SAS EG - Individual Datasets split by date vs Single appended dataset containing all dates - sas

This is mainly a question about efficiency, as I'm unfamiliar with how SAS processes datasets. A lot of code that I run reads from multiple datasets with consecutive dates (whether this is consecutive months/quarters/years depends on the datasets).
At the moment, the codes require manual updates each time they're run to ensure they're picking up the correct dates, so I would have something such as:
Data Quarters;
Set XYZ_201803
XYZ_201806
...
...
XYZ_202006;
Run;
To help tidy up the code and make it a bit less tedious, I've approached a few different ideas and had a few sent my way and one of the big ideas is to store all of the XYZ_YYYYMM datasets as a single, appended dataset, so they can be read from with a simple filter on the date as below:
Data Quarters;
Set AppendedData;
Where Date > 201812;
Run;
Which of these two options is more efficient as far as computation goes? On datasets which are typically a couple of gb in size, which would you recommend? What other pros and cons come with each idea?
Thanks for any input. :)

Most likely a single dataset and several separate datasets will be similar from a performance standpoint; there is some small overhead opening new datasets, but as long as it's not thousands of them you probably won't notice a difference.
There will be a performance hit with a single dataset in creating that dataset, and in using that dataset, if you use only small sections usually. Typically, separate datasets are common where people usually do analysis of individual quarters, and rarely combine them.
Finally, if the datasets can vary from quarter to quarter in their contents (if the formats could change, if the fields can change), then having separate is easier in some ways than having to manage the change between the different periods.
That said, there's a huge organizational benefit to a single dataset, and all of the above issues can be dealt with. Think of SAS datasets as large SQL tables - they are effectively the same, and the same things that help SQL tables can help SAS. Proper sizing of columns, proper sorting of the stored data, indexing appropriately, are all important solutions. If you have a database team at your place of work, they may be able to help construct an ideal table plan. Files of several GB can definitely benefit from indexing and proper sorting, to allow users to easily get at the bits they need.
If you were to stay with separate datasets, you can use the macro language to make sure you're reading in the right datasets, assuming they're named in a consistent fashion. That might be the ideal solution if there are other reasons to stay separate - then no changes are needed each quarter.

Points of interest:
From a coding standpoint
Dealing with a single, stacked data set, created by appending the quarterly data sets is more efficient.
From a resource standpoint
Have to make sure you have large enough disk to hold the single large table
Have additional off storage to hold the original pieces -- no need to clutter up the primary data disk with all the pieces.
A 2TB SSD is very fast, remarkably cheap, and low power and can contain a table comprised of quite a few "couple GB" pieces.
Spinning disk has lower $/TB and more capacity. I/O will be slower and consume more power.
To further improve query performance you will want to index the variables most commonly used in BY, CLASS, and WHERE statements.
"... simple filter ..." is part of "Keep it Simple S****" (KISS)

Related

How to circumvent SPICE limitations (500 M rows) to create a QuickSight dashboard for a big data set?

My goal is to quickly & dynamically visualize a big data set (> 500 M rows) using QuickSight. To achieve quick query times, it's necessary to load all of the data into SPICE. However, AWS currently has a hard limit for the maximum number of rows that can be imported into SPICE for a single data set, which is 500 M rows. I currently don't see any option that could be used to visualize all of the data. Here are things that I already considered:
Splitting the full data set into individual QS datasets: the problem with this approach is that QuickSight requires that each visual has a single dataset as an input, so values from multiple datasets cannot be shown in the same visual. I'm aware that multiple datasets can be used within one dashboard but that would not suit the use-case of having a single plot visualizing the data.
Pivoting the table: the input table has a lot of rows, so changing the format from long to wide table would circumvent the SPICE row limitations. However, QuickSight doesn't seem to support using an array of columns a y-values to be plotted.
Creating a dataset per visualization: Certain visualizations can theoretically be defined using fewer values than in the original data set. For example, to create a box plot over a set of groups, we mainly need the quartile values for each of the groups to be plotted, rather than the full data set, which would allow us to be below the SPICE limitation. However, QuickSight doesn't allow creating custom plots such as creation of a box plot where quartiles are already pre-processed.
Currently, the only viable approach I see is to create a dashboard per user, since most users would only be interested in a subset of rows from the full data set.
Irrespective of the approach taken, unfortunately, this limitation forces us to do some compromises.
Depending on the number of users, creating a dataset per user might become a headache to manage. So, I would suggest that if possible you use datasets that capture groups of users (example by user group, or user's country).
Pivoting the table might make it harder to build some visuals. As you said, if you pivot multiple values from different rows into an array field, then you would not be able to extract these easily in analyses (you could use string functions and to to extract them that way but there are limitations around this approach too).
Also creating a dataset per visualisation has maintenance overhead in that you would need to update and re-ingest the dataset most times when changing visualisations.
Some other approaches you might consider:
Aggregate multiple rows together Example if your dataset has multiple rows for each user within the same minute, you could aggregate all these into 1 row and summing up values within that minute. The aggregation period should be as large as possible but keep in mind that this will affect the time granularity in your analyses/dashboards
Prune old data If you are more interested in recent data, then you could add a filter to only keep say 1 month of activity. You could then have other non-SPICE (Direct Query) datasets that do not have this restriction but reports would be slower on older data.
Cache in an external database You could load your data into some data warehousing database (such as AWS Redshift) and then not use SPICE in QuickSight. Of course, this will probably get more expensive.

Is it always poor performance when using the entire table in DAX?

So I am reading that using the table name causes table expansion which results in slow performance.
I understand that this can happen when tablename is used in FILTER. However if I use the tablename in REMOVEFILTERS, then does this also cause table expansion/poor performance?
No, when you use REMOVEFILTERS, DAX engine only marks the expanded table from which all the filters are to be removed and thats all it does, this doesn't have any performance impact.
Refering table names in basic calculations is fine the problem arises when you nest iterators and there are complex code in the row context and also if the cardinality of the each iterator is pretty high then in most of the cases what DAX engine would do is it would materialize the whole table in memory in form of a data cache on which the Formula Engine will later iterate.
Huge materialized tables are a big problem because the architecture of Vertipaq is to reduce the RAM usage, but the materialized tables are uncompressed tables in memory and they can consume a lot of RAM.
If you want to create materialization yourself for testing, then try using SAMPLE or GROUBPY as a top level function and use DAX Studio to confirm the materialization.
My advice is to always use a single column whenever you can, this allows for faster scanning of the columns/dictionary, more columns will require scanning of the columns and then joining them.

Convert indexes to sortkeys Redshift

Do zonemaps exists only in memory? Or its populated in memory from disk where its stored persistently? Is it stored along with the 1MB block, or in a separate place?
We are migrating from oracle to redshift, there are bunch of indexes to cater to reporting needs. The nearest equivalent of index in Redshift is sortkeys. For bunch of tables, the total number of cols of all the indexes are between 15-20 (some are composite indexes, some are single col indexes). Interleaved keys seems to be best fit, but there cannot be more than 8 cols in an interleaved sortkey. But if I use compound sortkey, it wont be effective since the queries might not have prefix colums.
Whats the general advice in such cases - which type of sort key to use? How to convert many indexes from rdbms to sort keys in redshift?
Are high cardinality cols such as identity cols, dates and timestamps not good fit with interleaved keys? Would it be same with compound sortkeys? Any disadvanatges with interleaved sortkeys to keep in consideration?
You are asking the right questions so let's take these down one at a time. First, zonemaps are located on the leader node and stored on disk and the table data is stored on the compute nodes. They are located separate from each other. The zonemaps store the min and max values for every column for every 1MB block in a table. No matter if a column is in your sortkey list or not, there will be zonemap data for the block. When a column shows up in a WHERE clause Redshift will first compare to the zonemap data to decide if the block is needed for the query. If a block is not needed it won't be read from disk resulting in significant performance improvements for very large tables. I call this "block rejection". A few key points - This really only makes a difference on tables will 10s of millions of rows and when there are selective WHERE predicates.
So you have a number of reports each of which looks at the data by different aspects - common. You want all of these to work well, right? Now the first thing to note is that each table can have it's own sortkeys, they aren't linked. What is important is how does the choice of sortkeys affect the min and max values in the zonemaps for the columns you will use as WHERE clauses. With composite sortkeys you have to think about what impact later keys will have on the composition of the block - not much after the 3rd or 4th key. This is greatly impacted by the ordinality of the data but you get the idea. The good news is that sorting on one column will impact the zonemaps of all the columns so you don't always have to have a column in the sortkey list to get the benefit.
The question of compound vs interleaved sortkeys is a complicated one but remember you want to get high levels of block rejection as often as possible (and on the biggest tables). When different queries have different WHERE predicates it can be tricky to get a good mix of sortkeys to make this happen. In general compound sortkeys are easier to understand and have less table maintenance implications. You can inspect the zonemaps and see what impacts your sortkey choices are having and make informed decisions on how to adjust. If there are columns with low ordinality put those first so that the next sortkeys can have impact on the overall row order and therefore make block with different value ranges for these later keys. For these reasons I like compound keys over interleaved but there are cases where things will improve with interleaved keys. When you have high ordinality for all the columns and they are all equally important interleaved may be the right answer. I usually learn about the data trying to optimize compound keys that even if I end up with interleaved keys I can make smart choices about what columns I want in the sortkeys.
Just some metrics to help in you choice. Redshift can store 200,000 row elements in a single block and I've seen columns with over 2M elements per block. Blocks are distributed across the cluster so you need a lot of rows to fill up enough blocks that rejecting a high percentage of them is even possible. If you have a table of 5 million rows and you are sweating the sortkeys you are into the weeds. (Yes sorting can impact other aspects of the query like joining but these are sub-second improvements not make or break performance impacts.) Compression can have a huge impact on the number of row elements per block and therefore how many rows are represented in an entry in the zonemap. This can increase block rejection but will increase the read data needed to scan the entire table - a tradeoff you will want to make sure you are winning (1 query gets faster by 10 get slower is likely not a good tradeoff).
Your question about ordinality is a good one. If I sort my a high ordinality column first in a compound sortkey list this will set the overall order of the rows potentially making all other sortkeys impotent. However if I sort by a low ordinality column first then there is a lot of power left for other sortkeys to change the order of the rows and therefore the zonemap contents. For example if I have Col_A with only 100 unique values and Col_B which is a timestamp with 1microsecond resolution. If I sort by Col_B first all the rows are likely order just by sorting on this column. But if I sort by Col_A first there are lots of rows with the same value and the later sortkey (Col_B) can order these rows. Interleaved works the same way except which column is "first" changes by region of the table. If I interleave sort base on the same Col_A and Col_B above (just 2 sortkeys), then half the table will be sorted by Col_A first and half by Col_B first. For this example Col_A will be useless half of the time - not the best answer. Interleave sorting just modifies which column is use as the first sortkey throughout the table (and second and third if more keys are used). High ordinality in a sort key makes later sortkeys less powerful and this independent of sort style - it's just the interleave changes up which columns are early and which are late by region of the table.
Because ordinality of sortkeys can be such an important factor in gaining block rejection across many WHERE predicates that it is common to add derived columns to tables to hold lower ordinality versions of other columns. In the example above I might add Col_B2 to the table and have if just hold the year and month (month truncated date) of Col_B. I would use Col_B2 in my sortkey list but my queries would still be referencing Col_B. It "roughly" sorts based on Col_B so that Col_A can have some sorting power if it was to come later in the sortkey list. This is a common reason for making data model changes when moving Redshift.
It is also critical that "block rejecting" WHERE clauses on written against the fact table column, not applied to a dimension table column after the join. Zonemap information is read BEFORE the query starts to execute and is done on the leader node - it can't see through joins. Another data model change is to denormalize some key information into the fact tables so these common where predicates can be applied to the fact table and zonemaps will be back in play.
Sorry for the tome but this is a deep topic which I've spent year optimizing. I hope this is of use to you and reach out if anything isn't clear (and I hope you have the DISTKEYS sorted out already :) ).

Lookup primary keys in multiple tables

the problem I'm solving has many simple solutions but what I need is to find the way to reduce the time and memory needed for the process.
On the one side I have a table with a few hundred ID's and on the other 40 monthly tables and counting.
Each of the tables has between 500 000 to 1 mln records each for unique id. Each table has few thoustand variables but i only need 10-20 of them.
I need to lookup the tables to find the latest table when particular id from base table occur and get variable values that I need.
The newest month table is being calculated every day so many id's from previous months may occur again so I cannot just create indexed dictionary (last.id and variables) once. Also I can't afford creating new dictionary based on all tables every day.
Visual description
I came up with some ideas but I need your help to find the most efficient concept:
Concatenate all monthly tables with variables needed, sort ascending ID and month, select last.id using data step. Use join or merge with base table.
Problem: too much memory needed to set all tables.
Alternatively I used proc append in loop. Unfortunately not very time and memory efficient.
Inner join with all of the tables separately in loop:
Low memory use but very time consuming.
Create dictionary based on all months besides the latest and update it every day.
Problem: Large dictionary table.
Now I'm looking for smart concepts how to solve this kind of problem. Maybe hash objects.. but how?
I would greatly appreciate it if you give me some feedback on this case.
Thank you!
If someone was to write some code to generate some dummy data based on your specs they may be able to provide a more specific answer to your question. But without sample data it's hard to know the best way without trial and error.
Instead I've paraphrased some of my old answers into a more comprehensive list of things you can check.
Below are some ways to boost performance (roughly in order of performance improvement, YMMV):
Index the fields in each table that you will be joining on or using in a where clause. Not all fields are good candidates for indexes so do a little research on how to determine this before indexing.
Reduce the number of rows as early in the process as possible (ie. use a where clause to get rid of anything you don't care about).
If the joins are still time consuming, consider replacing them with hash table lookups.
Compression. When you build the datasets make sure you use the compress=yes option if you're not already. This will shrink the size of the table on disk resulting in less disk I/O (the slowest part of querying).
If the steps are IO intensive, consider using views rather than creating temporary tables.
Make sure you are using proc append to append datasets together to reduce IO (sounds like you are, just adding this for completeness). Append the smaller dataset to the larger dataset. Alternatively use a view to 'append' them without duplicating overhead.
Limit the columns you are processing by using a keep statement (reduces IO).
Check column lengths - make sure you're not using a field length of $255 to store something that only needs a length of $20 etc...
Use the SAS SPDE (Scalable Performance Data Engine). It allows you to partition your SAS datasets into multiple files and optionally spread them across different disks. Once your SAS datasets reach a certain size you can see performance improvements. I generally tend to use SPD libnames any time a dataset grows > 10G. No additional SAS modules are requires - this is enabled as part of Base SAS.

Best order of joins and append for performance

I'm having huge performance issues with a SAS DI job that I need to get up and running. Therefore I'm looking for clever ways to optimize the job.
One thing in particular that I thought of is that I should perhaps permute the order of some joins and an append. Currently, my job is configured as follows:
there are several similarly structured source tables which I first apply a date filter to (to reduce the number of rows) and sort on two fields, say a and b, then I left join each table to a table with account table on the same fields a and b (I'd like to create indexes for these if possible, but don't know how to do it for temporary work tables in SAS DI). After each of these joins is complete, I append the resulting tables into one dataset.
It occurs to me that I could first append, and then do just one join, but I have no notion of which approach is faster, or if the answer is that it depends I have no notion of what it depends on (though I'd guess the size of the constituent tables).
So, is it better to do many joins then append, or to append then do one join?
EDIT
Here is an update with some relevant information (requested by user Robert Penridge).
The number of source tables here is 7, and the size of these tables ranges from 1500 to 5.2 million. 10 000 is typical. The number of columns is 25. These tables are each being joined with the same table, which has about 5000 rows and 8 columns.
I estimate that the unique key partitions the tables into subsets of roughly equal size; the size reduction here should be between 8% and 30% (the difference is due to the fact that some of the source tables carry much more historical data than others, adding to the percentage of the table grouped into the same number of groups).
I have limited the number of columns to the exact minimum amount required (21).
By default SAS DI creates all temporary datasets as views, and I have not changed that.
The code for the append and joins are auto-generated by SAS DI after constructing them with GUI elements.
The final dataset is not sorted; my reason for sorting the data which feeds the joins is that the section of this link on join performance (page 35) mentions that it should improve performance.
As I mentioned, I'm not sure if one can put indexes on temporary work tables or views in SAS DI.
I cannot say whether the widths of the fields is larger than absolutely necessary, but if so I doubt it is egregious. I hesitate to change this since it would have to be done manually, on several tables, and when new data comes in it might need that extra column width.
Much gratitude
Performance in SAS is mainly about reducing IO (ie. reading/writing to the disk).
Without additional details it's difficult to help but some additional things you can consider are:
limit the columns you are processing by using a keep statement (reduces IO)
if the steps performing the joins are IO intensive, consider using views rather than creating temporary tables
if the joins are still time consuming, consider replacing them with hash table lookups
make sure you are using proc append to append the 2 datasets together to reduce the IO. Append the smaller dataset to the larger dataset.
consider not sorting the final dataset but placing an index on it for consumers of the data.
ensure you are using some type of dataset compression, or ensure your column widths are set appropriately for all columns (ie. you don't have a width of 200 on a field that uses a width of 8)
reduce the number of rows as early in the process as possible (you are already doing this, just listing it here for completeness)
Adjusting the order of left-joins and appends probably won't make as much difference as doing the above.
As per your comments it seems that
1. There are 7 input source tables
2. Join these 7 source tables to 1 table
3. Append the results
In SAS DI studio, use a Lookup to perform the above much faster
1. Connect the 7 Input tables to a Lookup Transform (lets call them SRC 1-7)
2. The table with 5000 records is the tables on which lookup is performed on keys A and B (lets call this LKUP-1)
3. Take the relevant columns from LKUP-1 to propagate into the TARGET tables.
This will be much faster and you don't have to perform JOINs in this case as I suspect you are doing a Many-Many join which is degrading the performance in SAS DIS.