move assigning, the body would be something like
{
this->a_ = std::forward<T>(a);
}
Here's a coliru live example with a using MyBigType = std::string. As Herb says, this function can't be virtual and must be implemented in the header. The error messages you get from calling with a wrong type will be pretty rough compared to the non-templated overloads.
Thanks to Barry's comment for this suggestion, to reduce repetition, it's probably a good idea to create a template alias for the SFINAE mechanism. If you declare in your class
template <typename T>
using EnableIfIsMyBigType = typename std::enable_if<std::is_convertible<T, MyBigType>::value, void>::type;
then you could reduce the declarations to
template <typename T>
EnableIfIsMyBigType<T>
f(T&& a, int id);
However, this assumes all of your overloads have a void return type. If the return type differs you could use a two-argument alias instead
template <typename T, typename R>
using EnableIfIsMyBigType = typename std::enable_if<std::is_convertible<T, MyBigType>::value,R>::type;
Then declare with the return type specified
template <typename T>
EnableIfIsMyBigType<T, void> // void is the return type
f(T&& a, int id);
The slightly slower option is to take the argument by value. If you do
class MyClass {
public:
void f(MyBigType a, int id) {
this->a_ = std::move(a); // move assignment
}
};
In the case where f is passed an lvalue, it will copy construct a from its argument, then move assign it into this->a_. In the case that f is passed an rvalue, it will move construct a from the argument and then move assign. A live example of this behavior is here. Note that I use -fno-elide-constructors, without that flag, the rvalue cases elides the move construction and only the move assignment takes place.
If the object is expensive to move (std::array for example) this approach will be noticeably slower than the super-optimized first version. Also, consider watching this part of Herb's talk that Chris Drew links to in the comments to understand when it could be slower than using references. If you have a copy of Effective Modern C++ by Scott Meyers, he discusses the ups and downs in item 41.
You may do something like the following.
class MyClass {
public:
void f(MyBigType a, int id) { this->a = std::move(a); /*...*/ }
void f(MyBigType a, string name);
void f(MyBigType a, int b, int c, int d);
// ...
};
You just have an extra move (which may be optimized).
My first thought is that you should change the parameters to pass by value. This covers the existing need to copy, except the copy happens at the call point rather than explicitly in the function. It also allows the parameters to be created by move construction in a move-able context (either unnamed temporaries or by using std::move).
Why you would do that
These extra overloads only make sense, if modifying the function paramers in the implementation of the function really gives you a signigicant performance gain (or some kind of guarantee). This is hardly ever the case except for the case of constructors or assignment operators. Therefore, I would advise you to rethink, whether putting these overloads there is really necessary.
If the implementations are almost identical...
From my experience this modification is simply passing the parameter to another function wrapped in std::move() and the rest of the function is identical to the const & version. In that case you might turn your function into a template of this kind:
template <typename T> void f(T && a, int id);
Then in the function implementation you just replace the std::move(a) operation with std::forward<T>(a) and it should work. You can constrain the parameter type T with std::enable_if, if you like.
In the const ref case: Don't create a temporary, just to to modify it
If in the case of constant references you create a copy of your parameter and then continue the same way the move version works, then you may as well just pass the parameter by value and use the same implementation you used for the move version.
void f( MyBigData a, int id );
This will usually give you the same performance in both cases and you only need one overload and implementation. Lots of plusses!
Significantly different implementations
In case the two implementations differ significantly, there is no generic solution as far as I know. And I believe there can be none. This is also the only case, where doing this really makes sense, if profiling the performance shows you adequate improvements.
You might introduce a mutable object:
#include <memory>
#include <type_traits>
// Mutable
// =======
template <typename T>
class Mutable
{
public:
Mutable(const T& value) : m_ptr(new(m_storage) T(value)) {}
Mutable(T& value) : m_ptr(&value) {}
Mutable(T&& value) : m_ptr(new(m_storage) T(std::move(value))) {}
~Mutable() {
auto storage = reinterpret_cast<T*>(m_storage);
if(m_ptr == storage)
m_ptr->~T();
}
Mutable(const Mutable&) = delete;
Mutable& operator = (const Mutable&) = delete;
const T* operator -> () const { return m_ptr; }
T* operator -> () { return m_ptr; }
const T& operator * () const { return *m_ptr; }
T& operator * () { return *m_ptr; }
private:
T* m_ptr;
char m_storage[sizeof(T)];
};
// Usage
// =====
#include <iostream>
struct X
{
int value = 0;
X() { std::cout << "default\n"; }
X(const X&) { std::cout << "copy\n"; }
X(X&&) { std::cout << "move\n"; }
X& operator = (const X&) { std::cout << "assign copy\n"; return *this; }
X& operator = (X&&) { std::cout << "assign move\n"; return *this; }
~X() { std::cout << "destruct " << value << "\n"; }
};
X make_x() { return X(); }
void fn(Mutable<X>&& x) {
x->value = 1;
}
int main()
{
const X x0;
std::cout << "0:\n";
fn(x0);
std::cout << "1:\n";
X x1;
fn(x1);
std::cout << "2:\n";
fn(make_x());
std::cout << "End\n";
}
This is the critical part of the question:
This function makes a copy of a (MyBigType),
Unfortunately, it is a little ambiguous. We would like to know what is the ultimate target of the data in the parameter. Is it:
1) to be assigned to an object that existing before f was called?
2) or instead, stored in a local variable:
i.e:
void f(??? a, int id) {
this->x = ??? a ???;
...
}
or
void f(??? a, int id) {
MyBigType a_copy = ??? a ???;
...
}
Sometimes, the first version (the assignment) can be done without any copies or moves. If this->x is already long string, and if a is short, then it can efficiently reuse the existing capacity. No copy-construction, and no moves. In short, sometimes assignment can be faster because we can skip the copy contruction.
Anyway, here goes:
template<typename T>
void f(T&& a, int id) {
this->x = std::forward<T>(a); // is assigning
MyBigType local = std::forward<T>(a); // if move/copy constructing
}
If the move version will provide any optimization then the implementation of the move overloaded function and the copy one must be really different. I don't see a way to get around this without providing implementations for both.
Recently I have read that it makes sense when returning by value from a function to qualify the return type const for non-builtin types, e.g.:
const Result operation() {
//..do something..
return Result(..);
}
I am struggling to understand the benefits of this, once the object has been returned surely it's the callers choice to decide if the returned object should be const?
Basically, there's a slight language problem here.
std::string func() {
return "hai";
}
func().push_back('c'); // Perfectly valid, yet non-sensical
Returning const rvalues is an attempt to prevent such behaviour. However, in reality, it does way more harm than good, because now that rvalue references are here, you're just going to prevent move semantics, which sucks, and the above behaviour will probably be prevented by the judicious use of rvalue and lvalue *this overloading. Plus, you'd have to be a bit of a moron to do this anyway.
It is occasionally useful. See this example:
class I
{
public:
I(int i) : value(i) {}
void set(int i) { value = i; }
I operator+(const I& rhs) { return I(value + rhs.value); }
I& operator=(const I& rhs) { value = rhs.value; return *this; }
private:
int value;
};
int main()
{
I a(2), b(3);
(a + b) = 2; // ???
return 0;
}
Note that the value returned by operator+ would normally be considered a temporary. But it's clearly being modified. That's not exactly desired.
If you declare the return type of operator+ as const I, this will fail to compile.
There is no benefit when returning by value. It doesn't make sense.
The only difference is that it prevents people from using it as an lvalue:
class Foo
{
void bar();
};
const Foo foo();
int main()
{
foo().bar(); // Invalid
}
Last year I've discovered another surprising usecase while working on a two-way C++-to-JavaScript bindings.
It requires a combination of following conditions:
You have a copyable and movable class Base.
You have a non-copyable non-movable class Derived deriving from Base.
You really, really do not want an instance of Base inside Derived to be movable as well.
You, however, really want slicing to work for whatever reason.
All classes are actually templates and you want to use template type deduction, so you cannot really use Derived::operator const Base&() or similar tricks instead of public inheritance.
#include <cassert>
#include <iostream>
#include <string>
#include <utility>
// Simple class which can be copied and moved.
template<typename T>
struct Base {
std::string data;
};
template<typename T>
struct Derived : Base<T> {
// Complex class which derives from Base<T> so that type deduction works
// in function calls below. This class also wants to be non-copyable
// and non-movable, so we disable copy and move.
Derived() : Base<T>{"Hello World"} {}
~Derived() {
// As no move is permitted, `data` should be left untouched, right?
assert(this->data == "Hello World");
}
Derived(const Derived&) = delete;
Derived(Derived&&) = delete;
Derived& operator=(const Derived&) = delete;
Derived& operator=(Derived&&) = delete;
};
// assertion fails when the `const` below is commented, wow!
/*const*/ auto create_derived() { return Derived<int>{}; }
// Next two functions hold reference to Base<T>/Derived<T>, so there
// are definitely no copies or moves when they get `create_derived()`
// as a parameter. Temporary materializations only.
template<typename T>
void good_use_1(const Base<T> &) { std::cout << "good_use_1 runs" << std::endl; }
template<typename T>
void good_use_2(const Derived<T> &) { std::cout << "good_use_2 runs" << std::endl; }
// This function actually takes ownership of its argument. If the argument
// was a temporary Derived<T>(), move-slicing happens: Base<T>(Base<T>&&) is invoked,
// modifying Derived<T>::data.
template<typename T>
void oops_use(Base<T>) { std::cout << "bad_use runs" << std::endl; }
int main() {
good_use_1(create_derived());
good_use_2(create_derived());
oops_use(create_derived());
}
The fact that I did not specify the type argument for oops_use<> means that the compiler should be able to deduce it from argument's type, hence the requirement that Base<T> is actually a real base of Derived<T>.
An implicit conversion should happen when calling oops_use(Base<T>). For that, create_derived()'s result is materialized into a temporary Derived<T> value, which is then moved into oops_use's argument by Base<T>(Base<T>&&) move constructor. Hence, the materialized temporary is now moved-from, and the assertion fails.
We cannot delete that move constructor, because it will make Base<T> non-movable. And we cannot really prevent Base<T>&& from binding to Derived<T>&& (unless we explicitly delete Base<T>(Derived<T>&&), which should be done for all derived classes).
So, the only resolution without Base modification here is to make create_derived() return const Derived<T>, so that oops_use's argument's constructor cannot move from the materialized temporary.
I like this example because not only it compiles both with and without const without any undefined behaviour, it behaves differently with and without const, and the correct behavior actually happens with const only.